
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Future policy implications of tidal energy array interactions

Abstract Tidal stream energy technology has progressed to a point where commercial exploitation of this sustainable resource is practical, but tidal physics dictates interactions between tidal farms that raise political, legal and managerial challenges that are yet to be met. Fully optimising the design of a turbine array requires its developer to know about other farms that will be built nearby in the future. Consequently future developments, even those in adjacent channels, have the potential to impact on project efficiency. Here we review the relevant physics, consider the implications for marine policy, and discuss potential solutions. Possible management paths range from minimal regulation to prioritise a free market, to strongly interventionist approaches that prioritise efficient resource use. An attractive exemplar of the latter is unitization, an approach to resource allocation widely used in the oil and gas industry. We argue that an interventionist approach is necessary if the greatest possible energy yield is to be produced for a given level of environmental impact.
- Marine Scotland United Kingdom
- Heriot-Watt University United Kingdom
- MARINE SCOTLAND United Kingdom
- Heriot-Watt University United Kingdom
- University of Hull United Kingdom
Environment and Sustainability, Energy, 333
Environment and Sustainability, Energy, 333
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
