- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Germany, Norway, United States, Norway, AustraliaPublisher:Frontiers Media SA Funded by:DFGDFGMathias Haunost; Alice Nauendorf; Nicole Aberle; Lennart T. Bach; Jaw C. Yong; Jean-Marie Bouquet; Kai T. Lohbeck; Kai T. Lohbeck; Verena Kalter; Michael Sswat; Fabrizio Minutolo; Jana Meyer; Joselynn R. Wallace; Isabel Dörner; Paul Stange; Silke Lischka; Tim Boxhammer; Carsten Spisla; Jan Taucher; Bettany D. Jenkins; Michael Krudewig; Anna K. Lechtenbörger; Stefanie M. H. Ismar-Rebitz; Andrew L. King; Peter Kohnert; Andrea Ludwig; Ulf Riebesell;handle: 11250/2772494 , 11250/2772796
The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978 – 2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.
OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2772494Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.611157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2772494Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.611157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:MDPI AG Funded by:EC | GoJellyEC| GoJellyDori Edelist; Dror L. Angel; João Canning-Clode; Sonia K. M. Gueroun; Nicole Aberle; Jamileh Javidpour; Carlos Andrade;doi: 10.3390/su132212445
Jellyfish are often described as a nuisance species, but as our understanding shifts to more ecosystem-based conceptions, they are also recognized as both important components of marine ecosystems and a resource for humans. Here, we describe global jellyfish fisheries and review production, fishing methods, and applications based on the existing literature. We then focus on future development of a European jellyfish fishery based on current and recent EU research initiatives. Jellyfish have been a staple food in East Asia for eons and now show a potential for non-food applications as well. The main fishing methods are mostly traditional, with set-nets, driftnets, hand-nets, and scoop-nets utilizing small crafts or beach-seines. All require a lot of manual labor, thus providing vital, albeit seasonal, occupation to weaker populations. Larger commercial vessels such as purse seines and trawlers are newly introduced métiers which may enable a larger catch per unit effort and total catch, but pose questions of selectivity, bycatch, vessel stability, and transshipment. Social concerns arising from the seasonality of jellyfish fisheries must be met in SE Asia, Latin America, and in any location where new fisheries are established. In the EU, we recognize at least 15 species showing potential for commercial harvesting, but as of 2021, a commercial fishery has yet to be developed; as in finfish fisheries, we advise caution and recognition of the role of jellyfish in marine ecosystems in doing so. Sustainable harvesting techniques and practices must be developed and implemented for a viable practice to emerge, and social and ecological needs must also be incorporated into the management plan. Once established, the catch, effort, and stock status must be monitored, regulated, and properly reported to FAO by countries seeking a viable jellyfish fishery. In the near future, novel applications for jellyfish will offer added value and new markets for this traditional resource.
Sustainability arrow_drop_down University of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputSustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down University of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputSustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 GermanyPublisher:Springer Science and Business Media LLC Authors: Aberle, Nicole; Lengfellner, K.; Sommer, U.;pmid: 16964503
This study aimed at simulating different degrees of winter warming and at assessing its potential effects on ciliate succession and grazing-related patterns. By using indoor mesocosms filled with unfiltered water from Kiel Bight, natural light and four different temperature regimes, phytoplankton spring blooms were induced and the thermal responses of ciliates were quantified. Two distinct ciliate assemblages, a pre-spring and a spring bloom assemblage, could be detected, while their formation was strongly temperature-dependent. Both assemblages were dominated by Strobilidiids; the pre-spring bloom phase was dominated by the small Strobilidiids Lohmaniella oviformis, and the spring bloom was mainly dominated by large Strobilidiids of the genus Strobilidium. The numerical response of ciliates to increasing food concentrations showed a strong acceleration by temperature. Grazing rates of ciliates and copepods were low during the pre-spring bloom period and high during the bloom ranging from 0.06 (Delta0 degrees C) to 0.23 day(-1) (Delta4 degrees C) for ciliates and 0.09 (Delta0 degrees C) to 1.62 day(-1) (Delta4 degrees C) for copepods. During the spring bloom ciliates and copepods showed a strong dietary overlap characterized by a wide food spectrum consisting mainly of Chrysochromulina sp., diatom chains and large, single-celled diatoms.
Oecologia arrow_drop_down Electronic Publication Information CenterArticle . 2007Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-006-0540-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 103 citations 103 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Electronic Publication Information CenterArticle . 2007Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-006-0540-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 GermanyPublisher:Public Library of Science (PLoS) Annegret Stuhr; Maria Algueró-Muñiz; Henriette G. Horn; Maarten Boersma; Maarten Boersma; Lennart T. Bach; Nicole Aberle; Ulf Riebesell; Martin G. J. Löder; N. Sander;Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of <8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0165800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0165800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Dörner, Isabel; Hauss, Helena; Aberle, Nicole; Lohbeck, Kai T; Spisla, Carsten; Riebesell, Ulf; Ismar, Stefanie M;A mesocosm approach was used to investigate the effects of ocean acidification (OA) on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure ( pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient (320 µatm) and elevated pCO2 (~2000 µatm), each in 4 replicate enclosures. The experiment lasted for 53 d in May-June 2015. To assess impacts of OA on the plankton community, phytoplankton and protozooplankton biomass and total seston fatty acid content were analyzed. In both treatments, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, biomass of this species as well as that of other dinoflagellates was strongly negatively affected. At the end of the experiment, total dinoflagellate biomass was 4-fold higher in the control group than under elevated pCO2 conditions. In a size comparison of C. longipes, cell size in the high pCO2 treatment was significantly larger. The ratio of polyunsaturated fatty acids to saturated fatty acids of seston decreased at high pCO2. In particular, the concentration of docosahexaenoic acid (C 22:6n3c), essential for development and reproduction of metazoans, was less than half at high pCO2 compared to ambient pCO2. Thus, elevated pCO2 led to a deterioration in the quality and quantity of food in a natural plankton community, with potential consequences for the transfer of matter and energy to higher trophic levels. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-03-15.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Publisher:PANGAEA Horn, Henriette G; Sander, Nils; Stuhr, Annegret; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Löder, Martin G J; Boersma, Maarten; Riebesell, Ulf; Aberle, Nicole;Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of <8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-02-28.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.956200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.956200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Funded by:EC | EPOCAEC| EPOCAAberle, Nicole; Schulz, Kai Georg; Stuhr, Annegret; Malzahn, Arne Michael; Ludwig, Andrea; Riebesell, Ulf;In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 80visibility views 80 download downloads 5 Powered bymore_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Germany, Austria, DenmarkPublisher:Springer Science and Business Media LLC Witte, U.; Wenzhöfer, F.; Sommer, S.; Boetius, A.; Heinz, P.; Aberle, N.; Sand, M.; Cremer, A.; Abraham, W.R.; Jørgensen, B.B.; Pfannkuche, O.;doi: 10.1038/nature01799
pmid: 12917681
More than 50% of the Earth' s surface is sea floor below 3,000 m of water. Most of this major reservoir in the global carbon cycle and final repository for anthropogenic wastes is characterized by severe food limitation. Phytodetritus is the major food source for abyssal benthic communities, and a large fraction of the annual food load can arrive in pulses within a few days. Owing to logistical constraints, the available data concerning the fate of such a pulse are scattered and often contradictory, hampering global carbon modelling and anthropogenic impact assessments. We quantified (over a period of 2.5 to 23 days) the response of an abyssal benthic community to a phytodetritus pulse, on the basis of 11 in situ experiments. Here we report that, in contrast to previous hypotheses, the sediment community oxygen consumption doubled immediately, and that macrofauna were very important for initial carbon degradation. The retarded response of bacteria and Foraminifera, the restriction of microbial carbon degradation to the sediment surface, and the low total carbon turnover distinguish abyssal from continental-slope 'deep-sea' sediments.
Nature arrow_drop_down Electronic Publication Information CenterArticle . 2003Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature01799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 213 citations 213 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nature arrow_drop_down Electronic Publication Information CenterArticle . 2003Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature01799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:DFGDFGSpisla, Carsten; Taucher, Jan; Bach, Lennart Thomas; Haunost, Mathias; Boxhammer, Tim; King, Andrew L; Jenkins, Bethany D; Wallace, Joselynn R; Ludwig, Andrea; Meyer, Jana; Stange, Paul; Minutolo, Fabrizio; Lohbeck, Kai T; Nauendorf, Alice; Kalter, Verena; Lischka, Silke; Sswat, Michael; Dörner, Isabel; Ismar-Rebitz, Stefanie M H; Aberle, Nicole; Yong, Jaw-Chuen; Bouquet, Jean-Marie; Lechtenbörger, Anna K; Kohnert, Peter; Krudewig, Michael; Riebesell, Ulf;The oceans' uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m**3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978-2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-05-11.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:Public Library of Science (PLoS) Funded by:ANR | Photo-Phyto, EC | AQUACOSMANR| Photo-Phyto ,EC| AQUACOSMTrombetta, Thomas; Mostajir, Behzad; Courboulès, Justine; Protopapa, Maria; Mas, Sébastien; Aberle, Nicole; Vidussi, Francesca;To better identify the responses of phytoplankton blooms to warming conditions as expected in a climate change context, an in situ mesocosm experiment was carried out in a coastal Mediterranean lagoon (Thau Lagoon, South of France) in April 2018. Our objective was to assess both the direct and indirect effects of warming on phytoplankton, particularly those mediated by top-down control. Four treatments were applied: 1) natural planktonic community with ambient water temperature (C); 2) natural planktonic community at +3°C elevated temperature (T); 3) exclusion of larger zooplankton (> 200 μm; mesozooplankton) leaving microzooplankton predominant with ambient water temperature (MicroZ); and 4) exclusion of larger zooplankton (> 200 μm; mesozooplankton) at +3°C elevated temperature (TMicroZ). Warming strongly depressed the amplitude of the phytoplankton bloom as the chlorophyll a concentration was twice lower in the T treatment. This decline under warmer conditions was most likely imputed to increase top-down control by zooplankton. However, removal of mesozooplankton resulted in an opposite trend, with a higher bloom amplitude observed under warmer conditions (MicroZ vs. TMicroZ) pointing at a strong interplay between micro- and mesozooplankton and the effect of warming for the spring phytoplankton blooms. Furthermore, both warming and mesozooplankton exclusion induced shifts in phytoplankton community composition during bloom and post-bloom periods, favoring dinoflagellates and small green algae at the expense of diatoms and prymnesiophytes. Moreover, warming altered phytoplankton succession by promoting an early bloom of small green flagellates, and a late bloom of diatoms. Our findings clearly highlighted the sensitivity of phytoplankton blooms amplitudes, community composition and succession patterns to temperature increases, as well as the key role of initial zooplankton community composition to elicit opposite response in bloom dynamics. It also points out that warmer conditions might favor dinoflagellates and small green algae, irrespective of zooplankton community composition, with potential implications for food web dynamics and energy transfer efficiency under future ocean condition.
PLoS ONE arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0308505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert PLoS ONE arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0308505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021 Australia, Germany, Norway, United States, Norway, AustraliaPublisher:Frontiers Media SA Funded by:DFGDFGMathias Haunost; Alice Nauendorf; Nicole Aberle; Lennart T. Bach; Jaw C. Yong; Jean-Marie Bouquet; Kai T. Lohbeck; Kai T. Lohbeck; Verena Kalter; Michael Sswat; Fabrizio Minutolo; Jana Meyer; Joselynn R. Wallace; Isabel Dörner; Paul Stange; Silke Lischka; Tim Boxhammer; Carsten Spisla; Jan Taucher; Bettany D. Jenkins; Michael Krudewig; Anna K. Lechtenbörger; Stefanie M. H. Ismar-Rebitz; Andrew L. King; Peter Kohnert; Andrea Ludwig; Ulf Riebesell;handle: 11250/2772494 , 11250/2772796
The oceans’ uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978 – 2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers.
OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2772494Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.611157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 45 citations 45 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert OceanRep arrow_drop_down University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/11250/2772494Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Bergen Open Research Archive - UiBArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBUniversity of Tasmania: UTas ePrintsArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2020.611157&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 DenmarkPublisher:MDPI AG Funded by:EC | GoJellyEC| GoJellyDori Edelist; Dror L. Angel; João Canning-Clode; Sonia K. M. Gueroun; Nicole Aberle; Jamileh Javidpour; Carlos Andrade;doi: 10.3390/su132212445
Jellyfish are often described as a nuisance species, but as our understanding shifts to more ecosystem-based conceptions, they are also recognized as both important components of marine ecosystems and a resource for humans. Here, we describe global jellyfish fisheries and review production, fishing methods, and applications based on the existing literature. We then focus on future development of a European jellyfish fishery based on current and recent EU research initiatives. Jellyfish have been a staple food in East Asia for eons and now show a potential for non-food applications as well. The main fishing methods are mostly traditional, with set-nets, driftnets, hand-nets, and scoop-nets utilizing small crafts or beach-seines. All require a lot of manual labor, thus providing vital, albeit seasonal, occupation to weaker populations. Larger commercial vessels such as purse seines and trawlers are newly introduced métiers which may enable a larger catch per unit effort and total catch, but pose questions of selectivity, bycatch, vessel stability, and transshipment. Social concerns arising from the seasonality of jellyfish fisheries must be met in SE Asia, Latin America, and in any location where new fisheries are established. In the EU, we recognize at least 15 species showing potential for commercial harvesting, but as of 2021, a commercial fishery has yet to be developed; as in finfish fisheries, we advise caution and recognition of the role of jellyfish in marine ecosystems in doing so. Sustainable harvesting techniques and practices must be developed and implemented for a viable practice to emerge, and social and ecological needs must also be incorporated into the management plan. Once established, the catch, effort, and stock status must be monitored, regulated, and properly reported to FAO by countries seeking a viable jellyfish fishery. In the near future, novel applications for jellyfish will offer added value and new markets for this traditional resource.
Sustainability arrow_drop_down University of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputSustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down University of Southern Denmark Research OutputArticle . 2021Data sources: University of Southern Denmark Research OutputSustainabilityArticle . 2021License: CC BYData sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212445&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 GermanyPublisher:Springer Science and Business Media LLC Authors: Aberle, Nicole; Lengfellner, K.; Sommer, U.;pmid: 16964503
This study aimed at simulating different degrees of winter warming and at assessing its potential effects on ciliate succession and grazing-related patterns. By using indoor mesocosms filled with unfiltered water from Kiel Bight, natural light and four different temperature regimes, phytoplankton spring blooms were induced and the thermal responses of ciliates were quantified. Two distinct ciliate assemblages, a pre-spring and a spring bloom assemblage, could be detected, while their formation was strongly temperature-dependent. Both assemblages were dominated by Strobilidiids; the pre-spring bloom phase was dominated by the small Strobilidiids Lohmaniella oviformis, and the spring bloom was mainly dominated by large Strobilidiids of the genus Strobilidium. The numerical response of ciliates to increasing food concentrations showed a strong acceleration by temperature. Grazing rates of ciliates and copepods were low during the pre-spring bloom period and high during the bloom ranging from 0.06 (Delta0 degrees C) to 0.23 day(-1) (Delta4 degrees C) for ciliates and 0.09 (Delta0 degrees C) to 1.62 day(-1) (Delta4 degrees C) for copepods. During the spring bloom ciliates and copepods showed a strong dietary overlap characterized by a wide food spectrum consisting mainly of Chrysochromulina sp., diatom chains and large, single-celled diatoms.
Oecologia arrow_drop_down Electronic Publication Information CenterArticle . 2007Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-006-0540-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 103 citations 103 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oecologia arrow_drop_down Electronic Publication Information CenterArticle . 2007Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00442-006-0540-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 GermanyPublisher:Public Library of Science (PLoS) Annegret Stuhr; Maria Algueró-Muñiz; Henriette G. Horn; Maarten Boersma; Maarten Boersma; Lennart T. Bach; Nicole Aberle; Ulf Riebesell; Martin G. J. Löder; N. Sander;Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of <8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0165800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0165800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020Publisher:PANGAEA Dörner, Isabel; Hauss, Helena; Aberle, Nicole; Lohbeck, Kai T; Spisla, Carsten; Riebesell, Ulf; Ismar, Stefanie M;A mesocosm approach was used to investigate the effects of ocean acidification (OA) on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure ( pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient (320 µatm) and elevated pCO2 (~2000 µatm), each in 4 replicate enclosures. The experiment lasted for 53 d in May-June 2015. To assess impacts of OA on the plankton community, phytoplankton and protozooplankton biomass and total seston fatty acid content were analyzed. In both treatments, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, biomass of this species as well as that of other dinoflagellates was strongly negatively affected. At the end of the experiment, total dinoflagellate biomass was 4-fold higher in the control group than under elevated pCO2 conditions. In a size comparison of C. longipes, cell size in the high pCO2 treatment was significantly larger. The ratio of polyunsaturated fatty acids to saturated fatty acids of seston decreased at high pCO2. In particular, the concentration of docosahexaenoic acid (C 22:6n3c), essential for development and reproduction of metazoans, was less than half at high pCO2 compared to ambient pCO2. Thus, elevated pCO2 led to a deterioration in the quality and quantity of food in a natural plankton community, with potential consequences for the transfer of matter and energy to higher trophic levels. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-03-15.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.929270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2016Publisher:PANGAEA Horn, Henriette G; Sander, Nils; Stuhr, Annegret; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Löder, Martin G J; Boersma, Maarten; Riebesell, Ulf; Aberle, Nicole;Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of <8 μm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2023-02-28.
PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.956200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert PANGAEA - Data Publi... arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2016License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.956200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2013Publisher:PANGAEA Funded by:EC | EPOCAEC| EPOCAAberle, Nicole; Schulz, Kai Georg; Stuhr, Annegret; Malzahn, Arne Michael; Ludwig, Andrea; Riebesell, Ulf;In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Lavigne and Gattuso, 2011) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI).
B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 80visibility views 80 download downloads 5 Powered bymore_vert B2FIND arrow_drop_down PANGAEA - Data Publisher for Earth and Environmental ScienceDataset . 2013License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.832403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 Germany, Austria, DenmarkPublisher:Springer Science and Business Media LLC Witte, U.; Wenzhöfer, F.; Sommer, S.; Boetius, A.; Heinz, P.; Aberle, N.; Sand, M.; Cremer, A.; Abraham, W.R.; Jørgensen, B.B.; Pfannkuche, O.;doi: 10.1038/nature01799
pmid: 12917681
More than 50% of the Earth' s surface is sea floor below 3,000 m of water. Most of this major reservoir in the global carbon cycle and final repository for anthropogenic wastes is characterized by severe food limitation. Phytodetritus is the major food source for abyssal benthic communities, and a large fraction of the annual food load can arrive in pulses within a few days. Owing to logistical constraints, the available data concerning the fate of such a pulse are scattered and often contradictory, hampering global carbon modelling and anthropogenic impact assessments. We quantified (over a period of 2.5 to 23 days) the response of an abyssal benthic community to a phytodetritus pulse, on the basis of 11 in situ experiments. Here we report that, in contrast to previous hypotheses, the sediment community oxygen consumption doubled immediately, and that macrofauna were very important for initial carbon degradation. The retarded response of bacteria and Foraminifera, the restriction of microbial carbon degradation to the sediment surface, and the low total carbon turnover distinguish abyssal from continental-slope 'deep-sea' sediments.
Nature arrow_drop_down Electronic Publication Information CenterArticle . 2003Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature01799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 213 citations 213 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Nature arrow_drop_down Electronic Publication Information CenterArticle . 2003Data sources: Electronic Publication Information CenterUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature01799&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:PANGAEA Funded by:DFGDFGSpisla, Carsten; Taucher, Jan; Bach, Lennart Thomas; Haunost, Mathias; Boxhammer, Tim; King, Andrew L; Jenkins, Bethany D; Wallace, Joselynn R; Ludwig, Andrea; Meyer, Jana; Stange, Paul; Minutolo, Fabrizio; Lohbeck, Kai T; Nauendorf, Alice; Kalter, Verena; Lischka, Silke; Sswat, Michael; Dörner, Isabel; Ismar-Rebitz, Stefanie M H; Aberle, Nicole; Yong, Jaw-Chuen; Bouquet, Jean-Marie; Lechtenbörger, Anna K; Kohnert, Peter; Krudewig, Michael; Riebesell, Ulf;The oceans' uptake of anthropogenic carbon dioxide (CO2) decreases seawater pH and alters the inorganic carbon speciation – summarized in the term ocean acidification (OA). Already today, coastal regions experience episodic pH events during which surface layer pH drops below values projected for the surface ocean at the end of the century. Future OA is expected to further enhance the intensity of these coastal extreme pH events. To evaluate the influence of such episodic OA events in coastal regions, we deployed eight pelagic mesocosms for 53 days in Raunefjord, Norway, and enclosed 56–61 m**3 of local seawater containing a natural plankton community under nutrient limited post-bloom conditions. Four mesocosms were enriched with CO2 to simulate extreme pCO2 levels of 1978-2069 μatm while the other four served as untreated controls. Here, we present results from multivariate analyses on OA-induced changes in the phyto-, micro-, and mesozooplankton community structure. Pronounced differences in the plankton community emerged early in the experiment, and were amplified by enhanced top-down control throughout the study period. The plankton groups responding most profoundly to high CO2 conditions were cyanobacteria (negative), chlorophyceae (negative), auto- and heterotrophic microzooplankton (negative), and a variety of mesozooplanktonic taxa, including copepoda (mixed), appendicularia (positive), hydrozoa (positive), fish larvae (positive), and gastropoda (negative). The restructuring of the community coincided with significant changes in the concentration and elemental stoichiometry of particulate organic matter. Results imply that extreme CO2 events can lead to a substantial reorganization of the planktonic food web, affecting multiple trophic levels from phytoplankton to primary and secondary consumers. In order to allow full comparability with other ocean acidification data sets, the R package seacarb (Gattuso et al, 2021) was used to compute a complete and consistent set of carbonate system variables, as described by Nisumaa et al. (2010). In this dataset the original values were archived in addition with the recalculated parameters (see related PI). The date of carbonate chemistry calculation by seacarb is 2021-05-11.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1594/pangaea.931402&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 FrancePublisher:Public Library of Science (PLoS) Funded by:ANR | Photo-Phyto, EC | AQUACOSMANR| Photo-Phyto ,EC| AQUACOSMTrombetta, Thomas; Mostajir, Behzad; Courboulès, Justine; Protopapa, Maria; Mas, Sébastien; Aberle, Nicole; Vidussi, Francesca;To better identify the responses of phytoplankton blooms to warming conditions as expected in a climate change context, an in situ mesocosm experiment was carried out in a coastal Mediterranean lagoon (Thau Lagoon, South of France) in April 2018. Our objective was to assess both the direct and indirect effects of warming on phytoplankton, particularly those mediated by top-down control. Four treatments were applied: 1) natural planktonic community with ambient water temperature (C); 2) natural planktonic community at +3°C elevated temperature (T); 3) exclusion of larger zooplankton (> 200 μm; mesozooplankton) leaving microzooplankton predominant with ambient water temperature (MicroZ); and 4) exclusion of larger zooplankton (> 200 μm; mesozooplankton) at +3°C elevated temperature (TMicroZ). Warming strongly depressed the amplitude of the phytoplankton bloom as the chlorophyll a concentration was twice lower in the T treatment. This decline under warmer conditions was most likely imputed to increase top-down control by zooplankton. However, removal of mesozooplankton resulted in an opposite trend, with a higher bloom amplitude observed under warmer conditions (MicroZ vs. TMicroZ) pointing at a strong interplay between micro- and mesozooplankton and the effect of warming for the spring phytoplankton blooms. Furthermore, both warming and mesozooplankton exclusion induced shifts in phytoplankton community composition during bloom and post-bloom periods, favoring dinoflagellates and small green algae at the expense of diatoms and prymnesiophytes. Moreover, warming altered phytoplankton succession by promoting an early bloom of small green flagellates, and a late bloom of diatoms. Our findings clearly highlighted the sensitivity of phytoplankton blooms amplitudes, community composition and succession patterns to temperature increases, as well as the key role of initial zooplankton community composition to elicit opposite response in bloom dynamics. It also points out that warmer conditions might favor dinoflagellates and small green algae, irrespective of zooplankton community composition, with potential implications for food web dynamics and energy transfer efficiency under future ocean condition.
PLoS ONE arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0308505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert PLoS ONE arrow_drop_down ArchiMer - Institutional Archive of IfremerOther literature type . 2024Data sources: ArchiMer - Institutional Archive of IfremerInstitut National de la Recherche Agronomique: ProdINRAArticle . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0308505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu