- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Mozhgan Hosseinnezhad;Tandem solar cells were developed for improved efficiency in connection with perovskite solar cells and dye-sensitized solar cells. The organic dye based on thioindigo and N719 were applied in fabricating dye-sensitized solar cells as photosensitizers. We achieved an 8.77% and 10.54% efficiency tandem solar cell formed by a top perovskite solar cell and dye-sensitized solar cells based on organic dye and N719 for the bottom cell, respectively. The photovoltage of tandem solar cells was reported about 1.1 V, but the photocurrent was limited by the dye-sensitized solar cells and was about 12.8 mAcm−2.
Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Mozhgan Hosseinnezhad;Tandem solar cells were developed for improved efficiency in connection with perovskite solar cells and dye-sensitized solar cells. The organic dye based on thioindigo and N719 were applied in fabricating dye-sensitized solar cells as photosensitizers. We achieved an 8.77% and 10.54% efficiency tandem solar cell formed by a top perovskite solar cell and dye-sensitized solar cells based on organic dye and N719 for the bottom cell, respectively. The photovoltage of tandem solar cells was reported about 1.1 V, but the photocurrent was limited by the dye-sensitized solar cells and was about 12.8 mAcm−2.
Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mozhgan Hosseinnezhad; Sohrab Nasiri; Javad Movahedi; Mehdi Ghahari;Abstract Acceptor electron groups play a key role in sensitizer proficiency in the DSSCs. To study this effect, a variety of acceptor electron groups were placed on a common scaffold. In this way, various intermediates and dyes were engineered, synthesized, purified and identified. Titanium dioxide and Na-doped TiO2 were employed to prepare of nanocrystalline layer of the photovoltaic devices. The blue movement was beholden in the UV–Visible test the coated photosensitizers on nanoparticle due to the J-type aggregation. To predict the usability of dyes in the structure of the solar cells, two methods, DFT and CV were employed. Finally, the DSSCs devices were prepared based on synthesized dyes and Na-doped TiO2 or TiO2. The photovoltaic device, which contains Dye 2, has the highest Jsc. The operation of photovoltaic device based on titanium dioxide is lower than that of Na-doped TiO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mozhgan Hosseinnezhad; Sohrab Nasiri; Javad Movahedi; Mehdi Ghahari;Abstract Acceptor electron groups play a key role in sensitizer proficiency in the DSSCs. To study this effect, a variety of acceptor electron groups were placed on a common scaffold. In this way, various intermediates and dyes were engineered, synthesized, purified and identified. Titanium dioxide and Na-doped TiO2 were employed to prepare of nanocrystalline layer of the photovoltaic devices. The blue movement was beholden in the UV–Visible test the coated photosensitizers on nanoparticle due to the J-type aggregation. To predict the usability of dyes in the structure of the solar cells, two methods, DFT and CV were employed. Finally, the DSSCs devices were prepared based on synthesized dyes and Na-doped TiO2 or TiO2. The photovoltaic device, which contains Dye 2, has the highest Jsc. The operation of photovoltaic device based on titanium dioxide is lower than that of Na-doped TiO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Shohreh Rouhani; Narjes Razani; Homan Imani;doi: 10.1002/ep.13868
AbstractToday, the issue of reducing industrial pollution has received much attention. The textile industry is of high important throughout the world. However, its by‐product wastewater pollutes the environment. The first approach was the selection of plant‐based dyes (madder and reseda) and the application of tannin‐based mordants (pomegranate peel and myrobalan). The extraction of madder, reseda, and pomegranate peel in water with the ultrasound‐assisted method was done. In this article, pre‐mordanting method was used for mordanting and Cu (copper) and alum were selected as the mineral mordant to compare the results. Fourier Transform Infrared Spectroscopy method was employed to analyze the obtained extracts and to investigate the changes in the fibers. The results showed that K/S (color strength) values of the dyed samples increased by increasing the dye concentration. The colorfastness properties of the samples were investigated according the ISO standards.
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Shohreh Rouhani; Narjes Razani; Homan Imani;doi: 10.1002/ep.13868
AbstractToday, the issue of reducing industrial pollution has received much attention. The textile industry is of high important throughout the world. However, its by‐product wastewater pollutes the environment. The first approach was the selection of plant‐based dyes (madder and reseda) and the application of tannin‐based mordants (pomegranate peel and myrobalan). The extraction of madder, reseda, and pomegranate peel in water with the ultrasound‐assisted method was done. In this article, pre‐mordanting method was used for mordanting and Cu (copper) and alum were selected as the mineral mordant to compare the results. Fourier Transform Infrared Spectroscopy method was employed to analyze the obtained extracts and to investigate the changes in the fibers. The results showed that K/S (color strength) values of the dyed samples increased by increasing the dye concentration. The colorfastness properties of the samples were investigated according the ISO standards.
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 TurkeyPublisher:SAGE Publications Shahid Adeel; M. Hassan; Fatima Batool; Meral Özomay; Mozhgan Hosseinnezhad; Nimra Amin; Muhammad Hussaan;handle: 11424/290406
The ongoing age is the time of sustainability, where in the current pandemic scenario, which is getting worse, needs treatment with nature rather than chemical-based products. In this study, microwaves (M.W. rays) treatments as extraction mode for Esfand ( P. harmala) have been revived for polyamide (nylon) dyeing. The water solubilized and acid solubilized filtrates and polyamide (nylon fabrics) were treated M.W. rays up to 10 min with an interval of 2 min. Mordanting with chemicals and plant extracts before and after dyeing was done at 60°C–80°C. It has been found the application of M.W. ray treatment for 4 min., to 30 mL of extract of 8 pH containing 4 g/100 mL of Table salt as leveling agent has given desired results when employed at 55°C for 55 min. Statistical analysis of dyeing variables through R.S.M., and two way-Anova shows that the effect of these variables has been observed highly significant. Experimentally it has been observed that the application of extract for dyeing of polyamide (nylon fabric) has given good results when chemical or bio-mordanted at selected conditions. Practically, Esfand seeds has ability for bio-coloration of surface modified polyamide fabric (nylon fabric), and utilization of pomegranate extract as bio-mordant and tannic acid as sustainable chemical mordant has furnished colorfast shades.
Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 TurkeyPublisher:SAGE Publications Shahid Adeel; M. Hassan; Fatima Batool; Meral Özomay; Mozhgan Hosseinnezhad; Nimra Amin; Muhammad Hussaan;handle: 11424/290406
The ongoing age is the time of sustainability, where in the current pandemic scenario, which is getting worse, needs treatment with nature rather than chemical-based products. In this study, microwaves (M.W. rays) treatments as extraction mode for Esfand ( P. harmala) have been revived for polyamide (nylon) dyeing. The water solubilized and acid solubilized filtrates and polyamide (nylon fabrics) were treated M.W. rays up to 10 min with an interval of 2 min. Mordanting with chemicals and plant extracts before and after dyeing was done at 60°C–80°C. It has been found the application of M.W. ray treatment for 4 min., to 30 mL of extract of 8 pH containing 4 g/100 mL of Table salt as leveling agent has given desired results when employed at 55°C for 55 min. Statistical analysis of dyeing variables through R.S.M., and two way-Anova shows that the effect of these variables has been observed highly significant. Experimentally it has been observed that the application of extract for dyeing of polyamide (nylon fabric) has given good results when chemical or bio-mordanted at selected conditions. Practically, Esfand seeds has ability for bio-coloration of surface modified polyamide fabric (nylon fabric), and utilization of pomegranate extract as bio-mordant and tannic acid as sustainable chemical mordant has furnished colorfast shades.
Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Mehdi Ghahari; Sohrab Nasiri; Mohsen Fathi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Mehdi Ghahari; Sohrab Nasiri; Mohsen Fathi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohammad Reza Saeb; Siamak Moradian; Kamaladin Gharanjig; Mozhgan Hosseinnezhad;Abstract A series of dye-sensitized solar cells were designed and manufactured based on natural dyes extracted from red grape, red onion peel, radish, sour orange peel, and sambucus ebulus, as photosensitizers. The UV–Visible technique was served to determine maximum adsorption of natural extract and pre-dyed photoanode. The Fourier transform infrared analysis was employed to track the presence of functional groups. The cyclic voltammetry method was used to assess the possibility of charge transfer from a dried natural dye to the photoelectrode. The performance of natural-based dye-sensitized solar cells was subsequently determined. Fabricated devices were examined for power conversion efficiency (PCE), individually, in co-sensitized (Co-DSSC) arrangement and in tandem (T-DSSC) with each other. In case of individual device, the highest possible PCE among studied systems was ca. 1.47%, belonged to radish extract. For T-DSSC and Co-DSSC, 1.59 and 2.59% were respectively the highest values of PCE obtained in this work. The use of T-DSSC device has been applied for the first time in this work, which provides with expanding photovoltaic absorption range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohammad Reza Saeb; Siamak Moradian; Kamaladin Gharanjig; Mozhgan Hosseinnezhad;Abstract A series of dye-sensitized solar cells were designed and manufactured based on natural dyes extracted from red grape, red onion peel, radish, sour orange peel, and sambucus ebulus, as photosensitizers. The UV–Visible technique was served to determine maximum adsorption of natural extract and pre-dyed photoanode. The Fourier transform infrared analysis was employed to track the presence of functional groups. The cyclic voltammetry method was used to assess the possibility of charge transfer from a dried natural dye to the photoelectrode. The performance of natural-based dye-sensitized solar cells was subsequently determined. Fabricated devices were examined for power conversion efficiency (PCE), individually, in co-sensitized (Co-DSSC) arrangement and in tandem (T-DSSC) with each other. In case of individual device, the highest possible PCE among studied systems was ca. 1.47%, belonged to radish extract. For T-DSSC and Co-DSSC, 1.59 and 2.59% were respectively the highest values of PCE obtained in this work. The use of T-DSSC device has been applied for the first time in this work, which provides with expanding photovoltaic absorption range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 LithuaniaPublisher:MDPI AG Mozhgan Hosseinnezhad; Mehdi Ghahari; Ghazal Mobarhan; Mohsen Fathi; Arvydas Palevicius; Venkatramaiah Nutalapati; Giedrius Janusas; Sohrab Nasiri;Photovoltaic systems, such as dye-sensitized solar cells (DSSCs), are one of the useful tools for generating renewable and green energy. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Here, we employed a new MoS2/graphene hybrid or composite instead of platinum in the DSSCs. Furthermore, the correctness of the preparation of the MoS2/graphene hybrid or composite was evaluated by field emission scanning electron microscope (FESEM), and the results showed that the desired compound was synthesized correctly. Inexpensive organic dyes were used to prepare the DSSCs, and their chemical structure was investigated by density functional theory (DFT) and cyclic voltammetry (CV). Finally, the DSSCs were fabricated using MoS2/graphene composite or hybrid, and to compare the results, the DSSCs were also prepared using platinum. Under the same conditions, the DSSCs with MoS2/graphene composite illustrated better efficiency than MoS2/graphene hybrid or/and graphene.
Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 LithuaniaPublisher:MDPI AG Mozhgan Hosseinnezhad; Mehdi Ghahari; Ghazal Mobarhan; Mohsen Fathi; Arvydas Palevicius; Venkatramaiah Nutalapati; Giedrius Janusas; Sohrab Nasiri;Photovoltaic systems, such as dye-sensitized solar cells (DSSCs), are one of the useful tools for generating renewable and green energy. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Here, we employed a new MoS2/graphene hybrid or composite instead of platinum in the DSSCs. Furthermore, the correctness of the preparation of the MoS2/graphene hybrid or composite was evaluated by field emission scanning electron microscope (FESEM), and the results showed that the desired compound was synthesized correctly. Inexpensive organic dyes were used to prepare the DSSCs, and their chemical structure was investigated by density functional theory (DFT) and cyclic voltammetry (CV). Finally, the DSSCs were fabricated using MoS2/graphene composite or hybrid, and to compare the results, the DSSCs were also prepared using platinum. Under the same conditions, the DSSCs with MoS2/graphene composite illustrated better efficiency than MoS2/graphene hybrid or/and graphene.
Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Polish Academy of Sciences Chancellery Authors: J. Movahedi; H. Haratizadeh; N. Falah; M. Hosseinnezhad;Abstract Different anchoring groups such as thiophene-2-acetic and malonic acid were investigated for synthesis of new photosensitizers. The new dyes (photosensitizers) were made pure and determined by various analytical techniques. The chemical structure of synthesized materials was certified by analytical studies. UV-Visible and fluorescence spectra revealed intense fluorescence and absorption for organic photosensitizers. The cyclic voltammetry results showed that the two photosensitizers were suitable for dye sensitized solar cell preparation. The work electrode was gathered using tin (IV) oxide nanoparticles in dye-sensitized solar cells structure. The new photosensitizers and tin (IV) oxide were used for photovoltaic devices preparation. The power conversion efficiency was obtained as about 4.12 and 4.29% for Dye 1 and Dye 2, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Polish Academy of Sciences Chancellery Authors: J. Movahedi; H. Haratizadeh; N. Falah; M. Hosseinnezhad;Abstract Different anchoring groups such as thiophene-2-acetic and malonic acid were investigated for synthesis of new photosensitizers. The new dyes (photosensitizers) were made pure and determined by various analytical techniques. The chemical structure of synthesized materials was certified by analytical studies. UV-Visible and fluorescence spectra revealed intense fluorescence and absorption for organic photosensitizers. The cyclic voltammetry results showed that the two photosensitizers were suitable for dye sensitized solar cell preparation. The work electrode was gathered using tin (IV) oxide nanoparticles in dye-sensitized solar cells structure. The new photosensitizers and tin (IV) oxide were used for photovoltaic devices preparation. The power conversion efficiency was obtained as about 4.12 and 4.29% for Dye 1 and Dye 2, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Mozhgan Hosseinnezhad;Tandem solar cells were developed for improved efficiency in connection with perovskite solar cells and dye-sensitized solar cells. The organic dye based on thioindigo and N719 were applied in fabricating dye-sensitized solar cells as photosensitizers. We achieved an 8.77% and 10.54% efficiency tandem solar cell formed by a top perovskite solar cell and dye-sensitized solar cells based on organic dye and N719 for the bottom cell, respectively. The photovoltage of tandem solar cells was reported about 1.1 V, but the photocurrent was limited by the dye-sensitized solar cells and was about 12.8 mAcm−2.
Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Mozhgan Hosseinnezhad;Tandem solar cells were developed for improved efficiency in connection with perovskite solar cells and dye-sensitized solar cells. The organic dye based on thioindigo and N719 were applied in fabricating dye-sensitized solar cells as photosensitizers. We achieved an 8.77% and 10.54% efficiency tandem solar cell formed by a top perovskite solar cell and dye-sensitized solar cells based on organic dye and N719 for the bottom cell, respectively. The photovoltage of tandem solar cells was reported about 1.1 V, but the photocurrent was limited by the dye-sensitized solar cells and was about 12.8 mAcm−2.
Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Electroni... arrow_drop_down Journal of Electronic MaterialsArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11664-019-07272-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mozhgan Hosseinnezhad; Sohrab Nasiri; Javad Movahedi; Mehdi Ghahari;Abstract Acceptor electron groups play a key role in sensitizer proficiency in the DSSCs. To study this effect, a variety of acceptor electron groups were placed on a common scaffold. In this way, various intermediates and dyes were engineered, synthesized, purified and identified. Titanium dioxide and Na-doped TiO2 were employed to prepare of nanocrystalline layer of the photovoltaic devices. The blue movement was beholden in the UV–Visible test the coated photosensitizers on nanoparticle due to the J-type aggregation. To predict the usability of dyes in the structure of the solar cells, two methods, DFT and CV were employed. Finally, the DSSCs devices were prepared based on synthesized dyes and Na-doped TiO2 or TiO2. The photovoltaic device, which contains Dye 2, has the highest Jsc. The operation of photovoltaic device based on titanium dioxide is lower than that of Na-doped TiO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Mozhgan Hosseinnezhad; Sohrab Nasiri; Javad Movahedi; Mehdi Ghahari;Abstract Acceptor electron groups play a key role in sensitizer proficiency in the DSSCs. To study this effect, a variety of acceptor electron groups were placed on a common scaffold. In this way, various intermediates and dyes were engineered, synthesized, purified and identified. Titanium dioxide and Na-doped TiO2 were employed to prepare of nanocrystalline layer of the photovoltaic devices. The blue movement was beholden in the UV–Visible test the coated photosensitizers on nanoparticle due to the J-type aggregation. To predict the usability of dyes in the structure of the solar cells, two methods, DFT and CV were employed. Finally, the DSSCs devices were prepared based on synthesized dyes and Na-doped TiO2 or TiO2. The photovoltaic device, which contains Dye 2, has the highest Jsc. The operation of photovoltaic device based on titanium dioxide is lower than that of Na-doped TiO2.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.09.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Shohreh Rouhani; Narjes Razani; Homan Imani;doi: 10.1002/ep.13868
AbstractToday, the issue of reducing industrial pollution has received much attention. The textile industry is of high important throughout the world. However, its by‐product wastewater pollutes the environment. The first approach was the selection of plant‐based dyes (madder and reseda) and the application of tannin‐based mordants (pomegranate peel and myrobalan). The extraction of madder, reseda, and pomegranate peel in water with the ultrasound‐assisted method was done. In this article, pre‐mordanting method was used for mordanting and Cu (copper) and alum were selected as the mineral mordant to compare the results. Fourier Transform Infrared Spectroscopy method was employed to analyze the obtained extracts and to investigate the changes in the fibers. The results showed that K/S (color strength) values of the dyed samples increased by increasing the dye concentration. The colorfastness properties of the samples were investigated according the ISO standards.
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Shohreh Rouhani; Narjes Razani; Homan Imani;doi: 10.1002/ep.13868
AbstractToday, the issue of reducing industrial pollution has received much attention. The textile industry is of high important throughout the world. However, its by‐product wastewater pollutes the environment. The first approach was the selection of plant‐based dyes (madder and reseda) and the application of tannin‐based mordants (pomegranate peel and myrobalan). The extraction of madder, reseda, and pomegranate peel in water with the ultrasound‐assisted method was done. In this article, pre‐mordanting method was used for mordanting and Cu (copper) and alum were selected as the mineral mordant to compare the results. Fourier Transform Infrared Spectroscopy method was employed to analyze the obtained extracts and to investigate the changes in the fibers. The results showed that K/S (color strength) values of the dyed samples increased by increasing the dye concentration. The colorfastness properties of the samples were investigated according the ISO standards.
Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Progre... arrow_drop_down Environmental Progress & Sustainable EnergyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ep.13868&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 TurkeyPublisher:SAGE Publications Shahid Adeel; M. Hassan; Fatima Batool; Meral Özomay; Mozhgan Hosseinnezhad; Nimra Amin; Muhammad Hussaan;handle: 11424/290406
The ongoing age is the time of sustainability, where in the current pandemic scenario, which is getting worse, needs treatment with nature rather than chemical-based products. In this study, microwaves (M.W. rays) treatments as extraction mode for Esfand ( P. harmala) have been revived for polyamide (nylon) dyeing. The water solubilized and acid solubilized filtrates and polyamide (nylon fabrics) were treated M.W. rays up to 10 min with an interval of 2 min. Mordanting with chemicals and plant extracts before and after dyeing was done at 60°C–80°C. It has been found the application of M.W. ray treatment for 4 min., to 30 mL of extract of 8 pH containing 4 g/100 mL of Table salt as leveling agent has given desired results when employed at 55°C for 55 min. Statistical analysis of dyeing variables through R.S.M., and two way-Anova shows that the effect of these variables has been observed highly significant. Experimentally it has been observed that the application of extract for dyeing of polyamide (nylon fabric) has given good results when chemical or bio-mordanted at selected conditions. Practically, Esfand seeds has ability for bio-coloration of surface modified polyamide fabric (nylon fabric), and utilization of pomegranate extract as bio-mordant and tannic acid as sustainable chemical mordant has furnished colorfast shades.
Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 TurkeyPublisher:SAGE Publications Shahid Adeel; M. Hassan; Fatima Batool; Meral Özomay; Mozhgan Hosseinnezhad; Nimra Amin; Muhammad Hussaan;handle: 11424/290406
The ongoing age is the time of sustainability, where in the current pandemic scenario, which is getting worse, needs treatment with nature rather than chemical-based products. In this study, microwaves (M.W. rays) treatments as extraction mode for Esfand ( P. harmala) have been revived for polyamide (nylon) dyeing. The water solubilized and acid solubilized filtrates and polyamide (nylon fabrics) were treated M.W. rays up to 10 min with an interval of 2 min. Mordanting with chemicals and plant extracts before and after dyeing was done at 60°C–80°C. It has been found the application of M.W. ray treatment for 4 min., to 30 mL of extract of 8 pH containing 4 g/100 mL of Table salt as leveling agent has given desired results when employed at 55°C for 55 min. Statistical analysis of dyeing variables through R.S.M., and two way-Anova shows that the effect of these variables has been observed highly significant. Experimentally it has been observed that the application of extract for dyeing of polyamide (nylon fabric) has given good results when chemical or bio-mordanted at selected conditions. Practically, Esfand seeds has ability for bio-coloration of surface modified polyamide fabric (nylon fabric), and utilization of pomegranate extract as bio-mordant and tannic acid as sustainable chemical mordant has furnished colorfast shades.
Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Engineere... arrow_drop_down Journal of Engineered Fibers and FabricsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefMarmara University Open Access SystemArticle . 2022Data sources: Marmara University Open Access Systemadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/15589250221091265&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Mehdi Ghahari; Sohrab Nasiri; Mohsen Fathi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Mozhgan Hosseinnezhad; Kamaladin Gharanjig; Mehdi Ghahari; Sohrab Nasiri; Mohsen Fathi;Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy T... arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2024.104066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohammad Reza Saeb; Siamak Moradian; Kamaladin Gharanjig; Mozhgan Hosseinnezhad;Abstract A series of dye-sensitized solar cells were designed and manufactured based on natural dyes extracted from red grape, red onion peel, radish, sour orange peel, and sambucus ebulus, as photosensitizers. The UV–Visible technique was served to determine maximum adsorption of natural extract and pre-dyed photoanode. The Fourier transform infrared analysis was employed to track the presence of functional groups. The cyclic voltammetry method was used to assess the possibility of charge transfer from a dried natural dye to the photoelectrode. The performance of natural-based dye-sensitized solar cells was subsequently determined. Fabricated devices were examined for power conversion efficiency (PCE), individually, in co-sensitized (Co-DSSC) arrangement and in tandem (T-DSSC) with each other. In case of individual device, the highest possible PCE among studied systems was ca. 1.47%, belonged to radish extract. For T-DSSC and Co-DSSC, 1.59 and 2.59% were respectively the highest values of PCE obtained in this work. The use of T-DSSC device has been applied for the first time in this work, which provides with expanding photovoltaic absorption range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Mohammad Reza Saeb; Siamak Moradian; Kamaladin Gharanjig; Mozhgan Hosseinnezhad;Abstract A series of dye-sensitized solar cells were designed and manufactured based on natural dyes extracted from red grape, red onion peel, radish, sour orange peel, and sambucus ebulus, as photosensitizers. The UV–Visible technique was served to determine maximum adsorption of natural extract and pre-dyed photoanode. The Fourier transform infrared analysis was employed to track the presence of functional groups. The cyclic voltammetry method was used to assess the possibility of charge transfer from a dried natural dye to the photoelectrode. The performance of natural-based dye-sensitized solar cells was subsequently determined. Fabricated devices were examined for power conversion efficiency (PCE), individually, in co-sensitized (Co-DSSC) arrangement and in tandem (T-DSSC) with each other. In case of individual device, the highest possible PCE among studied systems was ca. 1.47%, belonged to radish extract. For T-DSSC and Co-DSSC, 1.59 and 2.59% were respectively the highest values of PCE obtained in this work. The use of T-DSSC device has been applied for the first time in this work, which provides with expanding photovoltaic absorption range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.06.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 LithuaniaPublisher:MDPI AG Mozhgan Hosseinnezhad; Mehdi Ghahari; Ghazal Mobarhan; Mohsen Fathi; Arvydas Palevicius; Venkatramaiah Nutalapati; Giedrius Janusas; Sohrab Nasiri;Photovoltaic systems, such as dye-sensitized solar cells (DSSCs), are one of the useful tools for generating renewable and green energy. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Here, we employed a new MoS2/graphene hybrid or composite instead of platinum in the DSSCs. Furthermore, the correctness of the preparation of the MoS2/graphene hybrid or composite was evaluated by field emission scanning electron microscope (FESEM), and the results showed that the desired compound was synthesized correctly. Inexpensive organic dyes were used to prepare the DSSCs, and their chemical structure was investigated by density functional theory (DFT) and cyclic voltammetry (CV). Finally, the DSSCs were fabricated using MoS2/graphene composite or hybrid, and to compare the results, the DSSCs were also prepared using platinum. Under the same conditions, the DSSCs with MoS2/graphene composite illustrated better efficiency than MoS2/graphene hybrid or/and graphene.
Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 LithuaniaPublisher:MDPI AG Mozhgan Hosseinnezhad; Mehdi Ghahari; Ghazal Mobarhan; Mohsen Fathi; Arvydas Palevicius; Venkatramaiah Nutalapati; Giedrius Janusas; Sohrab Nasiri;Photovoltaic systems, such as dye-sensitized solar cells (DSSCs), are one of the useful tools for generating renewable and green energy. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Here, we employed a new MoS2/graphene hybrid or composite instead of platinum in the DSSCs. Furthermore, the correctness of the preparation of the MoS2/graphene hybrid or composite was evaluated by field emission scanning electron microscope (FESEM), and the results showed that the desired compound was synthesized correctly. Inexpensive organic dyes were used to prepare the DSSCs, and their chemical structure was investigated by density functional theory (DFT) and cyclic voltammetry (CV). Finally, the DSSCs were fabricated using MoS2/graphene composite or hybrid, and to compare the results, the DSSCs were also prepared using platinum. Under the same conditions, the DSSCs with MoS2/graphene composite illustrated better efficiency than MoS2/graphene hybrid or/and graphene.
Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Micromachines arrow_drop_down KTUePubl (Repository of Kaunas University of Technology)Article . 2023License: CC BYData sources: KTUePubl (Repository of Kaunas University of Technology)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/mi14122161&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Polish Academy of Sciences Chancellery Authors: J. Movahedi; H. Haratizadeh; N. Falah; M. Hosseinnezhad;Abstract Different anchoring groups such as thiophene-2-acetic and malonic acid were investigated for synthesis of new photosensitizers. The new dyes (photosensitizers) were made pure and determined by various analytical techniques. The chemical structure of synthesized materials was certified by analytical studies. UV-Visible and fluorescence spectra revealed intense fluorescence and absorption for organic photosensitizers. The cyclic voltammetry results showed that the two photosensitizers were suitable for dye sensitized solar cell preparation. The work electrode was gathered using tin (IV) oxide nanoparticles in dye-sensitized solar cells structure. The new photosensitizers and tin (IV) oxide were used for photovoltaic devices preparation. The power conversion efficiency was obtained as about 4.12 and 4.29% for Dye 1 and Dye 2, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Polish Academy of Sciences Chancellery Authors: J. Movahedi; H. Haratizadeh; N. Falah; M. Hosseinnezhad;Abstract Different anchoring groups such as thiophene-2-acetic and malonic acid were investigated for synthesis of new photosensitizers. The new dyes (photosensitizers) were made pure and determined by various analytical techniques. The chemical structure of synthesized materials was certified by analytical studies. UV-Visible and fluorescence spectra revealed intense fluorescence and absorption for organic photosensitizers. The cyclic voltammetry results showed that the two photosensitizers were suitable for dye sensitized solar cell preparation. The work electrode was gathered using tin (IV) oxide nanoparticles in dye-sensitized solar cells structure. The new photosensitizers and tin (IV) oxide were used for photovoltaic devices preparation. The power conversion efficiency was obtained as about 4.12 and 4.29% for Dye 1 and Dye 2, respectively.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.opelre.2019.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu