- home
- Advanced Search
Filters
Access
Type
Year range
-chevron_right GO- This year
- Last 5 years
- Last 10 years
Field of Science
SDG [Beta]
Country
Source
Research community
Organization
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Elsevier BV Rui C. Martins; Ângelo Sacras; Sanja Jovanovic; Patrícia Alves; Paula Ferreira; João Gomes;handle: 10316/100493
Photocatalytic oxidation is promising technology for removal of recalcitrant pollutants from water. Solar energy can be an interesting radiation source since the operating costs can be lower. However, the use of powder photocatalyst is a major drawback of the technology since suitable separation technologies are required and catalysts recovery is difficult. This work aims to test the suitability of using polymeric supports to immobilize TiO 2 in the reactor and apply it for parabens removal from water by solar photocatalytic oxidation. Polyurethanes (PU) and polydimethylsiloxane (PDMS) membranes were prepared and modified with TiO 2. While PU materials are only able to adsorb (35% in 1 h) parabens whichever the modification applied, modified PDMS was able to promote parabens photocatalytic oxidation removing 20% in 1 h under solar energy. Plasma/UV modification was able to active PDMS membranes (16% of methyl paraben (MP) removal) and further entrapment of TiO 2 in the polymeric matrix did not improve the process (18% of MP removal). Thus, only the superficial TiO 2 was active. Results show that PDMS is suitable material to support TiO 2 aiming photocatalytic wastewater treatment process using the Sun as a clean and renewable energy source.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Elsevier BV Rui C. Martins; Ângelo Sacras; Sanja Jovanovic; Patrícia Alves; Paula Ferreira; João Gomes;handle: 10316/100493
Photocatalytic oxidation is promising technology for removal of recalcitrant pollutants from water. Solar energy can be an interesting radiation source since the operating costs can be lower. However, the use of powder photocatalyst is a major drawback of the technology since suitable separation technologies are required and catalysts recovery is difficult. This work aims to test the suitability of using polymeric supports to immobilize TiO 2 in the reactor and apply it for parabens removal from water by solar photocatalytic oxidation. Polyurethanes (PU) and polydimethylsiloxane (PDMS) membranes were prepared and modified with TiO 2. While PU materials are only able to adsorb (35% in 1 h) parabens whichever the modification applied, modified PDMS was able to promote parabens photocatalytic oxidation removing 20% in 1 h under solar energy. Plasma/UV modification was able to active PDMS membranes (16% of methyl paraben (MP) removal) and further entrapment of TiO 2 in the polymeric matrix did not improve the process (18% of MP removal). Thus, only the superficial TiO 2 was active. Results show that PDMS is suitable material to support TiO 2 aiming photocatalytic wastewater treatment process using the Sun as a clean and renewable energy source.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Elsevier BV Rui C. Martins; Ângelo Sacras; Sanja Jovanovic; Patrícia Alves; Paula Ferreira; João Gomes;handle: 10316/100493
Photocatalytic oxidation is promising technology for removal of recalcitrant pollutants from water. Solar energy can be an interesting radiation source since the operating costs can be lower. However, the use of powder photocatalyst is a major drawback of the technology since suitable separation technologies are required and catalysts recovery is difficult. This work aims to test the suitability of using polymeric supports to immobilize TiO 2 in the reactor and apply it for parabens removal from water by solar photocatalytic oxidation. Polyurethanes (PU) and polydimethylsiloxane (PDMS) membranes were prepared and modified with TiO 2. While PU materials are only able to adsorb (35% in 1 h) parabens whichever the modification applied, modified PDMS was able to promote parabens photocatalytic oxidation removing 20% in 1 h under solar energy. Plasma/UV modification was able to active PDMS membranes (16% of methyl paraben (MP) removal) and further entrapment of TiO 2 in the polymeric matrix did not improve the process (18% of MP removal). Thus, only the superficial TiO 2 was active. Results show that PDMS is suitable material to support TiO 2 aiming photocatalytic wastewater treatment process using the Sun as a clean and renewable energy source.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 PortugalPublisher:Elsevier BV Rui C. Martins; Ângelo Sacras; Sanja Jovanovic; Patrícia Alves; Paula Ferreira; João Gomes;handle: 10316/100493
Photocatalytic oxidation is promising technology for removal of recalcitrant pollutants from water. Solar energy can be an interesting radiation source since the operating costs can be lower. However, the use of powder photocatalyst is a major drawback of the technology since suitable separation technologies are required and catalysts recovery is difficult. This work aims to test the suitability of using polymeric supports to immobilize TiO 2 in the reactor and apply it for parabens removal from water by solar photocatalytic oxidation. Polyurethanes (PU) and polydimethylsiloxane (PDMS) membranes were prepared and modified with TiO 2. While PU materials are only able to adsorb (35% in 1 h) parabens whichever the modification applied, modified PDMS was able to promote parabens photocatalytic oxidation removing 20% in 1 h under solar energy. Plasma/UV modification was able to active PDMS membranes (16% of methyl paraben (MP) removal) and further entrapment of TiO 2 in the polymeric matrix did not improve the process (18% of MP removal). Thus, only the superficial TiO 2 was active. Results show that PDMS is suitable material to support TiO 2 aiming photocatalytic wastewater treatment process using the Sun as a clean and renewable energy source.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2022.01.196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu