- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors:Yolanda Villacampa;
Yolanda Villacampa
Yolanda Villacampa in OpenAIREFrancisco José Navarro-González;
Francisco José Navarro-González
Francisco José Navarro-González in OpenAIREGabriela Hernández;
Juan Laddaga; +1 AuthorsGabriela Hernández
Gabriela Hernández in OpenAIREYolanda Villacampa;
Yolanda Villacampa
Yolanda Villacampa in OpenAIREFrancisco José Navarro-González;
Francisco José Navarro-González
Francisco José Navarro-González in OpenAIREGabriela Hernández;
Juan Laddaga;Gabriela Hernández
Gabriela Hernández in OpenAIREAdriana Confalone;
Adriana Confalone
Adriana Confalone in OpenAIREdoi: 10.3390/su12239829
The Pampas region is characterized by a high complexity in its productive system planning and faces the challenge of satisfying future food demands, as well as reducing the environmental impact of the activity. Climate change affects crops and farmers should use species capable of adapting to the changed climate. Among these species, faba bean (Vicia faba L.) cv. ‘Alameda’ has shown good adaptation to weather variability and, as a winter legume, it can help maintain the sustainability of agricultural systems in the area. The main purpose of this research was to select the models which describe the production characteristics of the ‘Alameda’ bean by using the least number of variables. Experimental and agrometeorological data from the cultivation of the ‘Alameda’ in Azul, Buenos Aires province, Argentina were used to generate mathematical models. Several modelling methodologies have been applied to study the production characteristics of the faba bean. The prediction of the models generated was analyzed by randomly disturbing the experimental data and analyzing the magnitude of the errors produced. The models obtained will be useful for predicting the biomass production of the faba bean cv. ‘Alameda’ grown in the agroclimatic conditions of Azul, Buenos Aires province, Argentina.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/23/9829/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12239829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/23/9829/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de AlicanteArticle . 2020Data sources: Repositorio Institucional de la Universidad de Alicanteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12239829&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South Africa, Germany, FrancePublisher:Elsevier BV Authors:Kritika Kothari;
Kritika Kothari
Kritika Kothari in OpenAIRERafael Battisti;
Rafael Battisti
Rafael Battisti in OpenAIREKenneth J. Boote;
Kenneth J. Boote
Kenneth J. Boote in OpenAIRESotirios Archontoulis;
+24 AuthorsSotirios Archontoulis
Sotirios Archontoulis in OpenAIREKritika Kothari;
Kritika Kothari
Kritika Kothari in OpenAIRERafael Battisti;
Rafael Battisti
Rafael Battisti in OpenAIREKenneth J. Boote;
Kenneth J. Boote
Kenneth J. Boote in OpenAIRESotirios Archontoulis;
Sotirios Archontoulis
Sotirios Archontoulis in OpenAIREAdriana Confalone;
Adriana Confalone
Adriana Confalone in OpenAIREJulie Constantin;
Julie Constantin
Julie Constantin in OpenAIRESantiago Vianna Cuadra;
Santiago Vianna Cuadra
Santiago Vianna Cuadra in OpenAIREPhilippe Debaeke;
Philippe Debaeke
Philippe Debaeke in OpenAIREBabacar Faye;
Babacar Faye
Babacar Faye in OpenAIREBrian Grant;
Brian Grant
Brian Grant in OpenAIREGerrit Hoogenboom;
Gerrit Hoogenboom
Gerrit Hoogenboom in OpenAIREQi Jing;
Qi Jing
Qi Jing in OpenAIREMichael van der Laan;
Michael van der Laan
Michael van der Laan in OpenAIREFernando Antônio Macena da Silva;
Fernando Antônio Macena da Silva
Fernando Antônio Macena da Silva in OpenAIREFábio Ricardo Marin;
Fábio Ricardo Marin
Fábio Ricardo Marin in OpenAIREAlireza Nehbandani;
Alireza Nehbandani
Alireza Nehbandani in OpenAIREClaas Nendel;
Claas Nendel
Claas Nendel in OpenAIRELarry C. Purcell;
Larry C. Purcell
Larry C. Purcell in OpenAIREBudong Qian;
Budong Qian
Budong Qian in OpenAIREAlex C. Ruane;
Alex C. Ruane
Alex C. Ruane in OpenAIRECéline Schoving;
Céline Schoving
Céline Schoving in OpenAIREEvandro Henrique Figueiredo Moura da Silva;
Evandro Henrique Figueiredo Moura da Silva
Evandro Henrique Figueiredo Moura da Silva in OpenAIREWard Smith;
Ward Smith
Ward Smith in OpenAIREAfshin Soltani;
Afshin Soltani
Afshin Soltani in OpenAIREAmit Kumar Srivastava;
Amit Kumar Srivastava
Amit Kumar Srivastava in OpenAIRENilson Aparecido Vieira;
Nilson Aparecido Vieira
Nilson Aparecido Vieira in OpenAIREStacey Slone;
Stacey Slone
Stacey Slone in OpenAIREMontserrat Salmerón;
Montserrat Salmerón
Montserrat Salmerón in OpenAIREUne estimation précise du rendement des cultures dans les scénarios de changement climatique est essentielle pour quantifier notre capacité à nourrir une population croissante et à développer des adaptations agronomiques pour répondre à la demande alimentaire future. Une évaluation coordonnée des simulations de rendement à partir de modèles écophysiologiques basés sur les processus pour l'évaluation de l'impact du changement climatique fait toujours défaut pour le soja, la légumineuse à grains la plus cultivée et la principale source de protéines dans notre chaîne alimentaire. Dans cette première étude multimodèle sur le soja, nous avons utilisé dix modèles de premier plan capables de simuler le rendement du soja sous différentes températures et concentrations atmosphériques de CO2 [CO2] pour quantifier l'incertitude dans les simulations de rendement du soja en réponse à ces facteurs. Les modèles ont d'abord été paramétrés avec des données mesurées de haute qualité provenant de cinq environnements contrastés. Nous avons trouvé une variabilité considérable entre les modèles dans les réponses de rendement simulées à l'augmentation de la température et du [CO2]. Par exemple, en cas d'augmentation de la température de + 3 °C dans notre endroit le plus frais en Argentine, certains modèles ont simulé que le rendement diminuerait jusqu'à 24 %, tandis que d'autres simulaient une augmentation du rendement allant jusqu'à 29 %. Dans notre emplacement le plus chaud au Brésil, les modèles ont simulé une réduction du rendement allant d'une diminution de 38 % sous + 3 °C à une augmentation de la température sans effet sur le rendement. De même, en augmentant le [CO2] de 360 à 540 ppm, les modèles ont simulé une augmentation du rendement allant de 6% à 31%. L'étalonnage du modèle n'a pas réduit la variabilité entre les modèles, mais a eu un effet inattendu sur la modification des réponses du rendement à la température pour certains des modèles. La forte incertitude dans les réponses des modèles indique l'applicabilité limitée des modèles individuels pour les projections alimentaires du changement climatique. Cependant, la moyenne d'ensemble des simulations à travers les modèles était un outil efficace pour réduire la forte incertitude dans les simulations de rendement du soja associées aux modèles individuels et à leur paramétrage. Les réponses du rendement moyen de l'ensemble à la température et au [CO2] étaient similaires à celles rapportées dans la littérature. Notre étude est la première démonstration des avantages obtenus en utilisant un ensemble de modèles de légumineuses à grains pour les projections alimentaires du changement climatique, et souligne qu'un développement plus poussé du modèle du soja avec des expériences sous des [CO2] et des températures élevées est nécessaire pour réduire l'incertitude des modèles individuels. Una estimación precisa del rendimiento de los cultivos en escenarios de cambio climático es esencial para cuantificar nuestra capacidad para alimentar a una población en crecimiento y desarrollar adaptaciones agronómicas para satisfacer la demanda futura de alimentos. Todavía falta una evaluación coordinada de las simulaciones de rendimiento a partir de modelos ecofisiológicos basados en procesos para la evaluación del impacto del cambio climático para la soja, la leguminosa de grano más cultivada y la principal fuente de proteínas en nuestra cadena alimentaria. En este primer estudio multimodelo de soja, utilizamos diez modelos prominentes capaces de simular el rendimiento de la soja a diferentes temperaturas y concentraciones de CO2 atmosférico [CO2] para cuantificar la incertidumbre en las simulaciones de rendimiento de soja en respuesta a estos factores. Los modelos se parametrizaron por primera vez con datos medidos de alta calidad de cinco entornos contrastantes. Encontramos una variabilidad considerable entre los modelos en las respuestas de rendimiento simuladas al aumento de la temperatura y [CO2]. Por ejemplo, bajo un aumento de temperatura de + 3 ° C en nuestra ubicación más fresca en Argentina, algunos modelos simularon que el rendimiento se reduciría hasta un 24%, mientras que otros simularon aumentos de rendimiento de hasta un 29%. En nuestra ubicación más cálida en Brasil, los modelos simularon una reducción del rendimiento que va desde una disminución del 38% con un aumento de temperatura de + 3 ° C hasta ningún efecto en el rendimiento. Del mismo modo, al aumentar [CO2] de 360 a 540 ppm, los modelos simularon un aumento del rendimiento que osciló entre el 6% y el 31%. La calibración del modelo no redujo la variabilidad entre los modelos, pero tuvo un efecto inesperado en la modificación de las respuestas de rendimiento a la temperatura para algunos de los modelos. La alta incertidumbre en las respuestas de los modelos indica la aplicabilidad limitada de los modelos individuales para las proyecciones alimentarias del cambio climático. Sin embargo, la media del conjunto de simulaciones entre modelos fue una herramienta efectiva para reducir la alta incertidumbre en las simulaciones de rendimiento de soja asociadas con modelos individuales y su parametrización. Las respuestas de rendimiento medio del conjunto a la temperatura y [CO2] fueron similares a las informadas en la literatura. Nuestro estudio es la primera demostración de los beneficios logrados al utilizar un conjunto de modelos de leguminosas de grano para las proyecciones de alimentos del cambio climático, y destaca que se necesita un mayor desarrollo del modelo de soja con experimentos bajo [CO2] y temperatura elevadas para reducir la incertidumbre de los modelos individuales. An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield simulations in response to these factors. Models were first parametrized with high quality measured data from five contrasting environments. We found considerable variability among models in simulated yield responses to increasing temperature and [CO2]. For example, under a + 3 °C temperature rise in our coolest location in Argentina, some models simulated that yield would reduce as much as 24%, while others simulated yield increases up to 29%. In our warmest location in Brazil, the models simulated a yield reduction ranging from a 38% decrease under + 3 °C temperature rise to no effect on yield. Similarly, when increasing [CO2] from 360 to 540 ppm, the models simulated a yield increase that ranged from 6% to 31%. Model calibration did not reduce variability across models but had an unexpected effect on modifying yield responses to temperature for some of the models. The high uncertainty in model responses indicates the limited applicability of individual models for climate change food projections. However, the ensemble mean of simulations across models was an effective tool to reduce the high uncertainty in soybean yield simulations associated with individual models and their parametrization. Ensemble mean yield responses to temperature and [CO2] were similar to those reported from the literature. Our study is the first demonstration of the benefits achieved from using an ensemble of grain legume models for climate change food projections, and highlights that further soybean model development with experiments under elevated [CO2] and temperature is needed to reduce the uncertainty from the individual models. يعد التقدير الدقيق لمحصول المحاصيل في ظل سيناريوهات تغير المناخ أمرًا ضروريًا لتحديد قدرتنا على إطعام عدد متزايد من السكان وتطوير التكيفات الزراعية لتلبية الطلب على الغذاء في المستقبل. لا يزال التقييم المنسق لمحاكاة الغلة من النماذج الفسيولوجية البيئية القائمة على العمليات لتقييم تأثير تغير المناخ مفقودًا بالنسبة لفول الصويا، وهو بقول الحبوب الأكثر زراعة على نطاق واسع والمصدر الرئيسي للبروتين في سلسلتنا الغذائية. في هذه الدراسة الأولى متعددة النماذج لفول الصويا، استخدمنا عشرة نماذج بارزة قادرة على محاكاة محصول فول الصويا تحت درجات حرارة متفاوتة وتركيز ثاني أكسيد الكربون في الغلاف الجوي [CO2] لقياس عدم اليقين في محاكاة محصول فول الصويا استجابة لهذه العوامل. تم قياس النماذج أولاً ببيانات مقاسة عالية الجودة من خمس بيئات متباينة. وجدنا تباينًا كبيرًا بين النماذج في استجابات العائد المحاكاة لزيادة درجة الحرارة و [CO2]. على سبيل المثال، في ظل ارتفاع درجة الحرارة بمقدار + 3 درجات مئوية في أروع موقع لنا في الأرجنتين، قامت بعض النماذج بمحاكاة أن العائد سيقلل بنسبة تصل إلى 24 ٪، بينما يزيد العائد المحاكى الآخر بنسبة تصل إلى 29 ٪. في موقعنا الأكثر دفئًا في البرازيل، قامت النماذج بمحاكاة انخفاض العائد الذي يتراوح بين انخفاض بنسبة 38 ٪ تحت + ارتفاع درجة حرارة 3 درجات مئوية إلى عدم التأثير على العائد. وبالمثل، عند زيادة [ثاني أكسيد الكربون] من 360 إلى 540 جزء في المليون، قامت النماذج بمحاكاة زيادة العائد التي تراوحت من 6 ٪ إلى 31 ٪. لم تقلل معايرة النموذج من التباين عبر النماذج ولكن كان لها تأثير غير متوقع على تعديل استجابات الخضوع لدرجة الحرارة لبعض النماذج. يشير عدم اليقين الشديد في الاستجابات النموذجية إلى التطبيق المحدود للنماذج الفردية للتوقعات الغذائية لتغير المناخ. ومع ذلك، كان المتوسط الجماعي للمحاكاة عبر النماذج أداة فعالة للحد من عدم اليقين العالي في محاكاة غلة فول الصويا المرتبطة بالنماذج الفردية ومعلماتها. كانت استجابات متوسط العائد على درجة الحرارة و [CO2] متشابهة مع تلك الواردة في الأدبيات. دراستنا هي أول عرض توضيحي للفوائد التي تحققت من استخدام مجموعة من نماذج البقوليات لتوقعات تغير المناخ الغذائية، وتسلط الضوء على الحاجة إلى مزيد من تطوير نموذج فول الصويا مع التجارب تحت [CO2] ودرجة الحرارة المرتفعة لتقليل عدم اليقين من النماذج الفردية.
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2022License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eja.2022.126482&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu