
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Modelling Faba Bean (Vicia faba L.) Biomass Production for Sustainability of Agricultural Systems of Pampas

doi: 10.3390/su12239829
The Pampas region is characterized by a high complexity in its productive system planning and faces the challenge of satisfying future food demands, as well as reducing the environmental impact of the activity. Climate change affects crops and farmers should use species capable of adapting to the changed climate. Among these species, faba bean (Vicia faba L.) cv. ‘Alameda’ has shown good adaptation to weather variability and, as a winter legume, it can help maintain the sustainability of agricultural systems in the area. The main purpose of this research was to select the models which describe the production characteristics of the ‘Alameda’ bean by using the least number of variables. Experimental and agrometeorological data from the cultivation of the ‘Alameda’ in Azul, Buenos Aires province, Argentina were used to generate mathematical models. Several modelling methodologies have been applied to study the production characteristics of the faba bean. The prediction of the models generated was analyzed by randomly disturbing the experimental data and analyzing the magnitude of the errors produced. The models obtained will be useful for predicting the biomass production of the faba bean cv. ‘Alameda’ grown in the agroclimatic conditions of Azul, Buenos Aires province, Argentina.
- National University of Central Buenos Aires Argentina
- University of Alicante Spain
- University of Alicante Spain
- National University of Central Buenos Aires Argentina
Environmental effects of industries and plants, Thermal time, TJ807-830, Matemática Aplicada, TD194-195, biomass accumulation, Renewable energy sources, prediction model, Environmental sciences, thermal time, Prediction model, PAR radiation, Biomass accumulation, GE1-350
Environmental effects of industries and plants, Thermal time, TJ807-830, Matemática Aplicada, TD194-195, biomass accumulation, Renewable energy sources, prediction model, Environmental sciences, thermal time, Prediction model, PAR radiation, Biomass accumulation, GE1-350
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
