- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Lefebvre, Jonathan; Götz, Manuel; Bajohr, Siegfried; Reimert, Rainer; Kolb, Thomas;Abstract The performance of a slurry bubble column reactor was evaluated for its application as a methanation reactor. The influences of the reactor pressure (5 to 20 bar), temperature (275 to 325 °C), gas velocity (0.8 to 1.6 cm/s), catalyst concentration (1.6 to 9 vol.%) as well as reactant partial pressures (H2/CO2 ratio from 3.8 to 6.3) on the reactor performance were assessed and optimal process conditions for substitute natural gas production were identified. An increase in pressure, temperature, and H2/CO2 ratio improves the reactor performance. The optimal catalyst concentration depends on the operating conditions. Under the experimental conditions of the work presented in this paper, a concentration of 6.5 vol.% led to the highest conversion rates. Additionally, the dynamic behavior of the three-phase methanation reactor was investigated using inlet gas velocity step changes to simulate load variation of a power-to-gas facility. The reactor showed rapid adaptation while maintaining an isothermal temperature profile.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Lefebvre, Jonathan; Götz, Manuel; Bajohr, Siegfried; Reimert, Rainer; Kolb, Thomas;Abstract The performance of a slurry bubble column reactor was evaluated for its application as a methanation reactor. The influences of the reactor pressure (5 to 20 bar), temperature (275 to 325 °C), gas velocity (0.8 to 1.6 cm/s), catalyst concentration (1.6 to 9 vol.%) as well as reactant partial pressures (H2/CO2 ratio from 3.8 to 6.3) on the reactor performance were assessed and optimal process conditions for substitute natural gas production were identified. An increase in pressure, temperature, and H2/CO2 ratio improves the reactor performance. The optimal catalyst concentration depends on the operating conditions. Under the experimental conditions of the work presented in this paper, a concentration of 6.5 vol.% led to the highest conversion rates. Additionally, the dynamic behavior of the three-phase methanation reactor was investigated using inlet gas velocity step changes to simulate load variation of a power-to-gas facility. The reactor showed rapid adaptation while maintaining an isothermal temperature profile.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Wiley Dahmen, Nicolaus; Abeln, Johannes; Eberhard, Mark; Kolb, Thomas; Leibold, Hans; Sauer, Joerg; Stapf, Dieter.; Zimmerlin, Bernd;Biofuels of the second generation can contribute significantly to the replacement of the currently used fossil energy carriers for transportation fuel production. The lignocellulosic biomass residues used do not compete with food and feed production, but have to be collected from wide‐spread areas for industrial large‐scale use. The two‐stage gasification concept bioliq offers a solution to this problem. It aims at the conversion of low‐grade residual biomass from agriculture and forestry into synthetic fuels and chemicals. Central element of the bioliq process development is the 2–5 MW pilot plant along the complete process chain: fast pyrolysis for pretreatment of biomass to obtain an energy dense, liquid intermediate fuel, high‐pressure entrained flow gasification providing low methane synthesis gas free of tar, hot synthesis gas cleaning to separate acid gases, and contaminants as well as methanol/dimethyl ether and subsequent following gasoline synthesis. After construction and commissioning of the individual process steps with partners from industry, first production of synthetic fuel was successfully achieved in 2014. In addition to pilot plant operation for technology demonstration, a research and development network has been established providing the scientific basis for optimization and further development of the bioliq process as well as to explore new applications of the technologies and products involved. WIREs Energy Environ 2017, 6:e236. doi: 10.1002/wene.236This article is categorized under: Bioenergy > Science and Materials Bioenergy > Systems and Infrastructure
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Wiley Dahmen, Nicolaus; Abeln, Johannes; Eberhard, Mark; Kolb, Thomas; Leibold, Hans; Sauer, Joerg; Stapf, Dieter.; Zimmerlin, Bernd;Biofuels of the second generation can contribute significantly to the replacement of the currently used fossil energy carriers for transportation fuel production. The lignocellulosic biomass residues used do not compete with food and feed production, but have to be collected from wide‐spread areas for industrial large‐scale use. The two‐stage gasification concept bioliq offers a solution to this problem. It aims at the conversion of low‐grade residual biomass from agriculture and forestry into synthetic fuels and chemicals. Central element of the bioliq process development is the 2–5 MW pilot plant along the complete process chain: fast pyrolysis for pretreatment of biomass to obtain an energy dense, liquid intermediate fuel, high‐pressure entrained flow gasification providing low methane synthesis gas free of tar, hot synthesis gas cleaning to separate acid gases, and contaminants as well as methanol/dimethyl ether and subsequent following gasoline synthesis. After construction and commissioning of the individual process steps with partners from industry, first production of synthetic fuel was successfully achieved in 2014. In addition to pilot plant operation for technology demonstration, a research and development network has been established providing the scientific basis for optimization and further development of the bioliq process as well as to explore new applications of the technologies and products involved. WIREs Energy Environ 2017, 6:e236. doi: 10.1002/wene.236This article is categorized under: Bioenergy > Science and Materials Bioenergy > Systems and Infrastructure
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Elsevier BV Authors: Maximilian Dammann; Stella Clara Walker; Marco Mancini; Thomas Kolb;Reliable devolatilisation kinetics of primary wood chars are essential to describe the secondary of volatiles in entrained flow gasification processes but have not been derived yet. Therefore, this study developed devolatilisation kinetics of a commercially available beech wood char using ermogravimetric analyses and drop-tube reactor experiments for design of entrained flow gasification processes. The thermogravimetric analyses were performed at low heating rates (2∕5∕10∕30∕50 K∕min) up to 1273 K, whereas the drop-tube reactor experiments were conducted at high heating rates (∼ 10$^4$ K∕s), high temperatures (1273/1373/1473/1573/1673/1873 K) and short residence times (200/400 ms). Thermogravimetric kinetics were subsequently obtained based on multi first-order reaction logistic distributed activation energy models, while kinetics based on single first-order reaction Arrhenius law and modified Yamamoto models were derived from the drop-tube reactor experiments and corresponding CFD predictions. Finally, single-particle simulations were carried out to compare the kinetics from both kind of experiments at high-heating-rate conditions. The comparisons demonstrate that the thermogravimetric kinetics are in reasonable agreement with the drop-tube reactor kinetics but provide lower devolatilisation rates. Furthermore, gas species concentrations measurements from the drop-tube reactor experiments were used to estimate an average volatiles composition. The results indicate that the volatiles composition at high-temperature conditions can likely be described using the gas species concentrations at high-temperature equilibrium conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Elsevier BV Authors: Maximilian Dammann; Stella Clara Walker; Marco Mancini; Thomas Kolb;Reliable devolatilisation kinetics of primary wood chars are essential to describe the secondary of volatiles in entrained flow gasification processes but have not been derived yet. Therefore, this study developed devolatilisation kinetics of a commercially available beech wood char using ermogravimetric analyses and drop-tube reactor experiments for design of entrained flow gasification processes. The thermogravimetric analyses were performed at low heating rates (2∕5∕10∕30∕50 K∕min) up to 1273 K, whereas the drop-tube reactor experiments were conducted at high heating rates (∼ 10$^4$ K∕s), high temperatures (1273/1373/1473/1573/1673/1873 K) and short residence times (200/400 ms). Thermogravimetric kinetics were subsequently obtained based on multi first-order reaction logistic distributed activation energy models, while kinetics based on single first-order reaction Arrhenius law and modified Yamamoto models were derived from the drop-tube reactor experiments and corresponding CFD predictions. Finally, single-particle simulations were carried out to compare the kinetics from both kind of experiments at high-heating-rate conditions. The comparisons demonstrate that the thermogravimetric kinetics are in reasonable agreement with the drop-tube reactor kinetics but provide lower devolatilisation rates. Furthermore, gas species concentrations measurements from the drop-tube reactor experiments were used to estimate an average volatiles composition. The results indicate that the volatiles composition at high-temperature conditions can likely be described using the gas species concentrations at high-temperature equilibrium conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, GermanyPublisher:Wiley Authors: Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas;AbstractFossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well‐known technical process applied for production of, e. g., carbon black. In the future it might contribute to carbon dioxide‐free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by‐product of this process can be used for material production or can be sequestrated, the produced hydrogen has a low carbon footprint. This article reviews literature on the state of the art of methane / natural gas pyrolysis process developments and attempts to assess the technology readiness level (TRL).
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 214 citations 214 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, GermanyPublisher:Wiley Authors: Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas;AbstractFossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well‐known technical process applied for production of, e. g., carbon black. In the future it might contribute to carbon dioxide‐free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by‐product of this process can be used for material production or can be sequestrated, the produced hydrogen has a low carbon footprint. This article reviews literature on the state of the art of methane / natural gas pyrolysis process developments and attempts to assess the technology readiness level (TRL).
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 214 citations 214 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:DFGDFGChristoph Schneider; Stella Walker; Aekjuthon Phounglamcheik; Kentaro Umeki; Thomas Kolb;Abstract This paper presents thermal deactivation of beech wood chars during secondary pyrolysis in a drop-tube reactor. Pyrolysis temperature was varied between 1000 °C and 1600 °C at a constant residence time of 200 ms. The effect of pyrolysis conditions on initial conversion rate R0 during gasification, graphitization of the carbon matrix and ash morphology was investigated. Gasification experiments for the determination of R0 were conducted in a thermogravimetric analyzer using pure CO2 at 750 °C and isothermal conditions. A linear decrease in initial conversion rate R0 was observed between 1000 °C and 1400 °C. However, a strong increase of R0 at 1600 °C was encountered. Micropore surface area of the secondary chars showed no correlation with the initial conversion rate R0 during gasification with CO2. Graphitization of the carbon matrix was determined using X-ray diffraction and Raman spectroscopy suggesting the growth of aromatic clusters and graphite-like structures for increasing pyrolysis temperatures up to 1600 °C. Furthermore, CaO dispersion was analyzed quantitatively and qualitatively using temperature-programmed reaction at 300 °C as well as SEM/TEM. CaO dispersion DCaO decreases steadily between 1000 °C and 1400 °C whereas a strong increase can be observed at 1600 °C, which is in good accordance with the development of the initial conversion rate R0 as a function of pyrolysis temperature. SEM/TEM images indicate the formation of a thin CaO layer at 1600 °C that is presumably responsible for the strong increase in initial conversion rate R0 at this temperature. When excluding the catalytic activity of CaO via formation of the ratio R0 DCaO−1, increasing graphitization degree has a linear negative influence on char reactivity at pyrolysis temperatures between 1000 °C and 1400 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:DFGDFGChristoph Schneider; Stella Walker; Aekjuthon Phounglamcheik; Kentaro Umeki; Thomas Kolb;Abstract This paper presents thermal deactivation of beech wood chars during secondary pyrolysis in a drop-tube reactor. Pyrolysis temperature was varied between 1000 °C and 1600 °C at a constant residence time of 200 ms. The effect of pyrolysis conditions on initial conversion rate R0 during gasification, graphitization of the carbon matrix and ash morphology was investigated. Gasification experiments for the determination of R0 were conducted in a thermogravimetric analyzer using pure CO2 at 750 °C and isothermal conditions. A linear decrease in initial conversion rate R0 was observed between 1000 °C and 1400 °C. However, a strong increase of R0 at 1600 °C was encountered. Micropore surface area of the secondary chars showed no correlation with the initial conversion rate R0 during gasification with CO2. Graphitization of the carbon matrix was determined using X-ray diffraction and Raman spectroscopy suggesting the growth of aromatic clusters and graphite-like structures for increasing pyrolysis temperatures up to 1600 °C. Furthermore, CaO dispersion was analyzed quantitatively and qualitatively using temperature-programmed reaction at 300 °C as well as SEM/TEM. CaO dispersion DCaO decreases steadily between 1000 °C and 1400 °C whereas a strong increase can be observed at 1600 °C, which is in good accordance with the development of the initial conversion rate R0 as a function of pyrolysis temperature. SEM/TEM images indicate the formation of a thin CaO layer at 1600 °C that is presumably responsible for the strong increase in initial conversion rate R0 at this temperature. When excluding the catalytic activity of CaO via formation of the ratio R0 DCaO−1, increasing graphitization degree has a linear negative influence on char reactivity at pyrolysis temperatures between 1000 °C and 1400 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Authors: Prabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; +5 AuthorsPrabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; Remesh, Gopal; Graf, Frank; Trimis, Dimosthenis; Kolb, Thomas; Founti, Maria;Abstract Chemical energy carriers and storage mechanisms will play a significant role in future energy systems. Apart from stabilising network fluctuations caused by renewable energy supply, chemical energy carriers also serve multiple sectors like electricity generation, chemical industry, transportation and shipping. Power to Gas (PtG) is a method that can be adapted for energy storage using chemical energy carriers produced from reserve electricity. This study contains the evaluation of long term energy storage in a decentral energy hub using a high temperature Power to Gas (PtG) plant. The Power to Gas process in this study uses surplus electricity for high temperature SOEC electrolysis. The resulting H2 undergoes methanation to generate Substitute Natural Gas (SNG) which has the same properties of natural gas and can be distributed using existing infrastructure. Compared to PtG processes using PEM or alkaline electrolysis, better overall process efficiencies up to 85% have been estimated for the high temperature PtG process. A pilot plant with thermally coupled SOEC-Electrolysis and Methanation was constructed as a part of the HELMETH project and is used in this study. Based on the experiments conducted in the pilot plant, the technical feasibility of long term energy storage and transient operations were evaluated. It was observed that short term energy storage with transient plant operation resulted in more operational costs when compared to long term storage with continuous plant operation. Novel methods to minimise the operational costs of the plant were also investigated using a dynamic pricing model and numerical optimisation of PtG plant. The numerical optimisation shows that if the duration of plant operation is adapted to target surplus renewable energy production, the concept could also be economically viable. Further, a life cycle analysis (LCA) of the PtG process was performed to evaluate the global warming potential (GWP) of the PtG plant configured with various input feeds. From the LCA, it was determined that if the input electricity is generated from sources with a global warming potential of less than 150 g CO2-eq/kWh, and carbon dioxide used for methanation is derived from biogenic sources, the PtG plant could act as a carbon sink.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Authors: Prabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; +5 AuthorsPrabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; Remesh, Gopal; Graf, Frank; Trimis, Dimosthenis; Kolb, Thomas; Founti, Maria;Abstract Chemical energy carriers and storage mechanisms will play a significant role in future energy systems. Apart from stabilising network fluctuations caused by renewable energy supply, chemical energy carriers also serve multiple sectors like electricity generation, chemical industry, transportation and shipping. Power to Gas (PtG) is a method that can be adapted for energy storage using chemical energy carriers produced from reserve electricity. This study contains the evaluation of long term energy storage in a decentral energy hub using a high temperature Power to Gas (PtG) plant. The Power to Gas process in this study uses surplus electricity for high temperature SOEC electrolysis. The resulting H2 undergoes methanation to generate Substitute Natural Gas (SNG) which has the same properties of natural gas and can be distributed using existing infrastructure. Compared to PtG processes using PEM or alkaline electrolysis, better overall process efficiencies up to 85% have been estimated for the high temperature PtG process. A pilot plant with thermally coupled SOEC-Electrolysis and Methanation was constructed as a part of the HELMETH project and is used in this study. Based on the experiments conducted in the pilot plant, the technical feasibility of long term energy storage and transient operations were evaluated. It was observed that short term energy storage with transient plant operation resulted in more operational costs when compared to long term storage with continuous plant operation. Novel methods to minimise the operational costs of the plant were also investigated using a dynamic pricing model and numerical optimisation of PtG plant. The numerical optimisation shows that if the duration of plant operation is adapted to target surplus renewable energy production, the concept could also be economically viable. Further, a life cycle analysis (LCA) of the PtG process was performed to evaluate the global warming potential (GWP) of the PtG plant configured with various input feeds. From the LCA, it was determined that if the input electricity is generated from sources with a global warming potential of less than 150 g CO2-eq/kWh, and carbon dioxide used for methanation is derived from biogenic sources, the PtG plant could act as a carbon sink.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 GermanyPublisher:IEEE Ruf, J.; Zimmerlin, M.; Sauter, P. S.; Koppel, W.; Suriyah, M. R.; Kluwe, M.; Hohmann, S.; Leibfried, T.; Kolb, T.;Focus of this work is the development and testing of a collaboration and simulation environment enabling modelling experts from different domains with domain-specific software and tools to contribute to new control approaches for locally interconnected Multi-Carrier Energy Systems (MCES). The modelling is complemented by experiments at a German small town with local industrial sector and the extensive use of measurement data. MATLAB® and Python scripts have been used to connect various commercial software such as STANET®, GAMS®, and MATLAB® toolboxes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 GermanyPublisher:IEEE Ruf, J.; Zimmerlin, M.; Sauter, P. S.; Koppel, W.; Suriyah, M. R.; Kluwe, M.; Hohmann, S.; Leibfried, T.; Kolb, T.;Focus of this work is the development and testing of a collaboration and simulation environment enabling modelling experts from different domains with domain-specific software and tools to contribute to new control approaches for locally interconnected Multi-Carrier Energy Systems (MCES). The modelling is complemented by experiments at a German small town with local industrial sector and the extensive use of measurement data. MATLAB® and Python scripts have been used to connect various commercial software such as STANET®, GAMS®, and MATLAB® toolboxes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Italy, GermanyPublisher:Elsevier BV Geert Deconinck; Umberto Desideri; Thomas Kolb; Jianzhnog Wu; Henrik Madsen; Jinyue Yan; Jinyue Yan; George Huitema;The increasing share of variable renewable energy sources, strict targets set for the reduction of greenhouse gas emissions and the requirements on improvement of system security and reliability are calling for important changes in our energy systems. Energy systems have been in transition, extending their boundaries beyond the energy systems themselves, the 3-D interactive extensions, that relate to the dimensions of physical Space, Time scale and Human behaviors – STH extension. Under the new circumstance of the STH-demission, we need new approaches and solutions to solve the challenging issues associated with new transitions of future clean energy systems [1]. The next generation of competitive technologies and services that will create or enhance synergies between energy supply networks are being developed and matured. Facing these challenges and opportunities, energy supply networks (e.g. electric power networks, natural gas networks, hydrogen production and transportation, district heating and cooling systems, electrified transportation, and the associated information and communication infrastructure) are undergoing a radical transformation with massive investments in infrastructure and technologies [2]. This provides a window of opportunity. This transition is significantly increasing the coupling and interactions between energy supply networks via network coupling technologies, e.g. Combined Heat and Power units (CHP), Power to Gas (e.g. using excess renewable energy to produce hydrogen, which can be injected to the gas network or converted to synthetic natural gas, SNG, and then injected into the gas network) and Power to heat (e.g. heat pumps) processes. There is an urgent need to develop the next generation network coupling technologies and energy system integration methods which will make optimal use of synergies between energy networks to increase the hosting capacity and flexibility of distributed energy resources (DERs), enhanced demand response and support Smart Grid operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Italy, GermanyPublisher:Elsevier BV Geert Deconinck; Umberto Desideri; Thomas Kolb; Jianzhnog Wu; Henrik Madsen; Jinyue Yan; Jinyue Yan; George Huitema;The increasing share of variable renewable energy sources, strict targets set for the reduction of greenhouse gas emissions and the requirements on improvement of system security and reliability are calling for important changes in our energy systems. Energy systems have been in transition, extending their boundaries beyond the energy systems themselves, the 3-D interactive extensions, that relate to the dimensions of physical Space, Time scale and Human behaviors – STH extension. Under the new circumstance of the STH-demission, we need new approaches and solutions to solve the challenging issues associated with new transitions of future clean energy systems [1]. The next generation of competitive technologies and services that will create or enhance synergies between energy supply networks are being developed and matured. Facing these challenges and opportunities, energy supply networks (e.g. electric power networks, natural gas networks, hydrogen production and transportation, district heating and cooling systems, electrified transportation, and the associated information and communication infrastructure) are undergoing a radical transformation with massive investments in infrastructure and technologies [2]. This provides a window of opportunity. This transition is significantly increasing the coupling and interactions between energy supply networks via network coupling technologies, e.g. Combined Heat and Power units (CHP), Power to Gas (e.g. using excess renewable energy to produce hydrogen, which can be injected to the gas network or converted to synthetic natural gas, SNG, and then injected into the gas network) and Power to heat (e.g. heat pumps) processes. There is an urgent need to develop the next generation network coupling technologies and energy system integration methods which will make optimal use of synergies between energy networks to increase the hosting capacity and flexibility of distributed energy resources (DERs), enhanced demand response and support Smart Grid operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Bär, Katharina; Merkle, Wolfgang; Tuczinski, Marc; Saravia, Florencia; Horn, Harald; Ortloff, Felix; Graf, Frank; Lemmer, Andreas; Kolb, Thomas;Abstract The two-stage high-pressure fermentation (HPF) process enables the production of methane at high operating pressure. Pressure significantly reduces the energy needed for injecting the produced biogas into the gas grid by 45–60%. It also allows for incorporating large parts of the necessary biogas upgrading process into the synthesis step. As a result, the two-stage HPF process provides pressurized biogas with methane volume fraction ranging from 0.75 to 0.94. The pressure is not generated by energy intensive gas compression, but in-situ by microbial gas production. In comparison to conventional biomethane production, the overall costs could be reduced up to 20%. HPF is most beneficial when its operating pressure is adapted to that of the gas grid. The article presents briefly the development of the two-stage HPF beginning with tests in batch reactors, followed by experiments on gas solubility, and proof-of-concept in continuously operated methanogenesis reactors (MR) up to 9 bar. It also represents the effect of incorporating microfiltration (MF) of the feed stream, on improving the biogas quality and process stability of a continuously operated lab scale HPF process. By linking the MF with the HPF, methane volume fraction in the MR increases from 0.86 to 0.94 at 25 bar. Finally, the simulation and experimental results show good agreement with each other thereby making them a good basis for further optimization of the HPF process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Bär, Katharina; Merkle, Wolfgang; Tuczinski, Marc; Saravia, Florencia; Horn, Harald; Ortloff, Felix; Graf, Frank; Lemmer, Andreas; Kolb, Thomas;Abstract The two-stage high-pressure fermentation (HPF) process enables the production of methane at high operating pressure. Pressure significantly reduces the energy needed for injecting the produced biogas into the gas grid by 45–60%. It also allows for incorporating large parts of the necessary biogas upgrading process into the synthesis step. As a result, the two-stage HPF process provides pressurized biogas with methane volume fraction ranging from 0.75 to 0.94. The pressure is not generated by energy intensive gas compression, but in-situ by microbial gas production. In comparison to conventional biomethane production, the overall costs could be reduced up to 20%. HPF is most beneficial when its operating pressure is adapted to that of the gas grid. The article presents briefly the development of the two-stage HPF beginning with tests in batch reactors, followed by experiments on gas solubility, and proof-of-concept in continuously operated methanogenesis reactors (MR) up to 9 bar. It also represents the effect of incorporating microfiltration (MF) of the feed stream, on improving the biogas quality and process stability of a continuously operated lab scale HPF process. By linking the MF with the HPF, methane volume fraction in the MR increases from 0.86 to 0.94 at 25 bar. Finally, the simulation and experimental results show good agreement with each other thereby making them a good basis for further optimization of the HPF process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Jakobs, T.; Djordjevic, N.; Fleck, S.; Mancini, Marco; Weber, Roman; Kolb, T.;Abstract Biomass and low rank fuel gasification is a very promising process for conversion of fuels to a high quality fuel (Syngas). In the present paper research work on the design of a high pressure entrained flow gasifier for biomass based fuels is shown. Atomization quality of twin fluid nozzles as a function of gas velocity and reactor pressure is analyzed. The developed and characterized atomizers are used in an atmospheric entrained flow gasifier, to detect the influence of spray quality on gasification process. Furthermore, a CFD model of a high pressure entrained flow gasifier was developed. A significant influence of gas velocity and reactor pressure on Sauter Mean Diameter (SMD) of the produced spray was detected. Increasing gas velocity decreases the SMD, whereas increasing reactor pressure leads to the increase in drop diameter. An influence of SMD on gasification process was observed from organic carbon and methane concentration measurements as well as from the radial temperature profiles at various positions along the reactor centerline. Finally the CFD model of high pressure entrained flow gasification of biomass based slurries shows a very pronounced influence of drop size distribution on gasification quality.
Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Jakobs, T.; Djordjevic, N.; Fleck, S.; Mancini, Marco; Weber, Roman; Kolb, T.;Abstract Biomass and low rank fuel gasification is a very promising process for conversion of fuels to a high quality fuel (Syngas). In the present paper research work on the design of a high pressure entrained flow gasifier for biomass based fuels is shown. Atomization quality of twin fluid nozzles as a function of gas velocity and reactor pressure is analyzed. The developed and characterized atomizers are used in an atmospheric entrained flow gasifier, to detect the influence of spray quality on gasification process. Furthermore, a CFD model of a high pressure entrained flow gasifier was developed. A significant influence of gas velocity and reactor pressure on Sauter Mean Diameter (SMD) of the produced spray was detected. Increasing gas velocity decreases the SMD, whereas increasing reactor pressure leads to the increase in drop diameter. An influence of SMD on gasification process was observed from organic carbon and methane concentration measurements as well as from the radial temperature profiles at various positions along the reactor centerline. Finally the CFD model of high pressure entrained flow gasification of biomass based slurries shows a very pronounced influence of drop size distribution on gasification quality.
Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Lefebvre, Jonathan; Götz, Manuel; Bajohr, Siegfried; Reimert, Rainer; Kolb, Thomas;Abstract The performance of a slurry bubble column reactor was evaluated for its application as a methanation reactor. The influences of the reactor pressure (5 to 20 bar), temperature (275 to 325 °C), gas velocity (0.8 to 1.6 cm/s), catalyst concentration (1.6 to 9 vol.%) as well as reactant partial pressures (H2/CO2 ratio from 3.8 to 6.3) on the reactor performance were assessed and optimal process conditions for substitute natural gas production were identified. An increase in pressure, temperature, and H2/CO2 ratio improves the reactor performance. The optimal catalyst concentration depends on the operating conditions. Under the experimental conditions of the work presented in this paper, a concentration of 6.5 vol.% led to the highest conversion rates. Additionally, the dynamic behavior of the three-phase methanation reactor was investigated using inlet gas velocity step changes to simulate load variation of a power-to-gas facility. The reactor showed rapid adaptation while maintaining an isothermal temperature profile.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 GermanyPublisher:Elsevier BV Lefebvre, Jonathan; Götz, Manuel; Bajohr, Siegfried; Reimert, Rainer; Kolb, Thomas;Abstract The performance of a slurry bubble column reactor was evaluated for its application as a methanation reactor. The influences of the reactor pressure (5 to 20 bar), temperature (275 to 325 °C), gas velocity (0.8 to 1.6 cm/s), catalyst concentration (1.6 to 9 vol.%) as well as reactant partial pressures (H2/CO2 ratio from 3.8 to 6.3) on the reactor performance were assessed and optimal process conditions for substitute natural gas production were identified. An increase in pressure, temperature, and H2/CO2 ratio improves the reactor performance. The optimal catalyst concentration depends on the operating conditions. Under the experimental conditions of the work presented in this paper, a concentration of 6.5 vol.% led to the highest conversion rates. Additionally, the dynamic behavior of the three-phase methanation reactor was investigated using inlet gas velocity step changes to simulate load variation of a power-to-gas facility. The reactor showed rapid adaptation while maintaining an isothermal temperature profile.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2014.10.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Wiley Dahmen, Nicolaus; Abeln, Johannes; Eberhard, Mark; Kolb, Thomas; Leibold, Hans; Sauer, Joerg; Stapf, Dieter.; Zimmerlin, Bernd;Biofuels of the second generation can contribute significantly to the replacement of the currently used fossil energy carriers for transportation fuel production. The lignocellulosic biomass residues used do not compete with food and feed production, but have to be collected from wide‐spread areas for industrial large‐scale use. The two‐stage gasification concept bioliq offers a solution to this problem. It aims at the conversion of low‐grade residual biomass from agriculture and forestry into synthetic fuels and chemicals. Central element of the bioliq process development is the 2–5 MW pilot plant along the complete process chain: fast pyrolysis for pretreatment of biomass to obtain an energy dense, liquid intermediate fuel, high‐pressure entrained flow gasification providing low methane synthesis gas free of tar, hot synthesis gas cleaning to separate acid gases, and contaminants as well as methanol/dimethyl ether and subsequent following gasoline synthesis. After construction and commissioning of the individual process steps with partners from industry, first production of synthetic fuel was successfully achieved in 2014. In addition to pilot plant operation for technology demonstration, a research and development network has been established providing the scientific basis for optimization and further development of the bioliq process as well as to explore new applications of the technologies and products involved. WIREs Energy Environ 2017, 6:e236. doi: 10.1002/wene.236This article is categorized under: Bioenergy > Science and Materials Bioenergy > Systems and Infrastructure
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 GermanyPublisher:Wiley Dahmen, Nicolaus; Abeln, Johannes; Eberhard, Mark; Kolb, Thomas; Leibold, Hans; Sauer, Joerg; Stapf, Dieter.; Zimmerlin, Bernd;Biofuels of the second generation can contribute significantly to the replacement of the currently used fossil energy carriers for transportation fuel production. The lignocellulosic biomass residues used do not compete with food and feed production, but have to be collected from wide‐spread areas for industrial large‐scale use. The two‐stage gasification concept bioliq offers a solution to this problem. It aims at the conversion of low‐grade residual biomass from agriculture and forestry into synthetic fuels and chemicals. Central element of the bioliq process development is the 2–5 MW pilot plant along the complete process chain: fast pyrolysis for pretreatment of biomass to obtain an energy dense, liquid intermediate fuel, high‐pressure entrained flow gasification providing low methane synthesis gas free of tar, hot synthesis gas cleaning to separate acid gases, and contaminants as well as methanol/dimethyl ether and subsequent following gasoline synthesis. After construction and commissioning of the individual process steps with partners from industry, first production of synthetic fuel was successfully achieved in 2014. In addition to pilot plant operation for technology demonstration, a research and development network has been established providing the scientific basis for optimization and further development of the bioliq process as well as to explore new applications of the technologies and products involved. WIREs Energy Environ 2017, 6:e236. doi: 10.1002/wene.236This article is categorized under: Bioenergy > Science and Materials Bioenergy > Systems and Infrastructure
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 66 citations 66 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Energy and EnvironmentArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefWiley Interdisciplinary Reviews Energy and EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wene.236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Elsevier BV Authors: Maximilian Dammann; Stella Clara Walker; Marco Mancini; Thomas Kolb;Reliable devolatilisation kinetics of primary wood chars are essential to describe the secondary of volatiles in entrained flow gasification processes but have not been derived yet. Therefore, this study developed devolatilisation kinetics of a commercially available beech wood char using ermogravimetric analyses and drop-tube reactor experiments for design of entrained flow gasification processes. The thermogravimetric analyses were performed at low heating rates (2∕5∕10∕30∕50 K∕min) up to 1273 K, whereas the drop-tube reactor experiments were conducted at high heating rates (∼ 10$^4$ K∕s), high temperatures (1273/1373/1473/1573/1673/1873 K) and short residence times (200/400 ms). Thermogravimetric kinetics were subsequently obtained based on multi first-order reaction logistic distributed activation energy models, while kinetics based on single first-order reaction Arrhenius law and modified Yamamoto models were derived from the drop-tube reactor experiments and corresponding CFD predictions. Finally, single-particle simulations were carried out to compare the kinetics from both kind of experiments at high-heating-rate conditions. The comparisons demonstrate that the thermogravimetric kinetics are in reasonable agreement with the drop-tube reactor kinetics but provide lower devolatilisation rates. Furthermore, gas species concentrations measurements from the drop-tube reactor experiments were used to estimate an average volatiles composition. The results indicate that the volatiles composition at high-temperature conditions can likely be described using the gas species concentrations at high-temperature equilibrium conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Elsevier BV Authors: Maximilian Dammann; Stella Clara Walker; Marco Mancini; Thomas Kolb;Reliable devolatilisation kinetics of primary wood chars are essential to describe the secondary of volatiles in entrained flow gasification processes but have not been derived yet. Therefore, this study developed devolatilisation kinetics of a commercially available beech wood char using ermogravimetric analyses and drop-tube reactor experiments for design of entrained flow gasification processes. The thermogravimetric analyses were performed at low heating rates (2∕5∕10∕30∕50 K∕min) up to 1273 K, whereas the drop-tube reactor experiments were conducted at high heating rates (∼ 10$^4$ K∕s), high temperatures (1273/1373/1473/1573/1673/1873 K) and short residence times (200/400 ms). Thermogravimetric kinetics were subsequently obtained based on multi first-order reaction logistic distributed activation energy models, while kinetics based on single first-order reaction Arrhenius law and modified Yamamoto models were derived from the drop-tube reactor experiments and corresponding CFD predictions. Finally, single-particle simulations were carried out to compare the kinetics from both kind of experiments at high-heating-rate conditions. The comparisons demonstrate that the thermogravimetric kinetics are in reasonable agreement with the drop-tube reactor kinetics but provide lower devolatilisation rates. Furthermore, gas species concentrations measurements from the drop-tube reactor experiments were used to estimate an average volatiles composition. The results indicate that the volatiles composition at high-temperature conditions can likely be described using the gas species concentrations at high-temperature equilibrium conditions.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2024License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2024.131967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, GermanyPublisher:Wiley Authors: Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas;AbstractFossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well‐known technical process applied for production of, e. g., carbon black. In the future it might contribute to carbon dioxide‐free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by‐product of this process can be used for material production or can be sequestrated, the produced hydrogen has a low carbon footprint. This article reviews literature on the state of the art of methane / natural gas pyrolysis process developments and attempts to assess the technology readiness level (TRL).
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 214 citations 214 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 Germany, GermanyPublisher:Wiley Authors: Schneider, Stefan; Bajohr, Siegfried; Graf, Frank; Kolb, Thomas;AbstractFossil fuels have to be substituted by climate neutral fuels to contribute to CO2 reduction in the future energy system. Pyrolysis of natural gas is a well‐known technical process applied for production of, e. g., carbon black. In the future it might contribute to carbon dioxide‐free hydrogen production. Production of hydrogen from natural gas pyrolysis has thus gained interest in research and energy technology in the near past. If the carbon by‐product of this process can be used for material production or can be sequestrated, the produced hydrogen has a low carbon footprint. This article reviews literature on the state of the art of methane / natural gas pyrolysis process developments and attempts to assess the technology readiness level (TRL).
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 214 citations 214 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cben.202000014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:DFGDFGChristoph Schneider; Stella Walker; Aekjuthon Phounglamcheik; Kentaro Umeki; Thomas Kolb;Abstract This paper presents thermal deactivation of beech wood chars during secondary pyrolysis in a drop-tube reactor. Pyrolysis temperature was varied between 1000 °C and 1600 °C at a constant residence time of 200 ms. The effect of pyrolysis conditions on initial conversion rate R0 during gasification, graphitization of the carbon matrix and ash morphology was investigated. Gasification experiments for the determination of R0 were conducted in a thermogravimetric analyzer using pure CO2 at 750 °C and isothermal conditions. A linear decrease in initial conversion rate R0 was observed between 1000 °C and 1400 °C. However, a strong increase of R0 at 1600 °C was encountered. Micropore surface area of the secondary chars showed no correlation with the initial conversion rate R0 during gasification with CO2. Graphitization of the carbon matrix was determined using X-ray diffraction and Raman spectroscopy suggesting the growth of aromatic clusters and graphite-like structures for increasing pyrolysis temperatures up to 1600 °C. Furthermore, CaO dispersion was analyzed quantitatively and qualitatively using temperature-programmed reaction at 300 °C as well as SEM/TEM. CaO dispersion DCaO decreases steadily between 1000 °C and 1400 °C whereas a strong increase can be observed at 1600 °C, which is in good accordance with the development of the initial conversion rate R0 as a function of pyrolysis temperature. SEM/TEM images indicate the formation of a thin CaO layer at 1600 °C that is presumably responsible for the strong increase in initial conversion rate R0 at this temperature. When excluding the catalytic activity of CaO via formation of the ratio R0 DCaO−1, increasing graphitization degree has a linear negative influence on char reactivity at pyrolysis temperatures between 1000 °C and 1400 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:DFGDFGChristoph Schneider; Stella Walker; Aekjuthon Phounglamcheik; Kentaro Umeki; Thomas Kolb;Abstract This paper presents thermal deactivation of beech wood chars during secondary pyrolysis in a drop-tube reactor. Pyrolysis temperature was varied between 1000 °C and 1600 °C at a constant residence time of 200 ms. The effect of pyrolysis conditions on initial conversion rate R0 during gasification, graphitization of the carbon matrix and ash morphology was investigated. Gasification experiments for the determination of R0 were conducted in a thermogravimetric analyzer using pure CO2 at 750 °C and isothermal conditions. A linear decrease in initial conversion rate R0 was observed between 1000 °C and 1400 °C. However, a strong increase of R0 at 1600 °C was encountered. Micropore surface area of the secondary chars showed no correlation with the initial conversion rate R0 during gasification with CO2. Graphitization of the carbon matrix was determined using X-ray diffraction and Raman spectroscopy suggesting the growth of aromatic clusters and graphite-like structures for increasing pyrolysis temperatures up to 1600 °C. Furthermore, CaO dispersion was analyzed quantitatively and qualitatively using temperature-programmed reaction at 300 °C as well as SEM/TEM. CaO dispersion DCaO decreases steadily between 1000 °C and 1400 °C whereas a strong increase can be observed at 1600 °C, which is in good accordance with the development of the initial conversion rate R0 as a function of pyrolysis temperature. SEM/TEM images indicate the formation of a thin CaO layer at 1600 °C that is presumably responsible for the strong increase in initial conversion rate R0 at this temperature. When excluding the catalytic activity of CaO via formation of the ratio R0 DCaO−1, increasing graphitization degree has a linear negative influence on char reactivity at pyrolysis temperatures between 1000 °C and 1400 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.118826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Authors: Prabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; +5 AuthorsPrabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; Remesh, Gopal; Graf, Frank; Trimis, Dimosthenis; Kolb, Thomas; Founti, Maria;Abstract Chemical energy carriers and storage mechanisms will play a significant role in future energy systems. Apart from stabilising network fluctuations caused by renewable energy supply, chemical energy carriers also serve multiple sectors like electricity generation, chemical industry, transportation and shipping. Power to Gas (PtG) is a method that can be adapted for energy storage using chemical energy carriers produced from reserve electricity. This study contains the evaluation of long term energy storage in a decentral energy hub using a high temperature Power to Gas (PtG) plant. The Power to Gas process in this study uses surplus electricity for high temperature SOEC electrolysis. The resulting H2 undergoes methanation to generate Substitute Natural Gas (SNG) which has the same properties of natural gas and can be distributed using existing infrastructure. Compared to PtG processes using PEM or alkaline electrolysis, better overall process efficiencies up to 85% have been estimated for the high temperature PtG process. A pilot plant with thermally coupled SOEC-Electrolysis and Methanation was constructed as a part of the HELMETH project and is used in this study. Based on the experiments conducted in the pilot plant, the technical feasibility of long term energy storage and transient operations were evaluated. It was observed that short term energy storage with transient plant operation resulted in more operational costs when compared to long term storage with continuous plant operation. Novel methods to minimise the operational costs of the plant were also investigated using a dynamic pricing model and numerical optimisation of PtG plant. The numerical optimisation shows that if the duration of plant operation is adapted to target surplus renewable energy production, the concept could also be economically viable. Further, a life cycle analysis (LCA) of the PtG process was performed to evaluate the global warming potential (GWP) of the PtG plant configured with various input feeds. From the LCA, it was determined that if the input electricity is generated from sources with a global warming potential of less than 150 g CO2-eq/kWh, and carbon dioxide used for methanation is derived from biogenic sources, the PtG plant could act as a carbon sink.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 GermanyPublisher:Elsevier BV Authors: Prabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; +5 AuthorsPrabhakaran, Praseeth; Giannopoulos, Dimitrios; Köppel, Wolfgang; Mukherjee, Ushnik; Remesh, Gopal; Graf, Frank; Trimis, Dimosthenis; Kolb, Thomas; Founti, Maria;Abstract Chemical energy carriers and storage mechanisms will play a significant role in future energy systems. Apart from stabilising network fluctuations caused by renewable energy supply, chemical energy carriers also serve multiple sectors like electricity generation, chemical industry, transportation and shipping. Power to Gas (PtG) is a method that can be adapted for energy storage using chemical energy carriers produced from reserve electricity. This study contains the evaluation of long term energy storage in a decentral energy hub using a high temperature Power to Gas (PtG) plant. The Power to Gas process in this study uses surplus electricity for high temperature SOEC electrolysis. The resulting H2 undergoes methanation to generate Substitute Natural Gas (SNG) which has the same properties of natural gas and can be distributed using existing infrastructure. Compared to PtG processes using PEM or alkaline electrolysis, better overall process efficiencies up to 85% have been estimated for the high temperature PtG process. A pilot plant with thermally coupled SOEC-Electrolysis and Methanation was constructed as a part of the HELMETH project and is used in this study. Based on the experiments conducted in the pilot plant, the technical feasibility of long term energy storage and transient operations were evaluated. It was observed that short term energy storage with transient plant operation resulted in more operational costs when compared to long term storage with continuous plant operation. Novel methods to minimise the operational costs of the plant were also investigated using a dynamic pricing model and numerical optimisation of PtG plant. The numerical optimisation shows that if the duration of plant operation is adapted to target surplus renewable energy production, the concept could also be economically viable. Further, a life cycle analysis (LCA) of the PtG process was performed to evaluate the global warming potential (GWP) of the PtG plant configured with various input feeds. From the LCA, it was determined that if the input electricity is generated from sources with a global warming potential of less than 150 g CO2-eq/kWh, and carbon dioxide used for methanation is derived from biogenic sources, the PtG plant could act as a carbon sink.
Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Energy St... arrow_drop_down Journal of Energy StorageArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2019.100987&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 GermanyPublisher:IEEE Ruf, J.; Zimmerlin, M.; Sauter, P. S.; Koppel, W.; Suriyah, M. R.; Kluwe, M.; Hohmann, S.; Leibfried, T.; Kolb, T.;Focus of this work is the development and testing of a collaboration and simulation environment enabling modelling experts from different domains with domain-specific software and tools to contribute to new control approaches for locally interconnected Multi-Carrier Energy Systems (MCES). The modelling is complemented by experiments at a German small town with local industrial sector and the extensive use of measurement data. MATLAB® and Python scripts have been used to connect various commercial software such as STANET®, GAMS®, and MATLAB® toolboxes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2018 GermanyPublisher:IEEE Ruf, J.; Zimmerlin, M.; Sauter, P. S.; Koppel, W.; Suriyah, M. R.; Kluwe, M.; Hohmann, S.; Leibfried, T.; Kolb, T.;Focus of this work is the development and testing of a collaboration and simulation environment enabling modelling experts from different domains with domain-specific software and tools to contribute to new control approaches for locally interconnected Multi-Carrier Energy Systems (MCES). The modelling is complemented by experiments at a German small town with local industrial sector and the extensive use of measurement data. MATLAB® and Python scripts have been used to connect various commercial software such as STANET®, GAMS®, and MATLAB® toolboxes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/upec.2018.8542066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Italy, GermanyPublisher:Elsevier BV Geert Deconinck; Umberto Desideri; Thomas Kolb; Jianzhnog Wu; Henrik Madsen; Jinyue Yan; Jinyue Yan; George Huitema;The increasing share of variable renewable energy sources, strict targets set for the reduction of greenhouse gas emissions and the requirements on improvement of system security and reliability are calling for important changes in our energy systems. Energy systems have been in transition, extending their boundaries beyond the energy systems themselves, the 3-D interactive extensions, that relate to the dimensions of physical Space, Time scale and Human behaviors – STH extension. Under the new circumstance of the STH-demission, we need new approaches and solutions to solve the challenging issues associated with new transitions of future clean energy systems [1]. The next generation of competitive technologies and services that will create or enhance synergies between energy supply networks are being developed and matured. Facing these challenges and opportunities, energy supply networks (e.g. electric power networks, natural gas networks, hydrogen production and transportation, district heating and cooling systems, electrified transportation, and the associated information and communication infrastructure) are undergoing a radical transformation with massive investments in infrastructure and technologies [2]. This provides a window of opportunity. This transition is significantly increasing the coupling and interactions between energy supply networks via network coupling technologies, e.g. Combined Heat and Power units (CHP), Power to Gas (e.g. using excess renewable energy to produce hydrogen, which can be injected to the gas network or converted to synthetic natural gas, SNG, and then injected into the gas network) and Power to heat (e.g. heat pumps) processes. There is an urgent need to develop the next generation network coupling technologies and energy system integration methods which will make optimal use of synergies between energy networks to increase the hosting capacity and flexibility of distributed energy resources (DERs), enhanced demand response and support Smart Grid operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017 Italy, GermanyPublisher:Elsevier BV Geert Deconinck; Umberto Desideri; Thomas Kolb; Jianzhnog Wu; Henrik Madsen; Jinyue Yan; Jinyue Yan; George Huitema;The increasing share of variable renewable energy sources, strict targets set for the reduction of greenhouse gas emissions and the requirements on improvement of system security and reliability are calling for important changes in our energy systems. Energy systems have been in transition, extending their boundaries beyond the energy systems themselves, the 3-D interactive extensions, that relate to the dimensions of physical Space, Time scale and Human behaviors – STH extension. Under the new circumstance of the STH-demission, we need new approaches and solutions to solve the challenging issues associated with new transitions of future clean energy systems [1]. The next generation of competitive technologies and services that will create or enhance synergies between energy supply networks are being developed and matured. Facing these challenges and opportunities, energy supply networks (e.g. electric power networks, natural gas networks, hydrogen production and transportation, district heating and cooling systems, electrified transportation, and the associated information and communication infrastructure) are undergoing a radical transformation with massive investments in infrastructure and technologies [2]. This provides a window of opportunity. This transition is significantly increasing the coupling and interactions between energy supply networks via network coupling technologies, e.g. Combined Heat and Power units (CHP), Power to Gas (e.g. using excess renewable energy to produce hydrogen, which can be injected to the gas network or converted to synthetic natural gas, SNG, and then injected into the gas network) and Power to heat (e.g. heat pumps) processes. There is an urgent need to develop the next generation network coupling technologies and energy system integration methods which will make optimal use of synergies between energy networks to increase the hosting capacity and flexibility of distributed energy resources (DERs), enhanced demand response and support Smart Grid operation.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)Applied EnergyOther literature type . 2017License: taverneData sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.02.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Bär, Katharina; Merkle, Wolfgang; Tuczinski, Marc; Saravia, Florencia; Horn, Harald; Ortloff, Felix; Graf, Frank; Lemmer, Andreas; Kolb, Thomas;Abstract The two-stage high-pressure fermentation (HPF) process enables the production of methane at high operating pressure. Pressure significantly reduces the energy needed for injecting the produced biogas into the gas grid by 45–60%. It also allows for incorporating large parts of the necessary biogas upgrading process into the synthesis step. As a result, the two-stage HPF process provides pressurized biogas with methane volume fraction ranging from 0.75 to 0.94. The pressure is not generated by energy intensive gas compression, but in-situ by microbial gas production. In comparison to conventional biomethane production, the overall costs could be reduced up to 20%. HPF is most beneficial when its operating pressure is adapted to that of the gas grid. The article presents briefly the development of the two-stage HPF beginning with tests in batch reactors, followed by experiments on gas solubility, and proof-of-concept in continuously operated methanogenesis reactors (MR) up to 9 bar. It also represents the effect of incorporating microfiltration (MF) of the feed stream, on improving the biogas quality and process stability of a continuously operated lab scale HPF process. By linking the MF with the HPF, methane volume fraction in the MR increases from 0.86 to 0.94 at 25 bar. Finally, the simulation and experimental results show good agreement with each other thereby making them a good basis for further optimization of the HPF process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Bär, Katharina; Merkle, Wolfgang; Tuczinski, Marc; Saravia, Florencia; Horn, Harald; Ortloff, Felix; Graf, Frank; Lemmer, Andreas; Kolb, Thomas;Abstract The two-stage high-pressure fermentation (HPF) process enables the production of methane at high operating pressure. Pressure significantly reduces the energy needed for injecting the produced biogas into the gas grid by 45–60%. It also allows for incorporating large parts of the necessary biogas upgrading process into the synthesis step. As a result, the two-stage HPF process provides pressurized biogas with methane volume fraction ranging from 0.75 to 0.94. The pressure is not generated by energy intensive gas compression, but in-situ by microbial gas production. In comparison to conventional biomethane production, the overall costs could be reduced up to 20%. HPF is most beneficial when its operating pressure is adapted to that of the gas grid. The article presents briefly the development of the two-stage HPF beginning with tests in batch reactors, followed by experiments on gas solubility, and proof-of-concept in continuously operated methanogenesis reactors (MR) up to 9 bar. It also represents the effect of incorporating microfiltration (MF) of the feed stream, on improving the biogas quality and process stability of a continuously operated lab scale HPF process. By linking the MF with the HPF, methane volume fraction in the MR increases from 0.86 to 0.94 at 25 bar. Finally, the simulation and experimental results show good agreement with each other thereby making them a good basis for further optimization of the HPF process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2018.04.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Jakobs, T.; Djordjevic, N.; Fleck, S.; Mancini, Marco; Weber, Roman; Kolb, T.;Abstract Biomass and low rank fuel gasification is a very promising process for conversion of fuels to a high quality fuel (Syngas). In the present paper research work on the design of a high pressure entrained flow gasifier for biomass based fuels is shown. Atomization quality of twin fluid nozzles as a function of gas velocity and reactor pressure is analyzed. The developed and characterized atomizers are used in an atmospheric entrained flow gasifier, to detect the influence of spray quality on gasification process. Furthermore, a CFD model of a high pressure entrained flow gasifier was developed. A significant influence of gas velocity and reactor pressure on Sauter Mean Diameter (SMD) of the produced spray was detected. Increasing gas velocity decreases the SMD, whereas increasing reactor pressure leads to the increase in drop diameter. An influence of SMD on gasification process was observed from organic carbon and methane concentration measurements as well as from the radial temperature profiles at various positions along the reactor centerline. Finally the CFD model of high pressure entrained flow gasification of biomass based slurries shows a very pronounced influence of drop size distribution on gasification quality.
Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 GermanyPublisher:Elsevier BV Jakobs, T.; Djordjevic, N.; Fleck, S.; Mancini, Marco; Weber, Roman; Kolb, T.;Abstract Biomass and low rank fuel gasification is a very promising process for conversion of fuels to a high quality fuel (Syngas). In the present paper research work on the design of a high pressure entrained flow gasifier for biomass based fuels is shown. Atomization quality of twin fluid nozzles as a function of gas velocity and reactor pressure is analyzed. The developed and characterized atomizers are used in an atmospheric entrained flow gasifier, to detect the influence of spray quality on gasification process. Furthermore, a CFD model of a high pressure entrained flow gasifier was developed. A significant influence of gas velocity and reactor pressure on Sauter Mean Diameter (SMD) of the produced spray was detected. Increasing gas velocity decreases the SMD, whereas increasing reactor pressure leads to the increase in drop diameter. An influence of SMD on gasification process was observed from organic carbon and methane concentration measurements as well as from the radial temperature profiles at various positions along the reactor centerline. Finally the CFD model of high pressure entrained flow gasification of biomass based slurries shows a very pronounced influence of drop size distribution on gasification quality.
Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Energy arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2011.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu