- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Claudiane Ouellet-Plamondon;
Juchan Kim; Joseph Dahmen;Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREAbstract This life cycle assessment evaluates the environmental impacts of two emergent masonry blocks designed to serve as sustainable replacements for conventional masonry blocks. The emergent blocks offer the same strength, durability, and form as conventional structural concrete blocks, and include hollow cores to enable placement of reinforcement in accordance with standard construction practices. The first emergent block consists of stabilized engineered soil that is compacted to reduce the use of ordinary Portland cement and eliminate curing. The second block, which is also compacted, contains alkali activators that promote a geopolymerization reaction among naturally occurring aluminosilicate clays, eliminating the need for ordinary Portland cement. QuantisSuite 2.0 software is used to perform a cradle to gate life cycle assessment comparing the environmental impacts of the two blocks to conventional concrete blocks across a range of indicators. The compacted stabilized soil block offers 46% less embodied carbon than conventional concrete block, which it outperforms in all categories except water consumption. The compacted alkali-activated block reduces embodied carbon by 42% when compared to concrete block, but has a higher impact on ecosystem, water withdrawal and resources. In terms of ecosystem and health indicators, the compacted stabilized soil block is the preferred building block, while conventional concrete block architectural blocks are the most water efficient. As understanding of alkali activation improves and manufacturing of compacted block is optimized, further environmental benefits are possible in both stabilized soil block and the alkali-activated block.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors:Claudiane Ouellet-Plamondon;
Juchan Kim; Joseph Dahmen;Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREAbstract This life cycle assessment evaluates the environmental impacts of two emergent masonry blocks designed to serve as sustainable replacements for conventional masonry blocks. The emergent blocks offer the same strength, durability, and form as conventional structural concrete blocks, and include hollow cores to enable placement of reinforcement in accordance with standard construction practices. The first emergent block consists of stabilized engineered soil that is compacted to reduce the use of ordinary Portland cement and eliminate curing. The second block, which is also compacted, contains alkali activators that promote a geopolymerization reaction among naturally occurring aluminosilicate clays, eliminating the need for ordinary Portland cement. QuantisSuite 2.0 software is used to perform a cradle to gate life cycle assessment comparing the environmental impacts of the two blocks to conventional concrete blocks across a range of indicators. The compacted stabilized soil block offers 46% less embodied carbon than conventional concrete block, which it outperforms in all categories except water consumption. The compacted alkali-activated block reduces embodied carbon by 42% when compared to concrete block, but has a higher impact on ecosystem, water withdrawal and resources. In terms of ecosystem and health indicators, the compacted stabilized soil block is the preferred building block, while conventional concrete block architectural blocks are the most water efficient. As understanding of alkali activation improves and manufacturing of compacted block is optimized, further environmental benefits are possible in both stabilized soil block and the alkali-activated block.
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2017.10.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Aguerata Kabore;Mathieu Bendouma;
Mathieu Bendouma
Mathieu Bendouma in OpenAIREClaudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Aguerata Kabore;Mathieu Bendouma;
Mathieu Bendouma
Mathieu Bendouma in OpenAIREClaudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115351&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 20 Mar 2016 SwitzerlandPublisher:Elsevier BV Authors:Claudiane M. Ouellet-Plamondon;
Claudiane M. Ouellet-Plamondon
Claudiane M. Ouellet-Plamondon in OpenAIREGuillaume Habert;
Guillaume Habert
Guillaume Habert in OpenAIREJournal of Cleaner Production, 117 ISSN:0959-6526
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Embargo end date: 20 Mar 2016 SwitzerlandPublisher:Elsevier BV Authors:Claudiane M. Ouellet-Plamondon;
Claudiane M. Ouellet-Plamondon
Claudiane M. Ouellet-Plamondon in OpenAIREGuillaume Habert;
Guillaume Habert
Guillaume Habert in OpenAIREJournal of Cleaner Production, 117 ISSN:0959-6526
Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu69 citations 69 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Cleaner P... arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.12.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Universitätsbibliothek Braunschweig Authors:Jin, Willy;
Jin, Willy
Jin, Willy in OpenAIREOuellet-Plamondon, Claudiane;
Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIRECaron, Jean-François;
Caron, Jean-François
Caron, Jean-François in OpenAIREThe construction industry is compelled to evolve toward industrial-ized and sustainable means and processes. Indeed, the Portland cement produc-tion alone is responsible for up to 8 % of global greenhouse gas emissions. In this context, concrete 3D printing demonstrates a significant potential for the reduction of material use. However, the majority of 3D printing materials dis-play a high cement content due to the rheological constraints associated with 3D printing along with the complexity of mix design. The present study proposes to integrate a parametric life cycle assessment cal-culation in the multi-objective optimization of a 3D printing mortar in order to minimize the environmental impact with a significantly reduced mix design workload. Applied to a limestone calcined clay blend, a genetic algorithm is used to decrease the climate change score while maintaining a set of rheological printability criteria predicted by artificial neural networks. As a result, this methodology allows the identification of locally optimized mixtures (up to 82wt% cement replacement) in as low as 9 additional formulations. Besides, as the process advances for an expanded design region, its efficiency is enhanced. This methodology is reproducible with locally sourced materials and for the majority of 3D printing materials, which are usually designed through empirical trial and error. This study introduces a systematic optimization process which establishes the sustainability at the core of its objectives and includes innovative tools for the formulation of cementitious materials. Digital Concrete 2024 - Supplementary Proceedings
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24355/dbbs.084-202408021116-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24355/dbbs.084-202408021116-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:Universitätsbibliothek Braunschweig Authors:Jin, Willy;
Jin, Willy
Jin, Willy in OpenAIREOuellet-Plamondon, Claudiane;
Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIRECaron, Jean-François;
Caron, Jean-François
Caron, Jean-François in OpenAIREThe construction industry is compelled to evolve toward industrial-ized and sustainable means and processes. Indeed, the Portland cement produc-tion alone is responsible for up to 8 % of global greenhouse gas emissions. In this context, concrete 3D printing demonstrates a significant potential for the reduction of material use. However, the majority of 3D printing materials dis-play a high cement content due to the rheological constraints associated with 3D printing along with the complexity of mix design. The present study proposes to integrate a parametric life cycle assessment cal-culation in the multi-objective optimization of a 3D printing mortar in order to minimize the environmental impact with a significantly reduced mix design workload. Applied to a limestone calcined clay blend, a genetic algorithm is used to decrease the climate change score while maintaining a set of rheological printability criteria predicted by artificial neural networks. As a result, this methodology allows the identification of locally optimized mixtures (up to 82wt% cement replacement) in as low as 9 additional formulations. Besides, as the process advances for an expanded design region, its efficiency is enhanced. This methodology is reproducible with locally sourced materials and for the majority of 3D printing materials, which are usually designed through empirical trial and error. This study introduces a systematic optimization process which establishes the sustainability at the core of its objectives and includes innovative tools for the formulation of cementitious materials. Digital Concrete 2024 - Supplementary Proceedings
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24355/dbbs.084-202408021116-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.24355/dbbs.084-202408021116-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Aguerata Kaboré;
Aguerata Kaboré
Aguerata Kaboré in OpenAIREWahid Maref;
Wahid Maref
Wahid Maref in OpenAIREClaudiane M. Ouellet-Plamondon;
Claudiane M. Ouellet-Plamondon
Claudiane M. Ouellet-Plamondon in OpenAIREdoi: 10.3390/en17071740
The search for environmentally friendly and low-carbon-footprint construction materials continues progressively. Researchers are now interested in innovative materials that connect with the principles of sustainable construction, and materials such as hemp concrete prove to be promising. This article presents the results of a study that aimed to evaluate the hygrothermal performance of hemp concrete integrated into the building envelope using the hygrothermal tool WUFI Pro 6.2. The simulation model was compared and verified with existing models before its utilization for this study. The results of this verification were in good agreement, which gave us more confidence in its application for further parametric studies of building envelopes in hot climate zones. Three wall systems were simulated: (i) a wall system with hemp concrete, (ii) a compressed earth block wall, and (iii) a cement block wall. The most important variables used in the simulations were the hygrothermal properties of the materials or wall components and the incident solar radiation. The simulation results showed that hemp concrete has good thermal performance and temperature and humidity regulation capabilities of the building envelope. The interior surface temperatures of the hemp concrete walls were between 22.1 °C and 24.6 °C compared to the compressed earth block and cement block walls, where the surface temperatures were between 22.0 °C and 27 °C and between 21.2 °C and 28.7 °C, respectively, and between 23 °C and 45 °C for the exterior temperatures. These values remain the same with the increase in exterior temperatures for hemp concrete walls. In conclusion, hemp concrete could be a great alternative material for use in construction for hot climate zones.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Authors:Aguerata Kaboré;
Aguerata Kaboré
Aguerata Kaboré in OpenAIREWahid Maref;
Wahid Maref
Wahid Maref in OpenAIREClaudiane M. Ouellet-Plamondon;
Claudiane M. Ouellet-Plamondon
Claudiane M. Ouellet-Plamondon in OpenAIREdoi: 10.3390/en17071740
The search for environmentally friendly and low-carbon-footprint construction materials continues progressively. Researchers are now interested in innovative materials that connect with the principles of sustainable construction, and materials such as hemp concrete prove to be promising. This article presents the results of a study that aimed to evaluate the hygrothermal performance of hemp concrete integrated into the building envelope using the hygrothermal tool WUFI Pro 6.2. The simulation model was compared and verified with existing models before its utilization for this study. The results of this verification were in good agreement, which gave us more confidence in its application for further parametric studies of building envelopes in hot climate zones. Three wall systems were simulated: (i) a wall system with hemp concrete, (ii) a compressed earth block wall, and (iii) a cement block wall. The most important variables used in the simulations were the hygrothermal properties of the materials or wall components and the incident solar radiation. The simulation results showed that hemp concrete has good thermal performance and temperature and humidity regulation capabilities of the building envelope. The interior surface temperatures of the hemp concrete walls were between 22.1 °C and 24.6 °C compared to the compressed earth block and cement block walls, where the surface temperatures were between 22.0 °C and 27 °C and between 21.2 °C and 28.7 °C, respectively, and between 23 °C and 45 °C for the exterior temperatures. These values remain the same with the increase in exterior temperatures for hemp concrete walls. In conclusion, hemp concrete could be a great alternative material for use in construction for hot climate zones.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17071740&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Belgium, SpainPublisher:Springer Science and Business Media LLC Authors:Juan J. Gaitero;
Juan J. Gaitero
Juan J. Gaitero in OpenAIREAchutha Prabhu;
Achutha Prabhu
Achutha Prabhu in OpenAIREDaniel Hochstein;
Daniel Hochstein
Daniel Hochstein in OpenAIREReza Mohammadi-Firouz;
+7 AuthorsReza Mohammadi-Firouz
Reza Mohammadi-Firouz in OpenAIREJuan J. Gaitero;
Juan J. Gaitero
Juan J. Gaitero in OpenAIREAchutha Prabhu;
Achutha Prabhu
Achutha Prabhu in OpenAIREDaniel Hochstein;
Daniel Hochstein
Daniel Hochstein in OpenAIREReza Mohammadi-Firouz;
Reza Mohammadi-Firouz
Reza Mohammadi-Firouz in OpenAIREClaudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREMathieu Bendouma;
Mathieu Bendouma
Mathieu Bendouma in OpenAIREDidier Snoeck;
Didier Snoeck
Didier Snoeck in OpenAIREIrene Ramón-Álvarez;
Irene Ramón-Álvarez
Irene Ramón-Álvarez in OpenAIRESergio Sánchez-Delgado;
Sergio Sánchez-Delgado
Sergio Sánchez-Delgado in OpenAIREManuel Torres-Carrasco;
Manuel Torres-Carrasco
Manuel Torres-Carrasco in OpenAIREJorge S. Dolado;
Jorge S. Dolado
Jorge S. Dolado in OpenAIREAbstractThermal energy storage (TES) systems have been a subject of growing interest due to their potential to address the challenges of intermittent renewable energy sources. In this context, cementitious materials are emerging as a promising TES media because of their relative low cost, good thermal properties and ease of handling. This article presents a comprehensive review of studies exploring the use of cementitious materials, particularly concrete, as sensible heat storage media at varying scales, ranging from laboratory investigations to prototype evaluations. Starting from the different kinds of energy storage systems and applications where concrete has been used as a storage media, this article reviews the important properties which makes them a suitable material for the purpose. Reported observations are discussed and summarised based on concrete mix composition/design, aggregate/addition type, size gradation, etc., and performance of these materials. Finally, different cement-based prototypes are examined highlighting their strengths and weaknesses, and general conclusions are drawn.
Materials and Struct... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1617/s11527-024-02369-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 22 Powered bymore_vert Materials and Struct... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1617/s11527-024-02369-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Spain, Belgium, SpainPublisher:Springer Science and Business Media LLC Authors:Juan J. Gaitero;
Juan J. Gaitero
Juan J. Gaitero in OpenAIREAchutha Prabhu;
Achutha Prabhu
Achutha Prabhu in OpenAIREDaniel Hochstein;
Daniel Hochstein
Daniel Hochstein in OpenAIREReza Mohammadi-Firouz;
+7 AuthorsReza Mohammadi-Firouz
Reza Mohammadi-Firouz in OpenAIREJuan J. Gaitero;
Juan J. Gaitero
Juan J. Gaitero in OpenAIREAchutha Prabhu;
Achutha Prabhu
Achutha Prabhu in OpenAIREDaniel Hochstein;
Daniel Hochstein
Daniel Hochstein in OpenAIREReza Mohammadi-Firouz;
Reza Mohammadi-Firouz
Reza Mohammadi-Firouz in OpenAIREClaudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREMathieu Bendouma;
Mathieu Bendouma
Mathieu Bendouma in OpenAIREDidier Snoeck;
Didier Snoeck
Didier Snoeck in OpenAIREIrene Ramón-Álvarez;
Irene Ramón-Álvarez
Irene Ramón-Álvarez in OpenAIRESergio Sánchez-Delgado;
Sergio Sánchez-Delgado
Sergio Sánchez-Delgado in OpenAIREManuel Torres-Carrasco;
Manuel Torres-Carrasco
Manuel Torres-Carrasco in OpenAIREJorge S. Dolado;
Jorge S. Dolado
Jorge S. Dolado in OpenAIREAbstractThermal energy storage (TES) systems have been a subject of growing interest due to their potential to address the challenges of intermittent renewable energy sources. In this context, cementitious materials are emerging as a promising TES media because of their relative low cost, good thermal properties and ease of handling. This article presents a comprehensive review of studies exploring the use of cementitious materials, particularly concrete, as sensible heat storage media at varying scales, ranging from laboratory investigations to prototype evaluations. Starting from the different kinds of energy storage systems and applications where concrete has been used as a storage media, this article reviews the important properties which makes them a suitable material for the purpose. Reported observations are discussed and summarised based on concrete mix composition/design, aggregate/addition type, size gradation, etc., and performance of these materials. Finally, different cement-based prototypes are examined highlighting their strengths and weaknesses, and general conclusions are drawn.
Materials and Struct... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1617/s11527-024-02369-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 33visibility views 33 download downloads 22 Powered bymore_vert Materials and Struct... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONArticle . 2024Data sources: ARCHIVO DIGITAL PARA LA DOCENCIA Y LA INVESTIGACIONadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1617/s11527-024-02369-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2017 SwitzerlandPublisher:FapUNIFESP (SciELO) Authors: Geraldo, R. H.;Ouellet-Plamondon, C. M.;
Ouellet-Plamondon, C. M.
Ouellet-Plamondon, C. M. in OpenAIREMuianga, E. A. D.;
Muianga, E. A. D.
Muianga, E. A. D. in OpenAIRECamarini, G.;
Camarini, G.
Camarini, G. in OpenAIREAbstract In addition to several positive aspects in technical properties, geopolymeric binders have considerable advantages in the environmental point of view, with lower energy consumption and lower CO2 emission. In this study, it was conducted an overview about the utilized materials by some Brazilian researchers in geopolymers production, and also an experiment employing two types of wastes (red ceramic waste and rice husk ash). The compressive strength of the resulting material developed very fast, reaching a value of 11 MPa after one day. The microstructure was evaluated by scanning electron microscopy, revealing a compact microstructure and the presence of starting materials from the red ceramic waste that not completely reacted. The results indicated the feasibility of producing geopolymeric material without using commercial sodium silicate and cured at room temperature, showing an option for building materials production with lower environmental impacts.
Cerâmica arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0366-69132017633652057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cerâmica arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0366-69132017633652057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 01 Jan 2017 SwitzerlandPublisher:FapUNIFESP (SciELO) Authors: Geraldo, R. H.;Ouellet-Plamondon, C. M.;
Ouellet-Plamondon, C. M.
Ouellet-Plamondon, C. M. in OpenAIREMuianga, E. A. D.;
Muianga, E. A. D.
Muianga, E. A. D. in OpenAIRECamarini, G.;
Camarini, G.
Camarini, G. in OpenAIREAbstract In addition to several positive aspects in technical properties, geopolymeric binders have considerable advantages in the environmental point of view, with lower energy consumption and lower CO2 emission. In this study, it was conducted an overview about the utilized materials by some Brazilian researchers in geopolymers production, and also an experiment employing two types of wastes (red ceramic waste and rice husk ash). The compressive strength of the resulting material developed very fast, reaching a value of 11 MPa after one day. The microstructure was evaluated by scanning electron microscopy, revealing a compact microstructure and the presence of starting materials from the red ceramic waste that not completely reacted. The results indicated the feasibility of producing geopolymeric material without using commercial sodium silicate and cured at room temperature, showing an option for building materials production with lower environmental impacts.
Cerâmica arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0366-69132017633652057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Cerâmica arrow_drop_down Scientific Electronic Library Online - BrazilArticle . 2017License: CC BY NCData sources: Scientific Electronic Library Online - Braziladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1590/0366-69132017633652057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Spain, France, Portugal, Denmark, FrancePublisher:Elsevier BV Authors:Ouellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
+28 AuthorsDelem, Laetitia
Delem, Laetitia in OpenAIREOuellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
Foliente, Greg;Delem, Laetitia
Delem, Laetitia in OpenAIREFrancart, Nicolas;
Garcia-Martinez, Antonio; Hoxha, Endrit; Lützkendorf, Thomas;Francart, Nicolas
Francart, Nicolas in OpenAIRENygaard Rasmussen, Freja;
Nygaard Rasmussen, Freja
Nygaard Rasmussen, Freja in OpenAIREPeuportier, Bruno;
Butler, Jarred; Birgisdottir, Harpa;Peuportier, Bruno
Peuportier, Bruno in OpenAIREDowdell, David;
Dowdell, David
Dowdell, David in OpenAIREDixit, Manish Kumar;
Dixit, Manish Kumar
Dixit, Manish Kumar in OpenAIREGomes, Vanessa;
Gomes, Vanessa
Gomes, Vanessa in OpenAIREGomes da Silva, Maristela;
Gómez de Cózar, Juan Carlos; Kjendseth Wiik, Marianne;Gomes da Silva, Maristela
Gomes da Silva, Maristela in OpenAIRELlatas, Carmen;
Llatas, Carmen
Llatas, Carmen in OpenAIREMateus, Ricardo;
Pulgrossi, Lizzie;Mateus, Ricardo
Mateus, Ricardo in OpenAIRERöck, Martin;
Röck, Martin
Röck, Martin in OpenAIRESaade, Marcella Ruschi Mendes;
Saade, Marcella Ruschi Mendes
Saade, Marcella Ruschi Mendes in OpenAIREPasser, Alexander;
Passer, Alexander
Passer, Alexander in OpenAIRESatola, Daniel;
Seo, Seongwon;Satola, Daniel
Satola, Daniel in OpenAIRESoust Verdaguer, Bernardette;
Soust Verdaguer, Bernardette
Soust Verdaguer, Bernardette in OpenAIREVeselka, Jakub;
Veselka, Jakub
Veselka, Jakub in OpenAIREVolf, Martin;
Volf, Martin
Volf, Martin in OpenAIREZhang, Xiaojin;
Zhang, Xiaojin
Zhang, Xiaojin in OpenAIREFrischknecht, Rolf;
Frischknecht, Rolf
Frischknecht, Rolf in OpenAIREhandle: 1822/85687
Abstract Wood and other bio-based building materials are often perceived as a good choice from a climate mitigation perspective. This article compares the life cycle assessment of the same multi-residential building from the perspective of 16 countries participating in the international project Annex 72 of the International Energy Agency to determine the effects of different datasets and methods of accounting for biogenic carbon in wood construction. Three assessment methods are herein considered: two recognized in the standards (the so-called 0/0 method and –1/+1 method) and a variation of the latter (–1/+1* method) used in Australia, Canada, France, and New Zealand. The 0/0 method considers neither fixation in the production stage nor releases of biogenic carbon at the end of a wood product’s life. In contrast, the –1/+1 method accounts for the fixation of biogenic carbon in the production stage and its release in the end-of-life stage, irrespective of the disposal scenario (recycling, incineration orlandfill). The -1/+1 method assumes that landfills offer only a temporary sequestration of carbon. In the –1/+1* variation, landfills and recycling are considered a partly permanent sequestration of biogenic carbon and thus fewer emissions are accounted for in the end-of-life stage. We examine the variability of the calculated life cycle-based greenhouse gas emissions calculated for a case study building by each participating country, within the same assessment method and across the methods. The results vary substantially. The main reasons for deviations are whether or not landfills and recycling are considered a partly permanent sequestration of biogenic carbon and a mismatch in the biogenic carbon balance. Our findings support the need for further research and to develop practical guidelines to harmonize life cycle assessment methods of buildings with bio-based materials.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Germany, Spain, France, Portugal, Denmark, FrancePublisher:Elsevier BV Authors:Ouellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
+28 AuthorsDelem, Laetitia
Delem, Laetitia in OpenAIREOuellet-Plamondon, Claudiane;
Ramseier, Livia;Ouellet-Plamondon, Claudiane
Ouellet-Plamondon, Claudiane in OpenAIREBalouktsi, Maria;
Balouktsi, Maria
Balouktsi, Maria in OpenAIREDelem, Laetitia;
Foliente, Greg;Delem, Laetitia
Delem, Laetitia in OpenAIREFrancart, Nicolas;
Garcia-Martinez, Antonio; Hoxha, Endrit; Lützkendorf, Thomas;Francart, Nicolas
Francart, Nicolas in OpenAIRENygaard Rasmussen, Freja;
Nygaard Rasmussen, Freja
Nygaard Rasmussen, Freja in OpenAIREPeuportier, Bruno;
Butler, Jarred; Birgisdottir, Harpa;Peuportier, Bruno
Peuportier, Bruno in OpenAIREDowdell, David;
Dowdell, David
Dowdell, David in OpenAIREDixit, Manish Kumar;
Dixit, Manish Kumar
Dixit, Manish Kumar in OpenAIREGomes, Vanessa;
Gomes, Vanessa
Gomes, Vanessa in OpenAIREGomes da Silva, Maristela;
Gómez de Cózar, Juan Carlos; Kjendseth Wiik, Marianne;Gomes da Silva, Maristela
Gomes da Silva, Maristela in OpenAIRELlatas, Carmen;
Llatas, Carmen
Llatas, Carmen in OpenAIREMateus, Ricardo;
Pulgrossi, Lizzie;Mateus, Ricardo
Mateus, Ricardo in OpenAIRERöck, Martin;
Röck, Martin
Röck, Martin in OpenAIRESaade, Marcella Ruschi Mendes;
Saade, Marcella Ruschi Mendes
Saade, Marcella Ruschi Mendes in OpenAIREPasser, Alexander;
Passer, Alexander
Passer, Alexander in OpenAIRESatola, Daniel;
Seo, Seongwon;Satola, Daniel
Satola, Daniel in OpenAIRESoust Verdaguer, Bernardette;
Soust Verdaguer, Bernardette
Soust Verdaguer, Bernardette in OpenAIREVeselka, Jakub;
Veselka, Jakub
Veselka, Jakub in OpenAIREVolf, Martin;
Volf, Martin
Volf, Martin in OpenAIREZhang, Xiaojin;
Zhang, Xiaojin
Zhang, Xiaojin in OpenAIREFrischknecht, Rolf;
Frischknecht, Rolf
Frischknecht, Rolf in OpenAIREhandle: 1822/85687
Abstract Wood and other bio-based building materials are often perceived as a good choice from a climate mitigation perspective. This article compares the life cycle assessment of the same multi-residential building from the perspective of 16 countries participating in the international project Annex 72 of the International Energy Agency to determine the effects of different datasets and methods of accounting for biogenic carbon in wood construction. Three assessment methods are herein considered: two recognized in the standards (the so-called 0/0 method and –1/+1 method) and a variation of the latter (–1/+1* method) used in Australia, Canada, France, and New Zealand. The 0/0 method considers neither fixation in the production stage nor releases of biogenic carbon at the end of a wood product’s life. In contrast, the –1/+1 method accounts for the fixation of biogenic carbon in the production stage and its release in the end-of-life stage, irrespective of the disposal scenario (recycling, incineration orlandfill). The -1/+1 method assumes that landfills offer only a temporary sequestration of carbon. In the –1/+1* variation, landfills and recycling are considered a partly permanent sequestration of biogenic carbon and thus fewer emissions are accounted for in the end-of-life stage. We examine the variability of the calculated life cycle-based greenhouse gas emissions calculated for a case study building by each participating country, within the same assessment method and across the methods. The results vary substantially. The main reasons for deviations are whether or not landfills and recycling are considered a partly permanent sequestration of biogenic carbon and a mismatch in the biogenic carbon balance. Our findings support the need for further research and to develop practical guidelines to harmonize life cycle assessment methods of buildings with bio-based materials.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAidUS. Depósito de Investigación Universidad de SevillaArticle . 2023License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaUniversidade do Minho: RepositoriUMArticle . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMUniversidade do Minho: RepositoriUMOther literature type . 2023License: CC BYData sources: Universidade do Minho: RepositoriUMJournal of Cleaner ProductionArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefMINES ParisTech: Open Archive (HAL)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2023.136834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Alexandra Charles; Wahid Maref;Claudiane M. Ouellet-Plamondon;
Claudiane M. Ouellet-Plamondon
Claudiane M. Ouellet-Plamondon in OpenAIREAbstract This case study evaluates the best energy efficiency measures of an existing two-story office building from the late 1960s located in Vancouver. Natural gas was used for heating and electricity was used for lighting, cooling and other needs. The building was simulated to match both metered data and bills. The energy model allowed identifying the parameters to reduce the energy consumption and mitigate the impact on CO2-eq emissions. On-site renewable energy supply was simulated. The return on investment (ROI) of the retrofit strategies (building envelope and renewable energy) was calculated to determine the profitability. From the parametric study, the insulation of the wall and roof, the airtightness and window replacement have the most impact on energy saving and allowed reducing 45% of the total annual energy consumed. These improvements can save more than 70 tons of CO2-eq per year from reducing the natural gas consumption. The return on investment of upgrading the building envelope was 7.7 years in Vancouver. Net zero energy building performance was possible with the addition of photovoltaic solar panel and solar heating to supply the total energy needs of the building, with an ROI of 11.6 years. If we changed the building location to Montreal, the same optimized building envelope reduces the energy consumption by 39%, and the energy saving increases to 56% when using the electric heating system usually already in place. Overall, building envelope upgrades are solutions to consider to improve energy saving in northern climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Alexandra Charles; Wahid Maref;Claudiane M. Ouellet-Plamondon;
Claudiane M. Ouellet-Plamondon
Claudiane M. Ouellet-Plamondon in OpenAIREAbstract This case study evaluates the best energy efficiency measures of an existing two-story office building from the late 1960s located in Vancouver. Natural gas was used for heating and electricity was used for lighting, cooling and other needs. The building was simulated to match both metered data and bills. The energy model allowed identifying the parameters to reduce the energy consumption and mitigate the impact on CO2-eq emissions. On-site renewable energy supply was simulated. The return on investment (ROI) of the retrofit strategies (building envelope and renewable energy) was calculated to determine the profitability. From the parametric study, the insulation of the wall and roof, the airtightness and window replacement have the most impact on energy saving and allowed reducing 45% of the total annual energy consumed. These improvements can save more than 70 tons of CO2-eq per year from reducing the natural gas consumption. The return on investment of upgrading the building envelope was 7.7 years in Vancouver. Net zero energy building performance was possible with the addition of photovoltaic solar panel and solar heating to supply the total energy needs of the building, with an ROI of 11.6 years. If we changed the building location to Montreal, the same optimized building envelope reduces the energy consumption by 39%, and the energy saving increases to 56% when using the electric heating system usually already in place. Overall, building envelope upgrades are solutions to consider to improve energy saving in northern climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.10.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Claudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon;Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREGuillaume Habert;
Patrick Kenneally; +3 AuthorsGuillaume Habert
Guillaume Habert in OpenAIREClaudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon;Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREGuillaume Habert;
Patrick Kenneally;Guillaume Habert
Guillaume Habert in OpenAIREAlexander Passer;
Alexander Passer; Viola John;Alexander Passer
Alexander Passer in OpenAIREAbstract Buildings account for 40% of total global energy consumption. The International Energy Agency (IEA) and the European Commission (EC) are attempting to achieve an 80% reduction in global emissions by 2050. The objectives of this paper are to identify the refurbishment scenario with the lowest environmental impact using Life Cycle Assessment (LCA) and to assess the scenario’s robustness to future climate change scenarios using a sensitivity analysis. We applied and verified the proposed approach in a residential case study of a reference project located in Kapfernberg, Austria. The environmental assessment included two facade refurbishment proposals (minimum and high quality with respect to energy), onsite energy generation (using solar thermal collectors and photovoltaic (PV) panels), one renewable future energy mix and the effects of climate change according to the Austrian Panel on Climate Change (APCC). The environmental indicators used in the assessment were the cumulative energy demand non-renewable (CED n. ren.), global warming potential (GWP) and ecological scarcity (UBP) over building life cycles. The results indicated that a high-quality refurbishment of the thermal envelope with prefabricated facade elements, including solar thermal collectors and PV panels, represented the optimal refurbishment. In terms of the environmental indicators, the high-quality refurbishment scenario is always beneficial throughout the building’s life cycle. Additionally, the sensitivity analysis of the high-quality refurbishment scenario found an increasing production of surplus electricity with increasing PV area. This surplus of energy provides greater benefit in the short term with the current energy mix. Once the energy from the grid is shifted to renewable sources, the added benefit is decreased. Therefore, it is necessary to find an optimal balance between diminishing returns due to changes in the future energy mix and the financial investment made over the lifetime of the building, especially for plus energy buildings. However the findings from this specific case study need to be evaluated for other refurbishment cases, taking into account future local climate change and energy supply mix scenarios in other regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors:Claudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon;Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREGuillaume Habert;
Patrick Kenneally; +3 AuthorsGuillaume Habert
Guillaume Habert in OpenAIREClaudiane Ouellet-Plamondon;
Claudiane Ouellet-Plamondon;Claudiane Ouellet-Plamondon
Claudiane Ouellet-Plamondon in OpenAIREGuillaume Habert;
Patrick Kenneally;Guillaume Habert
Guillaume Habert in OpenAIREAlexander Passer;
Alexander Passer; Viola John;Alexander Passer
Alexander Passer in OpenAIREAbstract Buildings account for 40% of total global energy consumption. The International Energy Agency (IEA) and the European Commission (EC) are attempting to achieve an 80% reduction in global emissions by 2050. The objectives of this paper are to identify the refurbishment scenario with the lowest environmental impact using Life Cycle Assessment (LCA) and to assess the scenario’s robustness to future climate change scenarios using a sensitivity analysis. We applied and verified the proposed approach in a residential case study of a reference project located in Kapfernberg, Austria. The environmental assessment included two facade refurbishment proposals (minimum and high quality with respect to energy), onsite energy generation (using solar thermal collectors and photovoltaic (PV) panels), one renewable future energy mix and the effects of climate change according to the Austrian Panel on Climate Change (APCC). The environmental indicators used in the assessment were the cumulative energy demand non-renewable (CED n. ren.), global warming potential (GWP) and ecological scarcity (UBP) over building life cycles. The results indicated that a high-quality refurbishment of the thermal envelope with prefabricated facade elements, including solar thermal collectors and PV panels, represented the optimal refurbishment. In terms of the environmental indicators, the high-quality refurbishment scenario is always beneficial throughout the building’s life cycle. Additionally, the sensitivity analysis of the high-quality refurbishment scenario found an increasing production of surplus electricity with increasing PV area. This surplus of energy provides greater benefit in the short term with the current energy mix. Once the energy from the grid is shifted to renewable sources, the added benefit is decreased. Therefore, it is necessary to find an optimal balance between diminishing returns due to changes in the future energy mix and the financial investment made over the lifetime of the building, especially for plus energy buildings. However the findings from this specific case study need to be evaluated for other refurbishment cases, taking into account future local climate change and energy supply mix scenarios in other regions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2016.04.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu