- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Meisam Tabatabaei; Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; +4 AuthorsMeisam Tabatabaei; Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Mona Dehhaghi; Su Shiung Lam; Su Shiung Lam; Mortaza Aghbashlo;Abstract Gasoline is currently the main fuel of choice in many cities worldwide, and hence, the consequent exposure to its emissions, i.e., CO, NOX, unreacted hydrocarbons, particulate matters, lead, sulfur dioxide, and ozone, is inevitable. Among the various solutions put forth to mitigate the toxic gasoline-related air pollution, while improving fuel performance at the same time, is the application of nanoparticles. Considering the above, the present paper aims to review and critically discuss the improvements made in engine performance and exhaust emission parameters by adding nanosized fuel additives in gasoline. Overall, the addition of fuel nanoadditives enhances the thermo-physical properties of the fuel and improves combustion characteristics. Moreover, the inclusion of the fuel nanoadditives generally results in early combustion and shortened ignition delay. In more detail, the optimum quantity of fuel nanoadditives is associated with improvements in ignition characteristics and reductions in exhaust emissions. The present work also scrutinizes the adverse health effects of various gasoline-related emissions. Finally, possible mechanisms underlying the improvements in gasoline properties and its combustion in the presence of nanoadditives are also reviewed and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Elsevier BV Hamed Kazemi Shariat Panahi; Meisam Tabatabaei; Mona Dehhaghi; Mona Dehhaghi; Keikhosro Karimi; Mortaza Aghbashlo;Abstract It is obvious that Iran agricultural industry, unlike Brazil and USA, cannot afford to provide conventional biomass, i.e. sugary or starchy biomass for bioethanol production, mainly due to climatic and geographic conditions. With some exception of date (fruit), first-generation ethanol production triggers food vs. fuel debates in Iran and put nation to hunger. Agricultural products including apple, barley, carrot, corn, grape, orange, potato, rice, sugar beet, sugarcane, and wheat are consumed domestically, exported, or even lost because of poor harvesting and processing conditions such as transportation or packaging. These products may alone generate 21.56 million ton per annum green wastes upon processing in the food industry. Every year about 5.4 billion liters of bioethanol can be produced by establishing second-generation ethanol plants next to the food processing sectors. Seventy-seven-percent of this amount of bioethanol can easily support 5% ethanol (E5) policy to phase out the consumption of 4.2 billion liters methyl tert-butyl ether (MTBE) for raising the octane number of gasoline in the country. If more comprehensive policy is adopted, larger quantities of lignocellulosic feedstocks can be gathered from agro as well as forestry practices. Second-generation bioethanol technology can help Iran to tackle air pollution in its big cities and to address the adverse effects of MTBE on its populations and ecosystem. The other advantages are improvement of fuel security, mitigation of climate change, and development of economy. The motivation can be created through passing a framework policy to cut fossil fuel subsidies, to mandate bioethanol blends in gasoline, and to impose carbon taxes. Development of coherent socially and environmentally relevant strategies and facilitation of investment in bioethanol industry are also necessary.
Renewable Energy arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Homa Hosseinzadeh-Bandbafha; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Yasin Orooji; +16 AuthorsHoma Hosseinzadeh-Bandbafha; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Yasin Orooji; Hossein Shahbeik; Omid Mahian; Hassan Karimi-Maleh; Md Abul Kalam; Gholamreza Salehi Jouzani; Changtong Mei; Abdul-Sattar Nizami; Gilles G. Guillemin; Vijai Kumar Gupta; Su Shiung Lam; Yadong Yang; Wanxi Peng; Junting Pan; Ki-Hyun Kim; Mortaza Aghbashlo; Meisam Tabatabaei;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Mona Dehhaghi; Mona Dehhaghi; Mortaza Aghbashlo; Abdul-Sattar Nizami; Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Meisam Tabatabaei;pmid: 31563049
Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Meisam Tabatabaei; Somayeh Dehhaghi; +5 AuthorsHamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Meisam Tabatabaei; Somayeh Dehhaghi; Mona Dehhaghi; Mortaza Aghbashlo; Su Shiung Lam; Su Shiung Lam; Gilles J. Guillemin;pmid: 34715341
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abdul-Sattar Nizami; Mona Dehhaghi; Mona Dehhaghi; Hamed Kazemi Shariat Panahi; Mortaza Aghbashlo; Meisam Tabatabaei; Mohammad Rehan;Abstract Although currently microalgae biomass is not considered as a sustainable feedstock for biofuel production, future developments of microalgae cultivation and harvest could make the commercial application of such fast-growing photosynthetic biomass economically and environmentally feasible. This article aims at reviewing thermochemical conversion of microalgae into bio-crude oil through pyrolysis and hydrothermal liquefaction technologies. Subsequently, possible solutions to overcome the constraints to achieve the sustainable conversion of microalgae biomass are discussed in detail. The drawbacks of bio-crude oil as a transportation fuel and the technologies required for its upgrading are highlighted. Currently, microalgae-derived bio-crude oil is inferior to biodiesel and diesel in terms of quality, thus cannot be used as a transportation or jet fuel. It requires catalytic upgrading steps and further processing, including durable and cost-effective catalysts with strong regenerative capabilities.
Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2019.100216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2019.100216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Mortaza Aghbashlo; Mona Dehhaghi; Mona Dehhaghi; Meisam Tabatabaei; Hamed Kazemi Shariat Panahi; Keikhosro Karimi;Abstract Finding renewable alternative energy resources for fossil fuels substitution has become very vital due to the serious challenges faced by humankind at present such as environmental pollution, greenhouse gas emissions, climate change, crude oil price volatility, and fossil fuels exhaustion. Macroalgae (seaweeds) are fast-growing marine plants, providing several harvests per year without the need for arable land, fertilizer, and fresh water. Various types of ecosystems like coral reefs, mangrove forests, and rocky shores can efficiently host the seaweeds production systems. These characteristics have made them highly suitable feedstocks for third-generation bioethanol production. Iran has a huge potential in renewable energy resources owing to its unique geographical location and climatic features. The country borders with the Caspian Sea in the north and with the Persian Gulf and the Gulf of Oman in the south. Seaweeds farming can also play a key role in mitigating air pollution, increasing employment rate, sustaining fossil fuel resources, bioremediating contaminated water, and improving marine ecosystem in the Persian Gulf and the Gulf of Oman. In the present article, macroalgae diversity, cultivation, and their conversion and upgrading technologies into bioethanol in Iran are scrutinized and discussed. Finally, the potential of Bushehr (the Persian Gulf) and Chabahar (the Gulf of Oman) coastlines for macroalgae cultivation is investigated. These locations receive the annual solar radiation in the range of 1680‒1753 kWh/m2 and the photosynthetically active radiation (PAR) in the range of 2.6‒2.71 GJ/m2/year with 3051‒3311.9 h sunshine per annum. Furthermore, the nutrient-rich and calm water with relatively stable pH, salinity, and temperature make these coasts suitable for macroalgae farming. A potential yield up to 147‒153 t/ha/year can be obtained if proper native/engineered species, well-situated sites, and compatible cultivation techniques are selected.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, DenmarkPublisher:Elsevier BV Hossein Shahbeik; Wanxi Peng; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Gilles J. Guillemin; Alireza Fallahi; Hamid Amiri; Mohammad Rehan; Deepak Raikwar; Hannes Latine; Bruno Pandalone; Benyamin Khoshnevisan; Christian Sonne; Luigi Vaccaro; Abdul-Sattar Nizami; Vijai Kumar Gupta; Su Shiung Lam; Junting Pan; Rafael Luque; Bert Sels; Meisam Tabatabaei; Mortaza Aghbashlo;handle: 11391/1535315
Liquid transportation biofuel production is a promising strategy to reduce greenhouse gas emissions. Hydrothermal gasification (HTG) has shown great potential as an effective method for valorizing wet biomass. The high-quality syngas produced using the HTG process can be chemically/biochemically converted to liquid biofuels. Therefore, this paper aims to comprehensively review and critically discuss syngas production from biomass using the HTG process and its conversion into liquid biofuels. The basics and mechanisms of biomass HTG processing are first detailed to provide a comprehensive and deep understanding of the process. Second, the effects of the main operating parameters on the performance of the HTG process are numerically analyzed and mechanistically discussed. The syngas cleaning/conditioning and Fischer-Tropsch (FT) synthesis are then detailed, aiming to produce liquid biofuels. The economic performance and environmental impacts of liquid biofuels using the HTG-FT route are evaluated. Finally, the challenges and prospects for future development in this field are presented. Overall, the maximum total gas yield in the HTG process is obtained at temperature, pressure, and residence time in the range of 450–500 °C, 28–30 MPa, and 30–60 min, respectively. The highest C5+ liquid hydrocarbon selectivity in the FT process is achieved at temperatures between 200 and 240 °C. Generally, effective conversion of biomass to syngas using the HTG process and its successful upgrading using the FT process can offer a viable route for producing liquid biofuels. Future studies should use HTG technology in the biorefinery context to maximize biomass valorization and minimize waste generation.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022License: CC BY NC NDData sources: University of Southern Denmark Research OutputRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022License: CC BY NC NDData sources: University of Southern Denmark Research OutputRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Meisam Tabatabaei; Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; +4 AuthorsMeisam Tabatabaei; Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Mona Dehhaghi; Su Shiung Lam; Su Shiung Lam; Mortaza Aghbashlo;Abstract Gasoline is currently the main fuel of choice in many cities worldwide, and hence, the consequent exposure to its emissions, i.e., CO, NOX, unreacted hydrocarbons, particulate matters, lead, sulfur dioxide, and ozone, is inevitable. Among the various solutions put forth to mitigate the toxic gasoline-related air pollution, while improving fuel performance at the same time, is the application of nanoparticles. Considering the above, the present paper aims to review and critically discuss the improvements made in engine performance and exhaust emission parameters by adding nanosized fuel additives in gasoline. Overall, the addition of fuel nanoadditives enhances the thermo-physical properties of the fuel and improves combustion characteristics. Moreover, the inclusion of the fuel nanoadditives generally results in early combustion and shortened ignition delay. In more detail, the optimum quantity of fuel nanoadditives is associated with improvements in ignition characteristics and reductions in exhaust emissions. The present work also scrutinizes the adverse health effects of various gasoline-related emissions. Finally, possible mechanisms underlying the improvements in gasoline properties and its combustion in the presence of nanoadditives are also reviewed and discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2021.120259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 BelgiumPublisher:Elsevier BV Hamed Kazemi Shariat Panahi; Meisam Tabatabaei; Mona Dehhaghi; Mona Dehhaghi; Keikhosro Karimi; Mortaza Aghbashlo;Abstract It is obvious that Iran agricultural industry, unlike Brazil and USA, cannot afford to provide conventional biomass, i.e. sugary or starchy biomass for bioethanol production, mainly due to climatic and geographic conditions. With some exception of date (fruit), first-generation ethanol production triggers food vs. fuel debates in Iran and put nation to hunger. Agricultural products including apple, barley, carrot, corn, grape, orange, potato, rice, sugar beet, sugarcane, and wheat are consumed domestically, exported, or even lost because of poor harvesting and processing conditions such as transportation or packaging. These products may alone generate 21.56 million ton per annum green wastes upon processing in the food industry. Every year about 5.4 billion liters of bioethanol can be produced by establishing second-generation ethanol plants next to the food processing sectors. Seventy-seven-percent of this amount of bioethanol can easily support 5% ethanol (E5) policy to phase out the consumption of 4.2 billion liters methyl tert-butyl ether (MTBE) for raising the octane number of gasoline in the country. If more comprehensive policy is adopted, larger quantities of lignocellulosic feedstocks can be gathered from agro as well as forestry practices. Second-generation bioethanol technology can help Iran to tackle air pollution in its big cities and to address the adverse effects of MTBE on its populations and ecosystem. The other advantages are improvement of fuel security, mitigation of climate change, and development of economy. The motivation can be created through passing a framework policy to cut fossil fuel subsidies, to mandate bioethanol blends in gasoline, and to impose carbon taxes. Development of coherent socially and environmentally relevant strategies and facilitation of investment in bioethanol industry are also necessary.
Renewable Energy arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu106 citations 106 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2020Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.06.081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Homa Hosseinzadeh-Bandbafha; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Yasin Orooji; +16 AuthorsHoma Hosseinzadeh-Bandbafha; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Yasin Orooji; Hossein Shahbeik; Omid Mahian; Hassan Karimi-Maleh; Md Abul Kalam; Gholamreza Salehi Jouzani; Changtong Mei; Abdul-Sattar Nizami; Gilles G. Guillemin; Vijai Kumar Gupta; Su Shiung Lam; Yadong Yang; Wanxi Peng; Junting Pan; Ki-Hyun Kim; Mortaza Aghbashlo; Meisam Tabatabaei;Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2023.113414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Mona Dehhaghi; Mona Dehhaghi; Mortaza Aghbashlo; Abdul-Sattar Nizami; Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Meisam Tabatabaei;pmid: 31563049
Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu110 citations 110 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Hamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Meisam Tabatabaei; Somayeh Dehhaghi; +5 AuthorsHamed Kazemi Shariat Panahi; Hamed Kazemi Shariat Panahi; Meisam Tabatabaei; Somayeh Dehhaghi; Mona Dehhaghi; Mortaza Aghbashlo; Su Shiung Lam; Su Shiung Lam; Gilles J. Guillemin;pmid: 34715341
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2021.126212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abdul-Sattar Nizami; Mona Dehhaghi; Mona Dehhaghi; Hamed Kazemi Shariat Panahi; Mortaza Aghbashlo; Meisam Tabatabaei; Mohammad Rehan;Abstract Although currently microalgae biomass is not considered as a sustainable feedstock for biofuel production, future developments of microalgae cultivation and harvest could make the commercial application of such fast-growing photosynthetic biomass economically and environmentally feasible. This article aims at reviewing thermochemical conversion of microalgae into bio-crude oil through pyrolysis and hydrothermal liquefaction technologies. Subsequently, possible solutions to overcome the constraints to achieve the sustainable conversion of microalgae biomass are discussed in detail. The drawbacks of bio-crude oil as a transportation fuel and the technologies required for its upgrading are highlighted. Currently, microalgae-derived bio-crude oil is inferior to biodiesel and diesel in terms of quality, thus cannot be used as a transportation or jet fuel. It requires catalytic upgrading steps and further processing, including durable and cost-effective catalysts with strong regenerative capabilities.
Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2019.100216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Bioresource Technolo... arrow_drop_down Bioresource Technology ReportsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biteb.2019.100216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Mortaza Aghbashlo; Mona Dehhaghi; Mona Dehhaghi; Meisam Tabatabaei; Hamed Kazemi Shariat Panahi; Keikhosro Karimi;Abstract Finding renewable alternative energy resources for fossil fuels substitution has become very vital due to the serious challenges faced by humankind at present such as environmental pollution, greenhouse gas emissions, climate change, crude oil price volatility, and fossil fuels exhaustion. Macroalgae (seaweeds) are fast-growing marine plants, providing several harvests per year without the need for arable land, fertilizer, and fresh water. Various types of ecosystems like coral reefs, mangrove forests, and rocky shores can efficiently host the seaweeds production systems. These characteristics have made them highly suitable feedstocks for third-generation bioethanol production. Iran has a huge potential in renewable energy resources owing to its unique geographical location and climatic features. The country borders with the Caspian Sea in the north and with the Persian Gulf and the Gulf of Oman in the south. Seaweeds farming can also play a key role in mitigating air pollution, increasing employment rate, sustaining fossil fuel resources, bioremediating contaminated water, and improving marine ecosystem in the Persian Gulf and the Gulf of Oman. In the present article, macroalgae diversity, cultivation, and their conversion and upgrading technologies into bioethanol in Iran are scrutinized and discussed. Finally, the potential of Bushehr (the Persian Gulf) and Chabahar (the Gulf of Oman) coastlines for macroalgae cultivation is investigated. These locations receive the annual solar radiation in the range of 1680‒1753 kWh/m2 and the photosynthetically active radiation (PAR) in the range of 2.6‒2.71 GJ/m2/year with 3051‒3311.9 h sunshine per annum. Furthermore, the nutrient-rich and calm water with relatively stable pH, salinity, and temperature make these coasts suitable for macroalgae farming. A potential yield up to 147‒153 t/ha/year can be obtained if proper native/engineered species, well-situated sites, and compatible cultivation techniques are selected.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.06.023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, DenmarkPublisher:Elsevier BV Hossein Shahbeik; Wanxi Peng; Hamed Kazemi Shariat Panahi; Mona Dehhaghi; Gilles J. Guillemin; Alireza Fallahi; Hamid Amiri; Mohammad Rehan; Deepak Raikwar; Hannes Latine; Bruno Pandalone; Benyamin Khoshnevisan; Christian Sonne; Luigi Vaccaro; Abdul-Sattar Nizami; Vijai Kumar Gupta; Su Shiung Lam; Junting Pan; Rafael Luque; Bert Sels; Meisam Tabatabaei; Mortaza Aghbashlo;handle: 11391/1535315
Liquid transportation biofuel production is a promising strategy to reduce greenhouse gas emissions. Hydrothermal gasification (HTG) has shown great potential as an effective method for valorizing wet biomass. The high-quality syngas produced using the HTG process can be chemically/biochemically converted to liquid biofuels. Therefore, this paper aims to comprehensively review and critically discuss syngas production from biomass using the HTG process and its conversion into liquid biofuels. The basics and mechanisms of biomass HTG processing are first detailed to provide a comprehensive and deep understanding of the process. Second, the effects of the main operating parameters on the performance of the HTG process are numerically analyzed and mechanistically discussed. The syngas cleaning/conditioning and Fischer-Tropsch (FT) synthesis are then detailed, aiming to produce liquid biofuels. The economic performance and environmental impacts of liquid biofuels using the HTG-FT route are evaluated. Finally, the challenges and prospects for future development in this field are presented. Overall, the maximum total gas yield in the HTG process is obtained at temperature, pressure, and residence time in the range of 450–500 °C, 28–30 MPa, and 30–60 min, respectively. The highest C5+ liquid hydrocarbon selectivity in the FT process is achieved at temperatures between 200 and 240 °C. Generally, effective conversion of biomass to syngas using the HTG process and its successful upgrading using the FT process can offer a viable route for producing liquid biofuels. Future studies should use HTG technology in the biorefinery context to maximize biomass valorization and minimize waste generation.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022License: CC BY NC NDData sources: University of Southern Denmark Research OutputRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2022License: CC BY NC NDData sources: University of Southern Denmark Research OutputRenewable and Sustainable Energy ReviewsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2022.112833&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu