Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable Energyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Renewable Energy
Article . 2020 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline

An under-valued biofuel additive to phase out MTBE in gasoline
Authors: Hamed Kazemi Shariat Panahi; Meisam Tabatabaei; Mona Dehhaghi; Mona Dehhaghi; Keikhosro Karimi; Mortaza Aghbashlo;

Conversion of residues from agro-food industry into bioethanol in Iran: An under-valued biofuel additive to phase out MTBE in gasoline

Abstract

Abstract It is obvious that Iran agricultural industry, unlike Brazil and USA, cannot afford to provide conventional biomass, i.e. sugary or starchy biomass for bioethanol production, mainly due to climatic and geographic conditions. With some exception of date (fruit), first-generation ethanol production triggers food vs. fuel debates in Iran and put nation to hunger. Agricultural products including apple, barley, carrot, corn, grape, orange, potato, rice, sugar beet, sugarcane, and wheat are consumed domestically, exported, or even lost because of poor harvesting and processing conditions such as transportation or packaging. These products may alone generate 21.56 million ton per annum green wastes upon processing in the food industry. Every year about 5.4 billion liters of bioethanol can be produced by establishing second-generation ethanol plants next to the food processing sectors. Seventy-seven-percent of this amount of bioethanol can easily support 5% ethanol (E5) policy to phase out the consumption of 4.2 billion liters methyl tert-butyl ether (MTBE) for raising the octane number of gasoline in the country. If more comprehensive policy is adopted, larger quantities of lignocellulosic feedstocks can be gathered from agro as well as forestry practices. Second-generation bioethanol technology can help Iran to tackle air pollution in its big cities and to address the adverse effects of MTBE on its populations and ecosystem. The other advantages are improvement of fuel security, mitigation of climate change, and development of economy. The motivation can be created through passing a framework policy to cut fossil fuel subsidies, to mandate bioethanol blends in gasoline, and to impose carbon taxes. Development of coherent socially and environmentally relevant strategies and facilitation of investment in bioethanol industry are also necessary.

Country
Belgium
Keywords

pretreatment, HYDROLYSIS, Liquid biofuel, lignocellulose, greenhouse gas, Fermentation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 1%
Top 10%
Top 1%