- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, Italy, Italy, United Kingdom, United Kingdom, Germany, Spain, Italy, Germany, Spain, Spain, Bulgaria, Sweden, Slovenia, Serbia, Germany, Bulgaria, Spain, ItalyPublisher:Springer Science and Business Media LLC Funded by:UKRI | ForeSight: Predicting and..., UKRI | Assessing Individual And ..., NSF | CAREER: Tree-Ring Based R...UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across Europe ,UKRI| Assessing Individual And Local Scale Forest Vulnerability To Mortality From The 2019 Extreme Drought In Central Europe ,NSF| CAREER: Tree-Ring Based Reconstruction of Northern Hemisphere Jetstream VariabilityDorado-Liñán, Isabel; Ayarzagüena, Blanca; Babst, Flurin; Xu, Guobao; Gil, Luis; Battipaglia, Giovanna; Buras, Allan; Čada, Vojtěch; Camarero, J Julio; Cavin, Liam; Claessens, Hugues; Drobyshev, Igor; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hartl, Claudia; Hevia, Andrea; Janda, Pavel; Jump, Alistair S; Kazimirovic, Marko; Keren, Srdjan; Kreyling, Juergen; Land, Alexander; Latte, Nicolas; Levanič, Tom; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke; Martínez-Sancho, Elisabet; Menzel, Annette; Mikoláš, Martin; Motta, Renzo; Muffler, Lena; Nola, Paola; Panayotov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Prislan, Peter; Roibu, Catalin-Constantin; Roibu, Catalin-Constantin; Rydval, Miloš; Sánchez-Salguero, Raul; Scharnweber, Tobias; Stajić, Branko; Svoboda, Miroslav; Tegel, Willy; Teodosiu, Marius; Toromani, Elvin; Trotsiuk, Volodymyr; Turcu, Daniel-Ond; Weigel, Robert; Wilmking, Martin; Zang, Christian; Zlatanov, Tzvetan; Trouet, Valerie;pmid: 35440102
pmc: PMC9018849
handle: 10261/358835 , 10272/21276 , 11591/472948 , 20.500.14352/72531 , 2318/1866306 , 11571/1458015 , 1893/34183
pmid: 35440102
pmc: PMC9018849
handle: 10261/358835 , 10272/21276 , 11591/472948 , 20.500.14352/72531 , 2318/1866306 , 11571/1458015 , 1893/34183
AbstractThe mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
CORE arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDDigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29615-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 25 Powered bymore_vert CORE arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDDigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29615-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 07 Dec 2023 Denmark, Finland, United States, Czech Republic, Belgium, United Kingdom, Czech Republic, Italy, Russian Federation, Switzerland, France, Germany, Italy, Italy, Netherlands, Netherlands, France, France, Austria, Italy, Italy, Italy, Italy, Italy, Russian Federation, Switzerland, Netherlands, Russian Federation, France, Italy, United Kingdom, United Kingdom, Netherlands, Denmark, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | T-FORCES, UKRI | Assessing the Impacts of ..., EC | OEMC +8 projectsEC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| OEMC ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Tropical Biomes in Transition ,EC| FUNDIVEUROPE ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate change ,UKRI| Niche evolution of South American trees and its consequencesMo, Lidong; Zohner, Constantin; Reich, Peter; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver; Gamarra, Javier; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves; Alberti, Giorgio; Almeyda Zambrano, Angelica; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo; Baker, Timothy; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely; Bastian, Meredith; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro; Brandl, Susanne; Brearley, Francis; Brienen, Roel; Broadbent, Eben; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo; Cesljar, Goran; Chazdon, Robin; Chen, Han; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel; Coomes, David; Cornejo Valverde, Fernando; Corral-Rivas, José; Crim, Philip; Cumming, Jonathan; Dayanandan, Selvadurai; de Gasper, André; Decuyper, Mathieu; Derroire, Géraldine; Devries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian; Eyre, Teresa; Fandohan, Adandé Belarmain; Fayle, Tom; Feldpausch, Ted; Ferreira, Leandro; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry; Harris, David; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John; Hillers, Annika; Honorio Coronado, Eurídice; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia; Maitner, Brian; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew; Martin, Emanuel; Meave, Jorge; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa; Mukul, Sharif; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor; Nevenic, Radovan; Ngugi, Michael; Niklaus, Pascal; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel; Poulsen, Axel Dalberg; Poulsen, John; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric; Seben, Vladimír; Serra-Diaz, Josep; Sheil, Douglas; Shvidenko, Anatoly; Silva-Espejo, Javier; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre; Stereńczak, Krzysztof; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;doi: 10.1038/s41586-023-06723-z , 10.60692/wyx6q-sam13 , 10.5281/zenodo.10118907 , 10.60692/6a8h3-c8n24 , 10.3929/ethz-b-000647255 , 10.48350/188873 , 10.5281/zenodo.10021967
pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 147 citations 147 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 15 Feb 2018 Switzerland, Italy, Italy, SloveniaPublisher:Elsevier BV Bosela, Michal; Lukac, Martin; Castagneri, Daniele; Sedmák, RÃ3bert; Biber, Peter; Carrer, Marco; Konà ́pka, Bohdan; Nola, Paola; Nagel, Thomas A.; Popa, Ionel; Roibu, Catalin Constantin; Svoboda, Miroslav; Trotsiuk, Volodymyr; BÃ1⁄4ntgen, Ulf;pmid: 29055588
handle: 20.500.12556/RUL-114212 , 11577/3249880 , 11571/1208691
Science of The Total Environment, 615 ISSN:0048-9697 ISSN:1879-1026
IRIS UNIPV (Universi... arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2018Full-Text: http://hdl.handle.net/11571/1208691Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.09.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS UNIPV (Universi... arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2018Full-Text: http://hdl.handle.net/11571/1208691Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.09.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Mélanie Saulnier; Flurin Babst; Jonathan S. Schurman; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Miloš Rydval; Miroslav Svoboda; Radek Bače; Vojtěch Čada; Martin Mikoláš; Jesper Björklund; Jesper Björklund; Pavel Janda;doi: 10.1111/gcb.14721
pmid: 31166643
AbstractClimatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate‐driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901–2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large‐scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Austria, Netherlands, Belgium, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEIris Hordijk; Lourens Poorter; Jingjing Liang; Peter B. Reich; Sergio de-Miguel; Gert-Jan Nabuurs; Javier G. P. Gamarra; Han Y. H. Chen; Mo Zhou; Susan K. Wiser; Hans Pretzsch; Alain Paquette; Nicolas Picard; Bruno Hérault; Jean-Francois Bastin; Giorgio Alberti; Meinrad Abegg; Yves C. Adou Yao; Angelica M. Almeyda Zambrano; Braulio V. Alvarado; Esteban Alvarez-Davila; Patricia Alvarez-Loayza; Luciana F. Alves; Iêda Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo-Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard C; Timothy Baker; Olaf Banki; Jorcely Barroso; Meredith L. Bastian; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Roberto Cazzolla Gatti; Ricardo G. Cesar; Goran Cesljar; Robin L. Chazdon; Chelsea Chisholm; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Colletta; David Coomes; Fernando Cornejo Valverde; Jose J. Corral-Rivas; Philip Crim; Jonathan Cumming; Selvadurai Dayanandan; André L. de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjevic; Aurélie Dourdain; Jiri Dolezal; Nestor Laurier Engone Obiang; Brian Enquist; Teresa Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Leandro V. Ferreira; Ted R. Feldpausch; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David Harris; Andrew Hector; Andreas Hemp; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Hyunkook Cho; Thomas Ibanez; Ilbin Jung; Nobuo Imai; Andrzej M. Jagodzinski; Bogdan Jaroszewicz; Vivian Johannsen; Carlos A. Joly; Tommaso Jucker; Viktor Karminov; Kuswata Kartawinata; Elizabeth Kearsley; David Kenfack; Deborah Kennard; Sebastian Kepfer-Rojas; Gunnar Keppel; Mohammed Latif Khan; Timothy Killeen; Hyun Seok Kim; Kanehiro Kitayama; Michael Köhl; Henn Korjus; Florian Kraxner; Diana Laarmann; Mait Lang; Simon Lewis; Huicui Lu; Natalia Lukina; Brian Maitner; Yadvinder Malhi; Eric Marcon; Beatriz Schwantes Marimon; Ben Hur Marimon-Junior; Andrew Robert Marshall; Emanuel Martin; Olga Martynenko; Jorge A. Meave; Omar Melo-Cruz; Casimiro Mendoza; Cory Merow; Stanislaw Miscicki; Abel Monteagudo Mendoza; Vanessa Moreno; Sharif A. Mukul; Philip Mundhenk; Maria G. Nava-Miranda; David Neill; Victor Neldner; Radovan Nevenic; Michael Ngugi; Pascal A. Niklaus; Jacek Oleksyn; Petr Ontikov; Edgar Ortiz-Malavasi; Yude Pan; Alexander Parada-Gutierrez; Elena Parfenova; Minjee Park; Marc Parren; Narayanaswamy Parthasarathy; Pablo L. Peri; Sebastian Pfautsch; Oliver L. Phillips; Maria Teresa Piedade; Daniel Piotto; Nigel C. A. Pitman; Martina Pollastrini; Irina Polo; Axel Dalberg Poulsen; John R. Poulsen; Freddy Ramirez Arevalo; Zorayda Restrepo-Correa; Mirco Rodeghiero; Samir Rolim; Anand Roopsind; Francesco Rovero; Ervan Rutishauser; Purabi Saikia; Christian Salas-Eljatib; Peter Schall; Dmitry Schepaschenko; Michael Scherer-Lorenzen; Bernhard Schmid; Jochen Schöngart; Eric B. Searle; Vladimír Seben; Federico Selvi; Josep M. Serra-Diaz; Douglas Sheil; Anatoly Shvidenko; Javier Silva-Espejo; Marcos Silveira; James Singh; Plinio Sist; Ferry Slik; Bonaventure Sonké; Alexandre F. Souza; Hans ter Steege; Krzysztof Stereńczak; Jens-Christian Svenning; Miroslav Svoboda; Ben Swanepoel; Natalia Targhetta; Nadja Tchebakova; Raquel Thomas; Elena Tikhonova; Peter Umunay; Vladimir Usoltsev; Renato Valencia; Fernando Valladares; Fons van der Plas; Tran Van Do;pmid: 40404639
pmc: PMC12098762
Abstract Species’ traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jakub Kašpar; Jan Tumajer; Jan Altman; Nela Altmanová; Vojtěch Čada; Tomáš Čihák; Jiří Doležal; Pavel Fibich; Pavel Janda; Ryszard Kaczka; Tomáš Kolář; Jiří Lehejček; Jiří Mašek; Kateřina Neudertová Hellebrandová; Michal Rybníček; Miloš Rydval; Rohan Shetti; Miroslav Svoboda; Martin Šenfeldr; Pavel Šamonil; Ivana Vašíčková; Monika Vejpustková; Václav Treml;doi: 10.1111/gcb.17146
pmid: 38273515
AbstractTemperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree‐ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990–2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation‐based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Czech RepublicPublisher:Wiley Jan Tumajer; Krešimir Begović; Vojtěch Čada; Michal Jenicek; Jelena Lange; Jiří Mašek; Ryszard J. Kaczka; Miloš Rydval; Miroslav Svoboda; Lukáš Vlček; Václav Treml;doi: 10.1111/gcb.16470
pmid: 36200330
AbstractRadial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non‐stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non‐stationarity. To systematically assess potential drivers of non‐stationarity, we compiled tree‐ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non‐linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non‐stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non‐stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non‐stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non‐stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non‐stationarity compared with monthly‐resolved non‐linear models. We conclude that non‐stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non‐stationarity, we recommend that temporal non‐stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Germany, Australia, Argentina, Chile, United States, Argentina, United StatesPublisher:Springer Science and Business Media LLC Funded by:EC | P.R.I.M.E., NSF | Collaborative Research: R..., NSF | Collaborative Research: S... +3 projectsEC| P.R.I.M.E. ,NSF| Collaborative Research: RUI: Recovery trajectories of the hillslope green water cycle after rapidly repeated wildfires ,NSF| Collaborative Research: Spruce Beetle and Wildfire Interactions Under Varying Climate in the Rockies ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSERC ,FWF| Forest disturbance in a changing worldMonica G. Turner; Cornelius Senf; Cornelius Senf; Ignacio Díaz-Hormazábal; Tiphaine Després; Tiphaine Després; Juan Paritsis; George L. W. Perry; Thomas T. Veblen; Dominik Kulakowski; Jörg Müller; Jörg Müller; Anthony W. D'Amato; Hong S. He; Shawn Fraver; Thomas Kitzberger; Scott L. Stephens; Tomáš Hlásny; Rupert Seidl; Andrés Holz; Miroslav Svoboda; Sarah J. Hart; Lee E. Frelich; Alvaro G. Gutiérrez; Brian Buma; David B. Lindenmayer; Akira Mori; Brian J. Harvey; Andreas Sommerfeld;AbstractIncreasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001–2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.
Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/202830Data sources: Bielefeld Academic Search Engine (BASE)Online-Publikations-Server der Universität WürzburgArticle . 2018License: CC BYData sources: Online-Publikations-Server der Universität WürzburgPortland State University: PDXScholarArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06788-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/202830Data sources: Bielefeld Academic Search Engine (BASE)Online-Publikations-Server der Universität WürzburgArticle . 2018License: CC BYData sources: Online-Publikations-Server der Universität WürzburgPortland State University: PDXScholarArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06788-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SloveniaPublisher:Wiley Vojtěch Čada; Martin Mikoláš; Oleh Chaskovskyy; Jonathan S. Schurman; Michal Synek; Shawn Fraver; Miroslav Svoboda; Volodymyr Trotsiuk; Marius Teodosiu; Thomas A. Nagel; Thomas A. Nagel; Jana Lábusová; Rupert Seidl; Kristýna Svobodová; Dominik Kulakowski; Radek Bače; Pavel Janda;AbstractDetermining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).
Global Change Biolog... arrow_drop_down Repository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of LjubljanaGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Repository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of LjubljanaGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Spain, Italy, Italy, United Kingdom, United Kingdom, Germany, Spain, Italy, Germany, Spain, Spain, Bulgaria, Sweden, Slovenia, Serbia, Germany, Bulgaria, Spain, ItalyPublisher:Springer Science and Business Media LLC Funded by:UKRI | ForeSight: Predicting and..., UKRI | Assessing Individual And ..., NSF | CAREER: Tree-Ring Based R...UKRI| ForeSight: Predicting and monitoring drought-linked forest growth decline across Europe ,UKRI| Assessing Individual And Local Scale Forest Vulnerability To Mortality From The 2019 Extreme Drought In Central Europe ,NSF| CAREER: Tree-Ring Based Reconstruction of Northern Hemisphere Jetstream VariabilityDorado-Liñán, Isabel; Ayarzagüena, Blanca; Babst, Flurin; Xu, Guobao; Gil, Luis; Battipaglia, Giovanna; Buras, Allan; Čada, Vojtěch; Camarero, J Julio; Cavin, Liam; Claessens, Hugues; Drobyshev, Igor; Garamszegi, Balázs; Grabner, Michael; Hacket-Pain, Andrew; Hartl, Claudia; Hevia, Andrea; Janda, Pavel; Jump, Alistair S; Kazimirovic, Marko; Keren, Srdjan; Kreyling, Juergen; Land, Alexander; Latte, Nicolas; Levanič, Tom; van der Maaten, Ernst; van der Maaten-Theunissen, Marieke; Martínez-Sancho, Elisabet; Menzel, Annette; Mikoláš, Martin; Motta, Renzo; Muffler, Lena; Nola, Paola; Panayotov, Momchil; Petritan, Any Mary; Petritan, Ion Catalin; Popa, Ionel; Prislan, Peter; Roibu, Catalin-Constantin; Roibu, Catalin-Constantin; Rydval, Miloš; Sánchez-Salguero, Raul; Scharnweber, Tobias; Stajić, Branko; Svoboda, Miroslav; Tegel, Willy; Teodosiu, Marius; Toromani, Elvin; Trotsiuk, Volodymyr; Turcu, Daniel-Ond; Weigel, Robert; Wilmking, Martin; Zang, Christian; Zlatanov, Tzvetan; Trouet, Valerie;pmid: 35440102
pmc: PMC9018849
handle: 10261/358835 , 10272/21276 , 11591/472948 , 20.500.14352/72531 , 2318/1866306 , 11571/1458015 , 1893/34183
pmid: 35440102
pmc: PMC9018849
handle: 10261/358835 , 10272/21276 , 11591/472948 , 20.500.14352/72531 , 2318/1866306 , 11571/1458015 , 1893/34183
AbstractThe mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
CORE arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDDigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29615-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 40visibility views 40 download downloads 25 Powered bymore_vert CORE arrow_drop_down University of Freiburg: FreiDokArticle . 2022Full-Text: https://freidok.uni-freiburg.de/data/226443Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34183Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAArias Montano, Repositorio Institucional de la Universidad de HuelvaArticle . 2022License: CC BY NC NDDigital repository of Slovenian research organizationsArticle . 2022License: CC BYData sources: Digital repository of Slovenian research organizationsGöttingen Research Online PublicationsArticle . 2022License: CC BYData sources: Göttingen Research Online PublicationsOmorika - Repository of the Faculty of Forestry, BelgradeArticle . 2022IRIS UNIPV (Università degli studi di Pavia)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-29615-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 07 Dec 2023 Denmark, Finland, United States, Czech Republic, Belgium, United Kingdom, Czech Republic, Italy, Russian Federation, Switzerland, France, Germany, Italy, Italy, Netherlands, Netherlands, France, France, Austria, Italy, Italy, Italy, Italy, Italy, Russian Federation, Switzerland, Netherlands, Russian Federation, France, Italy, United Kingdom, United Kingdom, Netherlands, Denmark, United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | T-FORCES, UKRI | Assessing the Impacts of ..., EC | OEMC +8 projectsEC| T-FORCES ,UKRI| Assessing the Impacts of the Recent Amazonian Drought ,EC| OEMC ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Biodiversity, carbon storage, and productivity of the world's tropical forests. ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| BioResilience: Biodiversity resilience and ecosystem services in post-conflict socio-ecological systems in Colombia ,UKRI| Tropical Biomes in Transition ,EC| FUNDIVEUROPE ,UKRI| FAPESP - Amazon PyroCarbon: Quantifying soil carbon responses to fire and climate change ,UKRI| Niche evolution of South American trees and its consequencesMo, Lidong; Zohner, Constantin; Reich, Peter; Liang, Jingjing; de Miguel, Sergio; Nabuurs, Gert-Jan; Renner, Susanne; van den Hoogen, Johan; Araza, Arnan; Herold, Martin; Mirzagholi, Leila; Ma, Haozhi; Averill, Colin; Phillips, Oliver; Gamarra, Javier; Hordijk, Iris; Routh, Devin; Abegg, Meinrad; Adou Yao, Yves; Alberti, Giorgio; Almeyda Zambrano, Angelica; Alvarado, Braulio Vilchez; Alvarez-Dávila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana; Amaral, Iêda; Ammer, Christian; Antón-Fernández, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo; Baker, Timothy; Bałazy, Radomir; Banki, Olaf; Barroso, Jorcely; Bastian, Meredith; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro; Brandl, Susanne; Brearley, Francis; Brienen, Roel; Broadbent, Eben; Bruelheide, Helge; Bussotti, Filippo; Cazzolla Gatti, Roberto; César, Ricardo; Cesljar, Goran; Chazdon, Robin; Chen, Han; Chisholm, Chelsea; Cho, Hyunkook; Cienciala, Emil; Clark, Connie; Clark, David; Colletta, Gabriel; Coomes, David; Cornejo Valverde, Fernando; Corral-Rivas, José; Crim, Philip; Cumming, Jonathan; Dayanandan, Selvadurai; de Gasper, André; Decuyper, Mathieu; Derroire, Géraldine; Devries, Ben; Djordjevic, Ilija; Dolezal, Jiri; Dourdain, Aurélie; Engone Obiang, Nestor Laurier; Enquist, Brian; Eyre, Teresa; Fandohan, Adandé Belarmain; Fayle, Tom; Feldpausch, Ted; Ferreira, Leandro; Finér, Leena; Fischer, Markus; Fletcher, Christine; Frizzera, Lorenzo; Gianelle, Damiano; Glick, Henry; Harris, David; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Hérault, Bruno; Herbohn, John; Hillers, Annika; Honorio Coronado, Eurídice; Hui, Cang; Ibanez, Thomas; Imai, Nobuo; Jagodziński, Andrzej; Jaroszewicz, Bogdan; Johannsen, Vivian Kvist; Joly, Carlos; Jucker, Tommaso; Jung, Ilbin; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy; Kim, Hyun Seok; Kitayama, Kanehiro; Köhl, Michael; Korjus, Henn; Kraxner, Florian; Kucher, Dmitry; Laarmann, Diana; Lang, Mait; Lu, Huicui; Lukina, Natalia; Maitner, Brian; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marimon-Junior, Ben Hur; Marshall, Andrew; Martin, Emanuel; Meave, Jorge; Melo-Cruz, Omar; Mendoza, Casimiro; Mendoza-Polo, Irina; Miscicki, Stanislaw; Merow, Cory; Monteagudo Mendoza, Abel; Moreno, Vanessa; Mukul, Sharif; Mundhenk, Philip; Nava-Miranda, María Guadalupe; Neill, David; Neldner, Victor; Nevenic, Radovan; Ngugi, Michael; Niklaus, Pascal; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo; Pfautsch, Sebastian; Picard, Nicolas; Piedade, Maria Teresa F.; Piotto, Daniel; Pitman, Nigel; Poulsen, Axel Dalberg; Poulsen, John; Pretzsch, Hans; Ramirez Arevalo, Freddy; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Salas-Eljatib, Christian; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schöngart, Jochen; Searle, Eric; Seben, Vladimír; Serra-Diaz, Josep; Sheil, Douglas; Shvidenko, Anatoly; Silva-Espejo, Javier; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonké, Bonaventure; Souza, Alexandre; Stereńczak, Krzysztof; Svenning, Jens-Christian; Svoboda, Miroslav; Swanepoel, Ben; Targhetta, Natalia; Tchebakova, Nadja;doi: 10.1038/s41586-023-06723-z , 10.60692/wyx6q-sam13 , 10.5281/zenodo.10118907 , 10.60692/6a8h3-c8n24 , 10.3929/ethz-b-000647255 , 10.48350/188873 , 10.5281/zenodo.10021967
pmid: 37957399
pmc: PMC10700142
AbstractForests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2–5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 147 citations 147 popularity Top 10% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Bern Open Repository... arrow_drop_down Bern Open Repository and Information System (BORIS)Article . 2023 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)IRIS - Institutional Research Information System of the University of TrentoArticle . 2023License: CC BYArchivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2023License: CC BYFlore (Florence Research Repository)Article . 2023Data sources: Flore (Florence Research Repository)Fondazione Edmund Mach: IRIS-OpenPubArticle . 2023Full-Text: https://hdl.handle.net/10449/82975Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/0pb9t876Data sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2023License: CC BYFull-Text: https://doi.org/10.5281/zenodo.10021968Data sources: Bielefeld Academic Search Engine (BASE)University of Freiburg: FreiDokArticle . 2023Full-Text: https://freidok.uni-freiburg.de/data/254429Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2023Full-Text: https://hal.inrae.fr/hal-04290984Data sources: Bielefeld Academic Search Engine (BASE)Natural Resources Institute Finland: JukuriArticleLicense: CC BYFull-Text: https://jukuri.luke.fi/handle/10024/555999Data sources: Bielefeld Academic Search Engine (BASE)Copenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGFZ German Research Centre for GeosciencesArticle . 2023License: CC BYData sources: GFZ German Research Centre for GeoscienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Ghent University Academic BibliographyArticle . 2023Data sources: Ghent University Academic BibliographyNaturalis Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06723-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Australia, United Kingdom, France, Spain, United States, Czech Republic, Russian Federation, Italy, France, Germany, Russian Federation, France, Italy, Australia, Germany, Belgium, United Kingdom, Switzerland, Czech Republic, Italy, United KingdomPublisher:Wiley Publicly fundedFunded by:EC | FORMICA, RSF | The anatomical and physio..., DFG +13 projectsEC| FORMICA ,RSF| The anatomical and physiological response of Scots pine xylem formation to variable water availability ,DFG ,EC| ICOS ,DFG| German Centre for Integrative Biodiversity Research - iDiv ,ANR| ODYSSEE ,NSF| Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data ,SNSF| How does forest microclimate affect biodiversity dynamics? ,EC| AfricanBioServices ,UKRI| E3 - Edinburgh Earth and Environment - Doctoral Training Partnership ,SNSF| Lif3web: The present and future spatial structure of tri-trophic networks ,ANR| IMPRINT ,RCN| Disentangling the impacts of herbivory and climate on ecological dynamics ,NSF| MSB-ECA: Phylogenetically-informed modeling of the regional context of community assembly ,UKRI| Climate as a driver of shrub expansion and tundra greening ,EC| SUPER-GHarald Pauli; Josef Urban; Josef Urban; Sonia Merinero; Pieter De Frenne; Josefine Walz; Bente J. Graae; Michael B. Ashcroft; Michael B. Ashcroft; Tim Seipel; Ian Klupar; Ilya M. D. Maclean; Juan J. Jiménez; Jonas Schmeddes; Lucia Hederová; James D. M. Speed; Amanda Ratier Backes; Christian Rossi; Christian Rossi; Christian Rossi; Alessandro Petraglia; Isla H. Myers-Smith; Adrian V. Rocha; Pallieter De Smedt; Ellen Dorrepaal; Martin Macek; Pieter Vangansbeke; Miska Luoto; Nicoletta Cannone; Luca Vitale; José Luis Benito Alonso; Josef Brůna; Jan Wild; Marko Smiljanic; Edmund W. Basham; Eduardo Fuentes-Lillo; Eduardo Fuentes-Lillo; C. Johan Dahlberg; Sergiy Medinets; Keith W. Larson; Ann Milbau; Pekka Niittynen; Koenraad Van Meerbeek; Juha Aalto; Juha Aalto; Loïc Pellissier; Meelis Pärtel; Tudor-Mihai Ursu; Rafael A. García; Rafael A. García; Lore T. Verryckt; Laurenz M. Teuber; Kristoffer Hylander; Shengwei Zong; Shyam S. Phartyal; Shyam S. Phartyal; Agustina Barros; Valeria Aschero; Valeria Aschero; Rebecca A. Senior; Michael Stemkovski; Jonas J. Lembrechts; Joseph Okello; Joseph Okello; Jan Altman; Romina D. Dimarco; Julia Kemppinen; Pavel Dan Turtureanu; Dany Ghosn; Lukas Siebicke; Andrew D. Thomas; Zuzana Sitková; Sonja Wipf; Olivier Roupsard; Sanne Govaert; Robert G. Björk; Christian D. Larson; Fatih Fazlioglu; M. Rosa Fernández Calzado; Jörg G. Stephan; Jiri Dolezal; Jiri Dolezal; Michele Carbognani; Aud H. Halbritter; Mihai Pușcaș; David H. Klinges; Juergen Kreyling; Mats P. Björkman; Florian Zellweger; Esther R. Frei; Marijn Bauters; Camille Pitteloud; Jozef Kollár; Gergana N. Daskalova; Miguel Portillo-Estrada; Robert Kanka; Ana Clara Mazzolari; William D. Pearse; William D. Pearse; Elizabeth G. Simpson; Martin Svátek; Stuart W. Smith; Stuart W. Smith; Martin A. Nuñez; Jhonatan Sallo Bravo; Onur Candan; Mana Gharun; Austin Koontz; Simone Cesarz; T'Ai Gladys Whittingham Forte; George Kazakis; Joseph J. Bailey; Zhaochen Zhang; Nico Eisenhauer; Volodymyr I. Medinets; Jonathan Lenoir; Juan Lorite; Radim Matula; Lena Muffler; Lena Muffler; Aníbal Pauchard; Aníbal Pauchard; Pascal Boeckx; Maaike Y. Bader; Robert Weigel; Marek Čiliak; Kamil Láska; Brett R. Scheffers; Camille Meeussen; Benjamin Blonder; Benjamin Blonder; Felix Gottschall; Ronja E. M. Wedegärtner; Francesco Malfasi; Jonas Ardö; Roman Plichta; Pascal Vittoz; Mario Trouillier; Julia Boike; Peter Barančok; Christian Rixen; Lisa J. Rew; Andrej Varlagin; Valter Di Cecco; Ivan Nijs; Jan Dick; Charly Geron; Charly Geron; Bernard Heinesch; Patrice Descombes; Mauro Guglielmin; Angela Stanisci; Filip Hrbáček; Martin Wilmking; Jian Zhang; Krystal Randall; Katja Tielbörger; Peter Haase; Peter Haase; Alistair S. Jump; Rafaella Canessa; Masahito Ueyama; Matěj Man; František Máliš; Marcello Tomaselli; Stef Haesen; Salvatore R. Curasi; Sylvia Haider; Andrea Lamprecht; Miguel Ángel de Pablo; Haydn J.D. Thomas; Nina Buchmann; Manuela Winkler; Klaus Steinbauer; Toke T. Høye; Fernando Moyano; Miroslav Svoboda; Christopher Andrews; Martin Kopecký; Martin Kopecký; Rebecca Finger Higgens; Hans J. De Boeck; Jürgen Homeier; Juha M. Alatalo; Ben Somers; Khatuna Gigauri; Andrej Palaj; Thomas Scholten; Mia Vedel Sørensen; Edoardo Cremonese; Liesbeth van den Brink;pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
pmid: 32311220
handle: 20.500.14243/370921 , 1854/LU-8681704 , 11381/2880120 , 1893/31042 , 10900/106894
AbstractCurrent analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long‐term average thermal conditions at coarse spatial resolutions only. Hence, many climate‐forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold‐air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free‐air temperatures, microclimatic ground and near‐surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near‐surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 148 citations 148 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2020Full-Text: https://hal.science/hal-03003135Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Full-Text: https://hdl.handle.net/11381/2880120Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/41n2d8c6Data sources: Bielefeld Academic Search Engine (BASE)Publikationenserver der Georg-August-Universität GöttingenArticle . 2021Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic BibliographyUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2020Data sources: Universitätsbibliographie, Universität Duisburg-EssenSiberian Federal University: Archiv Elektronnych SFUArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Eberhard Karls University Tübingen: Publication SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 15 Feb 2018 Switzerland, Italy, Italy, SloveniaPublisher:Elsevier BV Bosela, Michal; Lukac, Martin; Castagneri, Daniele; Sedmák, RÃ3bert; Biber, Peter; Carrer, Marco; Konà ́pka, Bohdan; Nola, Paola; Nagel, Thomas A.; Popa, Ionel; Roibu, Catalin Constantin; Svoboda, Miroslav; Trotsiuk, Volodymyr; BÃ1⁄4ntgen, Ulf;pmid: 29055588
handle: 20.500.12556/RUL-114212 , 11577/3249880 , 11571/1208691
Science of The Total Environment, 615 ISSN:0048-9697 ISSN:1879-1026
IRIS UNIPV (Universi... arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2018Full-Text: http://hdl.handle.net/11571/1208691Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.09.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 92 citations 92 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IRIS UNIPV (Universi... arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2018Full-Text: http://hdl.handle.net/11571/1208691Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2017.09.092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Mélanie Saulnier; Flurin Babst; Jonathan S. Schurman; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Volodymyr Trotsiuk; Miloš Rydval; Miroslav Svoboda; Radek Bače; Vojtěch Čada; Martin Mikoláš; Jesper Björklund; Jesper Björklund; Pavel Janda;doi: 10.1111/gcb.14721
pmid: 31166643
AbstractClimatic constraints on tree growth mediate an important link between terrestrial and atmospheric carbon pools. Tree rings provide valuable information on climate‐driven growth patterns, but existing data tend to be biased toward older trees on climatically extreme sites. Understanding climate change responses of biogeographic regions requires data that integrate spatial variability in growing conditions and forest structure. We analyzed both temporal (c. 1901–2010) and spatial variation in radial growth patterns in 9,876 trees from fragments of primary Picea abies forests spanning the latitudinal and altitudinal extent of the Carpathian arc. Growth was positively correlated with summer temperatures and spring moisture availability throughout the entire region. However, important seasonal variation in climate responses occurred along geospatial gradients. At northern sites, winter precipitation and October temperatures of the year preceding ring formation were positively correlated with ring width. In contrast, trees at the southern extent of the Carpathians responded negatively to warm and dry conditions in autumn of the year preceding ring formation. An assessment of regional synchronization in radial growth variability showed temporal fluctuations throughout the 20th century linked to the onset of moisture limitation in southern landscapes. Since the beginning of the study period, differences between high and low elevations in the temperature sensitivity of tree growth generally declined, while moisture sensitivity increased at lower elevations. Growth trend analyses demonstrated changes in absolute tree growth rates linked to climatic change, with basal area increments in northern landscapes and lower altitudes responding positively to recent warming. Tree growth has predominantly increased with rising temperatures in the Carpathians, accompanied by early indicators that portions of the mountain range are transitioning from temperature to moisture limitation. Continued warming will alleviate large‐scale temperature constraints on tree growth, giving increasing weight to local drivers that are more challenging to predict.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu62 citations 62 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14721&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 Austria, Netherlands, Belgium, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | FUNDIVEUROPEEC| FUNDIVEUROPEIris Hordijk; Lourens Poorter; Jingjing Liang; Peter B. Reich; Sergio de-Miguel; Gert-Jan Nabuurs; Javier G. P. Gamarra; Han Y. H. Chen; Mo Zhou; Susan K. Wiser; Hans Pretzsch; Alain Paquette; Nicolas Picard; Bruno Hérault; Jean-Francois Bastin; Giorgio Alberti; Meinrad Abegg; Yves C. Adou Yao; Angelica M. Almeyda Zambrano; Braulio V. Alvarado; Esteban Alvarez-Davila; Patricia Alvarez-Loayza; Luciana F. Alves; Iêda Amaral; Christian Ammer; Clara Antón-Fernández; Alejandro Araujo-Murakami; Luzmila Arroyo; Valerio Avitabile; Gerardo A. Aymard C; Timothy Baker; Olaf Banki; Jorcely Barroso; Meredith L. Bastian; Luca Birigazzi; Philippe Birnbaum; Robert Bitariho; Pascal Boeckx; Frans Bongers; Olivier Bouriaud; Pedro H. S. Brancalion; Susanne Brandl; Francis Q. Brearley; Roel Brienen; Eben N. Broadbent; Helge Bruelheide; Roberto Cazzolla Gatti; Ricardo G. Cesar; Goran Cesljar; Robin L. Chazdon; Chelsea Chisholm; Emil Cienciala; Connie J. Clark; David B. Clark; Gabriel Colletta; David Coomes; Fernando Cornejo Valverde; Jose J. Corral-Rivas; Philip Crim; Jonathan Cumming; Selvadurai Dayanandan; André L. de Gasper; Mathieu Decuyper; Géraldine Derroire; Ben DeVries; Ilija Djordjevic; Aurélie Dourdain; Jiri Dolezal; Nestor Laurier Engone Obiang; Brian Enquist; Teresa Eyre; Adandé Belarmain Fandohan; Tom M. Fayle; Leandro V. Ferreira; Ted R. Feldpausch; Leena Finér; Markus Fischer; Christine Fletcher; Lorenzo Frizzera; Damiano Gianelle; Henry B. Glick; David Harris; Andrew Hector; Andreas Hemp; John Herbohn; Annika Hillers; Eurídice N. Honorio Coronado; Cang Hui; Hyunkook Cho; Thomas Ibanez; Ilbin Jung; Nobuo Imai; Andrzej M. Jagodzinski; Bogdan Jaroszewicz; Vivian Johannsen; Carlos A. Joly; Tommaso Jucker; Viktor Karminov; Kuswata Kartawinata; Elizabeth Kearsley; David Kenfack; Deborah Kennard; Sebastian Kepfer-Rojas; Gunnar Keppel; Mohammed Latif Khan; Timothy Killeen; Hyun Seok Kim; Kanehiro Kitayama; Michael Köhl; Henn Korjus; Florian Kraxner; Diana Laarmann; Mait Lang; Simon Lewis; Huicui Lu; Natalia Lukina; Brian Maitner; Yadvinder Malhi; Eric Marcon; Beatriz Schwantes Marimon; Ben Hur Marimon-Junior; Andrew Robert Marshall; Emanuel Martin; Olga Martynenko; Jorge A. Meave; Omar Melo-Cruz; Casimiro Mendoza; Cory Merow; Stanislaw Miscicki; Abel Monteagudo Mendoza; Vanessa Moreno; Sharif A. Mukul; Philip Mundhenk; Maria G. Nava-Miranda; David Neill; Victor Neldner; Radovan Nevenic; Michael Ngugi; Pascal A. Niklaus; Jacek Oleksyn; Petr Ontikov; Edgar Ortiz-Malavasi; Yude Pan; Alexander Parada-Gutierrez; Elena Parfenova; Minjee Park; Marc Parren; Narayanaswamy Parthasarathy; Pablo L. Peri; Sebastian Pfautsch; Oliver L. Phillips; Maria Teresa Piedade; Daniel Piotto; Nigel C. A. Pitman; Martina Pollastrini; Irina Polo; Axel Dalberg Poulsen; John R. Poulsen; Freddy Ramirez Arevalo; Zorayda Restrepo-Correa; Mirco Rodeghiero; Samir Rolim; Anand Roopsind; Francesco Rovero; Ervan Rutishauser; Purabi Saikia; Christian Salas-Eljatib; Peter Schall; Dmitry Schepaschenko; Michael Scherer-Lorenzen; Bernhard Schmid; Jochen Schöngart; Eric B. Searle; Vladimír Seben; Federico Selvi; Josep M. Serra-Diaz; Douglas Sheil; Anatoly Shvidenko; Javier Silva-Espejo; Marcos Silveira; James Singh; Plinio Sist; Ferry Slik; Bonaventure Sonké; Alexandre F. Souza; Hans ter Steege; Krzysztof Stereńczak; Jens-Christian Svenning; Miroslav Svoboda; Ben Swanepoel; Natalia Targhetta; Nadja Tchebakova; Raquel Thomas; Elena Tikhonova; Peter Umunay; Vladimir Usoltsev; Renato Valencia; Fernando Valladares; Fons van der Plas; Tran Van Do;pmid: 40404639
pmc: PMC12098762
Abstract Species’ traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Flore (Florence Rese... arrow_drop_down Flore (Florence Research Repository)Article . 2025Full-Text: https://flore.unifi.it/bitstream/2158/1425012/1/2025_Hordijk_et_al_Nature_Communications.pdfData sources: Flore (Florence Research Repository)Ghent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic BibliographyGhent University Academic BibliographyArticle . 2025Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-59754-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jakub Kašpar; Jan Tumajer; Jan Altman; Nela Altmanová; Vojtěch Čada; Tomáš Čihák; Jiří Doležal; Pavel Fibich; Pavel Janda; Ryszard Kaczka; Tomáš Kolář; Jiří Lehejček; Jiří Mašek; Kateřina Neudertová Hellebrandová; Michal Rybníček; Miloš Rydval; Rohan Shetti; Miroslav Svoboda; Martin Šenfeldr; Pavel Šamonil; Ivana Vašíčková; Monika Vejpustková; Václav Treml;doi: 10.1111/gcb.17146
pmid: 38273515
AbstractTemperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree‐ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990–2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation‐based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.17146&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Czech RepublicPublisher:Wiley Jan Tumajer; Krešimir Begović; Vojtěch Čada; Michal Jenicek; Jelena Lange; Jiří Mašek; Ryszard J. Kaczka; Miloš Rydval; Miroslav Svoboda; Lukáš Vlček; Václav Treml;doi: 10.1111/gcb.16470
pmid: 36200330
AbstractRadial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non‐stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non‐stationarity. To systematically assess potential drivers of non‐stationarity, we compiled tree‐ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non‐linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non‐stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non‐stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non‐stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non‐stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non‐stationarity compared with monthly‐resolved non‐linear models. We conclude that non‐stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non‐stationarity, we recommend that temporal non‐stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.
Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repository of the Cz... arrow_drop_down Repository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesGlobal Change BiologyArticle . 2022 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Germany, Australia, Argentina, Chile, United States, Argentina, United StatesPublisher:Springer Science and Business Media LLC Funded by:EC | P.R.I.M.E., NSF | Collaborative Research: R..., NSF | Collaborative Research: S... +3 projectsEC| P.R.I.M.E. ,NSF| Collaborative Research: RUI: Recovery trajectories of the hillslope green water cycle after rapidly repeated wildfires ,NSF| Collaborative Research: Spruce Beetle and Wildfire Interactions Under Varying Climate in the Rockies ,UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSERC ,FWF| Forest disturbance in a changing worldMonica G. Turner; Cornelius Senf; Cornelius Senf; Ignacio Díaz-Hormazábal; Tiphaine Després; Tiphaine Després; Juan Paritsis; George L. W. Perry; Thomas T. Veblen; Dominik Kulakowski; Jörg Müller; Jörg Müller; Anthony W. D'Amato; Hong S. He; Shawn Fraver; Thomas Kitzberger; Scott L. Stephens; Tomáš Hlásny; Rupert Seidl; Andrés Holz; Miroslav Svoboda; Sarah J. Hart; Lee E. Frelich; Alvaro G. Gutiérrez; Brian Buma; David B. Lindenmayer; Akira Mori; Brian J. Harvey; Andreas Sommerfeld;AbstractIncreasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001–2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.
Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/202830Data sources: Bielefeld Academic Search Engine (BASE)Online-Publikations-Server der Universität WürzburgArticle . 2018License: CC BYData sources: Online-Publikations-Server der Universität WürzburgPortland State University: PDXScholarArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06788-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 205 citations 205 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Universidad de Chile... arrow_drop_down Universidad de Chile: Repositorio académicoArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Australian National University: ANU Digital CollectionsArticleLicense: CC BYFull-Text: http://hdl.handle.net/1885/202830Data sources: Bielefeld Academic Search Engine (BASE)Online-Publikations-Server der Universität WürzburgArticle . 2018License: CC BYData sources: Online-Publikations-Server der Universität WürzburgPortland State University: PDXScholarArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-018-06788-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SloveniaPublisher:Wiley Vojtěch Čada; Martin Mikoláš; Oleh Chaskovskyy; Jonathan S. Schurman; Michal Synek; Shawn Fraver; Miroslav Svoboda; Volodymyr Trotsiuk; Marius Teodosiu; Thomas A. Nagel; Thomas A. Nagel; Jana Lábusová; Rupert Seidl; Kristýna Svobodová; Dominik Kulakowski; Radek Bače; Pavel Janda;AbstractDetermining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).
Global Change Biolog... arrow_drop_down Repository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of LjubljanaGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Repository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of LjubljanaGlobal Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14041&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu