- home
- Advanced Search
- Energy Research
- Open Access
- Energy Research
- Open Access
description Publicationkeyboard_double_arrow_right Article , Journal 2022 FinlandPublisher:Elsevier BV Tabatabaei, Mostafa; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalao; Joao, P.S.;Abstract This paper addresses an integrated framework for the dynamic capacity withholding assessment of an independent system operator that determines the mid-term maintenance scheduling of generation companies and day-ahead scheduling of wholesale market participants. The main contribution of this research is that two dynamic capacity-withholding indices are proposed for mid-term and day-ahead scheduling of generation companies that estimate the dynamic capacity withholding opportunities of generation units in an ex-ante manner. The proposed framework is another contribution of this research that uses a four-stage optimization process that the system operator can detect and prevent the formation of withholding groups. The optimal maintenance scheduling from the generation companies viewpoint is assessed in the first-stage problem that considers different mid-term withholding opportunities. The optimal mid-term maintenance scheduling is carried out in the second-stage problem that recognizes and rejects the dynamic capacity withholding of generation companies. The optimal scheduling of day-ahead generation companies considering their dynamic capacity withholding is the third contribution of this paper that optimizes the scheduling of generation units for day-ahead horizon considering responsive loads. The proposed method is applied to 30-bus, 57-bus and 118-bus IEEE test systems. A full competition algorithm is also carried out to evaluate the competition states of generation companies. The proposed algorithm detected that the dynamic capacity withholding might lead to increase of nodal price by about 279.22%, 764.43%, and 851.2% for 30-bus, 57-bus, and 118-bus IEEE test systems with respect to the non-capacity withholding conditions, respectively.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107321Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107321Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institution of Engineering and Technology (IET) Authors: Heshmatollah Nourizadeh; Ali Mosallanejad; Mehrdad SetayeshNazar;doi: 10.1049/gtd2.12488
AbstractMulti‐year generation and transmission expansion planning (MY‐G&TEP) is a critical issue in power systems. The present paper considers the optimal placement of Fixed Series Compensation (FSC) and Phase Shifting Transformer (PST) proposes a pool‐market‐based mathematical model (MY‐G&TEP) for maximizing social welfare (SW) and reducing investment costs of transmission lines and new power plants. Following the determination of optimal strategy, the present paper compares the usefulness of PSTs and FSCs in the MY‐G&TEP problem in three scenarios. Since MY‐G&TEP is a complex hybrid, mixed‐integer linear programming (MILP), and nonlinear optimization problem, the YALMIP toolbox and CPLEX solver have been applied to find the optimal solution, a globally optimized solution is obtained. For evaluation, the proposed model has been tested on the IEEE 24‐bus and IEEE 57‐bus systems, and the simulation results indicate that the installation of PST and FSC not only improves market conditions but also increases the flexibility of MY‐G&TEP, and adding these FACTS devices to the studied system leads to an increase in the network's performance and enhancement of objectives of the proposed model.
IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold Published in a Diamond OA journal 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Elsevier BV Zakernezhad, Hamid; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalao; Joao, P.S.;This paper presents a two-level optimization model for the optimal scheduling of an active distribution system in day-ahead and real-time market horizons. The distribution system operator transacts energy and ancillary services with the electricity market, plug-in hybrid electric vehicle parking lot aggregators, and demand response aggregators. Further, the active distribution system can utilize a switching procedure for its zonal tie-line switches to mitigate the effects of contingencies. The main contribution of this paper is that the proposed framework simultaneously models the arbitrage strategy of the active distribution system, electric vehicle parking lot aggregators, and demand response aggregators in the day-ahead and real-time markets. This paper's solution methodology is another contribution that utilizes robust and lexicographic ordering optimization methods. At the first stage of the first level, the optimal bidding strategies of plug-in hybrid electric vehicle parking lot aggregators and demand response aggregators are explored. Then, at the second stage of the first level, the day-ahead optimization process finds the optimal scheduling of distributed energy resources and switching of electrical switches. Finally, at the second level, the real-time optimization problem optimizes the scheduling of system resources. Different case studies were carried out to assess the effectiveness of the algorithm. The proposed algorithm increases the system's day-ahead and real-time revenues by about 52.09% and 47.04% concerning the case without the proposed method, respectively. ; © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ; fi=vertaisarvioitu|en=peerReviewed|
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FinlandPublisher:Elsevier BV Bostan, Alireza; Nazar, Mehrdad Setayesh; Shafie-khah, Miadreza; Catalão; João P.S.;Abstract This paper presents a two-level optimization problem for optimal day-ahead scheduling of an active distribution system that utilizes renewable energy sources, distributed generation units, electric vehicles, and energy storage units and sells its surplus electricity to the upward electricity market. The active distribution system transacts electricity with multiple downward energy hubs that are equipped with combined cooling, heating, and power facilities. Each energy hub operator optimizes its day-ahead scheduling problem and submits its bid/offer to the upward distribution system operator. Afterwards, the distribution system operator explores the energy hub’s bids/offers and optimizes the scheduling of its system energy resources for the day-ahead market. Further, he/she utilizes a demand response program alternative such as time-of-use and direct load control programs for downward energy hubs. In order to demonstrate the preference of the proposed method, the standard IEEE 33-bus test system is used to model the distribution system, and multiple energy hubs are used to model the energy hubs system. The proposed method increases the energy hubs electricity selling benefit about 185% with respect to the base case value; meanwhile, it reduces the distribution system operational costs about 82.2% with respect to the corresponding base case value.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.energy.2019.116349Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.energy.2019.116349Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institution of Engineering and Technology (IET) Authors: Meghdad Tourandaz Kenari; Mohammad Sadegh Sepasian; Mehrdad Setayesh Nazar; Hossein Ali Mohammadpour;The simultaneity of power systems development and uncertainty of system elements has promoted the importance of probabilistic load flow (PLF) in the operating and planning studies of the system. This clarifies that the use of the fast and accurate approaches for PLF computation is necessary. To achieve this objective, this study presents an analytical technique, based on the properties of Laplace transform (LT). The suggested methodology is applicable for every continuous probability distribution function as the input random variable. The proposed procedure is applied to the MATPOWER 9‐ and 118‐bus test systems. To validate the combined cumulants and LT (CCLT) technique, the results are compared with the Monte Carlo simulation and the cumulants method combined with the maximum entropy (CCME) principle. The test results show that the proposed approach gives accurate results, with the lower computational burden comparing CCME. Furthermore, the method formulation and case study results demonstrate that the CCLT method is mathematically straightforward and computationally efficient.
IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2017.0097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold Published in a Diamond OA journal 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2017.0097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:Elsevier BV Firouzi, Mehdi; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalão; João P.S.;This paper presents an integrated framework for the optimal resilient scheduling of an active distribution system in the day-ahead and real-time markets considering aggregators, parking lots, distributed energy resources, and Plug-in Hybrid Electric Vehicles (PHEVs) interactions. The main contribution of this paper is that the impacts of traffic patterns on the available dispatchable active power of PHEVs in day-ahead and real-time markets are explored. A two stage framework is considered. Each stage consists of a four-level optimization procedure that optimizes the scheduling problems of PHEVs, parking lots and distributed energy resources, aggregators, and active distribution system. The distribution system procures ramp-up and ramp-down services for the upward electricity market in a real-time horizon. The active distribution system can utilize a switching procedure to sectionalize its system into a multi-microgrid system to mitigate the impacts of external shocks. The model was assessed by the 123-bus test system. The proposed algorithm reduced the interruption and operating costs of the 123-bus test system by about 94.56% for the worst-case external shock. Further, the traffic pattern decreased the available ramp-up and ramp-down of parking lots by about 58.61% concerning the no-traffic case. ; © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ; fi=vertaisarvioitu|en=peerReviewed|
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 FinlandPublisher:Elsevier BV Aboutalebi, Meysam; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalao; Joao, P.S.;Abstract This paper presents a multi-stage day-ahead and real-time optimization algorithm for scheduling of system’s energy resources in the normal and external shock operational conditions. The main contribution of this paper is that the model considers the non-utility electricity generation facilities capacity withholding opportunities in the optimal scheduling of system resources. The real-time simulation of external shock impacts is another contribution of this paper that the algorithm simulates the sectionalizing of the system into multi-microgrids to increase the resiliency of the system. The optimization process is categorized into two stages that compromise normal and contingent operational conditions. Further, the normal operational scheduling problem is decomposed into three steps. At the first step, the optimal day-ahead scheduling of system resources and the switching of normally opened switches are determined. At the second step, the optimal real-time market scheduling is performed and the switching of normally closed switches is optimized. At the third step, different extreme shock scenarios are simulated in the real-time horizon and the effectiveness of sectionalizing the system into multi-micro grids are assessed. Finally, at the contingent operational conditions, the optimal topology of the system and scheduling of energy resources are determined. The proposed method was successfully assessed for the 33-bus and 123-bus test systems. The algorithm were reduced the expected cost of the worst-case contingencies for the 33-bus and 123-bus systems by about 97.89% and 88.11%, respectively. Further, the average and maximum values of the 123-bus system capacity-withholding index for real-time conditions reduced by about 67.40% and 71.05%, respectively.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107662Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107662Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Tehrani Nowbandegani, Motahhar; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalão; +1 AuthorsTehrani Nowbandegani, Motahhar; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalão; João P. S.;This article presents a distributed resilient demand response program integrated with electrical energy storage systems for residential consumers to maximize their comfort level. A dynamic real-time pricing method is proposed to determine the hourly electricity prices and schedule the electricity consumption of smart home appliances and energy storage systems commitment. The algorithm is employed in normal and emergency operating conditions, taking into account the comfort level of consumers. In emergency conditions, the power outage of consumers is modeled for different hours and outage patterns. To evaluate the applicability of the proposed model, real samples of Southern California households are considered to model the smart homes and their appliances. Further, a sensitivity analysis is performed to assess the impacts of the number of households and number of persons per household on the output results. The results showed that the proposed model reduced the costs of utility in normal and emergency conditions by about 33.77% and 30.92%, respectively. The values of total payments of consumers in normal and emergency conditions were decreased by about 34.26% and 31.31%, respectively. Further, the consumers comfort level for normal and emergency conditions increased by about 146.78% and 110.2%, respectively. Finally, the social welfare for normal and emergency conditions increased by about 46% and 49.06%, respectively. ; © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. ; fi=vertaisarvioitu|en=peerReviewed|
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2022.3148536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2022.3148536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Hindawi Limited Authors: Mehrdad Setayesh Nazar; Saeed Salarkheili;doi: 10.1002/etep.1834
Summary Market power evaluation and mitigation influence the efficiency of the electricity markets. The traditional indices cannot analyze market power, which caused by capacity withholding of generation companies. This paper describes a new approach to assess capacity withholding. The method is an improvement of a strategy previously proposed by the authors. The contributions of the new approach can be summarized as the following. First, the supply function equilibrium model and Cournot model are used to develop the concept of capacity withholding in electricity markets. Then, distortion–withheld index is calculated according to capacity constraints, reliability, and demand elasticity. Based on distortion–withheld index, the value of capacity withholding index, which shows the cost that independent system operator could spend for market power mitigation, can be obtained. It has been proved that the new approach is able to assess capacity withholding exactly and identify the proper market power mitigation program. The finding in this paper is helpful for market designers and regulators. Copyright © 2013 John Wiley & Sons, Ltd.
International Transa... arrow_drop_down International Transactions on Electrical Energy SystemsArticle . 2013 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefInternational Transactions on Electrical Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/etep.1834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Transa... arrow_drop_down International Transactions on Electrical Energy SystemsArticle . 2013 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefInternational Transactions on Electrical Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/etep.1834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Funded by:EC | SINGULAREC| SINGULARAuthors: Varasteh, Farid; Nazar, Mehrdad Setayesh; Heidari, Alireza; Shafie-khah, Miadreza; +2 AuthorsVarasteh, Farid; Nazar, Mehrdad Setayesh; Heidari, Alireza; Shafie-khah, Miadreza; Catalãof; João P.S.;Abstract This paper addresses the network expansion planning of an active microgrid that utilizes Distributed Energy Resources (DERs). The microgrid uses Combined Cooling, Heating and Power (CCHP) systems with their heating and cooling network. The proposed method uses a bi-level iterative optimization algorithm for optimal expansion and operational planning of the microgrid that consists of different zones, and each zone can transact electricity with the upward utility. The transaction of electricity with the upward utility can be performed based on demand response programs that consist of the time-of-use program and/or direct load control. DERs are CHPs, small wind turbines, photovoltaic systems, electric and cooling storage, gas fired boilers and absorption and compression chillers are used to supply different zones' electrical, heating, and cooling loads. The proposed model minimizes the system's investment, operation, interruption and environmental costs; meanwhile, it maximizes electricity export revenues and the reliability of the system. The proposed method is applied to a real building complex and five different scenarios are considered to evaluate the impact of different energy supply configurations and operational paradigm on the investment and operational costs. The effectiveness of the introduced algorithm has been assessed. The implementation of the proposed algorithm reduces the aggregated investment and operational costs of the test system in about 54.7% with respect to the custom expansion planning method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022 FinlandPublisher:Elsevier BV Tabatabaei, Mostafa; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalao; Joao, P.S.;Abstract This paper addresses an integrated framework for the dynamic capacity withholding assessment of an independent system operator that determines the mid-term maintenance scheduling of generation companies and day-ahead scheduling of wholesale market participants. The main contribution of this research is that two dynamic capacity-withholding indices are proposed for mid-term and day-ahead scheduling of generation companies that estimate the dynamic capacity withholding opportunities of generation units in an ex-ante manner. The proposed framework is another contribution of this research that uses a four-stage optimization process that the system operator can detect and prevent the formation of withholding groups. The optimal maintenance scheduling from the generation companies viewpoint is assessed in the first-stage problem that considers different mid-term withholding opportunities. The optimal mid-term maintenance scheduling is carried out in the second-stage problem that recognizes and rejects the dynamic capacity withholding of generation companies. The optimal scheduling of day-ahead generation companies considering their dynamic capacity withholding is the third contribution of this paper that optimizes the scheduling of generation units for day-ahead horizon considering responsive loads. The proposed method is applied to 30-bus, 57-bus and 118-bus IEEE test systems. A full competition algorithm is also carried out to evaluate the competition states of generation companies. The proposed algorithm detected that the dynamic capacity withholding might lead to increase of nodal price by about 279.22%, 764.43%, and 851.2% for 30-bus, 57-bus, and 118-bus IEEE test systems with respect to the non-capacity withholding conditions, respectively.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107321Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107321Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107321&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Institution of Engineering and Technology (IET) Authors: Heshmatollah Nourizadeh; Ali Mosallanejad; Mehrdad SetayeshNazar;doi: 10.1049/gtd2.12488
AbstractMulti‐year generation and transmission expansion planning (MY‐G&TEP) is a critical issue in power systems. The present paper considers the optimal placement of Fixed Series Compensation (FSC) and Phase Shifting Transformer (PST) proposes a pool‐market‐based mathematical model (MY‐G&TEP) for maximizing social welfare (SW) and reducing investment costs of transmission lines and new power plants. Following the determination of optimal strategy, the present paper compares the usefulness of PSTs and FSCs in the MY‐G&TEP problem in three scenarios. Since MY‐G&TEP is a complex hybrid, mixed‐integer linear programming (MILP), and nonlinear optimization problem, the YALMIP toolbox and CPLEX solver have been applied to find the optimal solution, a globally optimized solution is obtained. For evaluation, the proposed model has been tested on the IEEE 24‐bus and IEEE 57‐bus systems, and the simulation results indicate that the installation of PST and FSC not only improves market conditions but also increases the flexibility of MY‐G&TEP, and adding these FACTS devices to the studied system leads to an increase in the network's performance and enhancement of objectives of the proposed model.
IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold Published in a Diamond OA journal 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/gtd2.12488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Elsevier BV Zakernezhad, Hamid; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalao; Joao, P.S.;This paper presents a two-level optimization model for the optimal scheduling of an active distribution system in day-ahead and real-time market horizons. The distribution system operator transacts energy and ancillary services with the electricity market, plug-in hybrid electric vehicle parking lot aggregators, and demand response aggregators. Further, the active distribution system can utilize a switching procedure for its zonal tie-line switches to mitigate the effects of contingencies. The main contribution of this paper is that the proposed framework simultaneously models the arbitrage strategy of the active distribution system, electric vehicle parking lot aggregators, and demand response aggregators in the day-ahead and real-time markets. This paper's solution methodology is another contribution that utilizes robust and lexicographic ordering optimization methods. At the first stage of the first level, the optimal bidding strategies of plug-in hybrid electric vehicle parking lot aggregators and demand response aggregators are explored. Then, at the second stage of the first level, the day-ahead optimization process finds the optimal scheduling of distributed energy resources and switching of electrical switches. Finally, at the second level, the real-time optimization problem optimizes the scheduling of system resources. Different case studies were carried out to assess the effectiveness of the algorithm. The proposed algorithm increases the system's day-ahead and real-time revenues by about 52.09% and 47.04% concerning the case without the proposed method, respectively. ; © 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ; fi=vertaisarvioitu|en=peerReviewed|
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.118865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FinlandPublisher:Elsevier BV Bostan, Alireza; Nazar, Mehrdad Setayesh; Shafie-khah, Miadreza; Catalão; João P.S.;Abstract This paper presents a two-level optimization problem for optimal day-ahead scheduling of an active distribution system that utilizes renewable energy sources, distributed generation units, electric vehicles, and energy storage units and sells its surplus electricity to the upward electricity market. The active distribution system transacts electricity with multiple downward energy hubs that are equipped with combined cooling, heating, and power facilities. Each energy hub operator optimizes its day-ahead scheduling problem and submits its bid/offer to the upward distribution system operator. Afterwards, the distribution system operator explores the energy hub’s bids/offers and optimizes the scheduling of its system energy resources for the day-ahead market. Further, he/she utilizes a demand response program alternative such as time-of-use and direct load control programs for downward energy hubs. In order to demonstrate the preference of the proposed method, the standard IEEE 33-bus test system is used to model the distribution system, and multiple energy hubs are used to model the energy hubs system. The proposed method increases the energy hubs electricity selling benefit about 185% with respect to the base case value; meanwhile, it reduces the distribution system operational costs about 82.2% with respect to the corresponding base case value.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.energy.2019.116349Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2020License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.energy.2019.116349Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.116349&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Institution of Engineering and Technology (IET) Authors: Meghdad Tourandaz Kenari; Mohammad Sadegh Sepasian; Mehrdad Setayesh Nazar; Hossein Ali Mohammadpour;The simultaneity of power systems development and uncertainty of system elements has promoted the importance of probabilistic load flow (PLF) in the operating and planning studies of the system. This clarifies that the use of the fast and accurate approaches for PLF computation is necessary. To achieve this objective, this study presents an analytical technique, based on the properties of Laplace transform (LT). The suggested methodology is applicable for every continuous probability distribution function as the input random variable. The proposed procedure is applied to the MATPOWER 9‐ and 118‐bus test systems. To validate the combined cumulants and LT (CCLT) technique, the results are compared with the Monte Carlo simulation and the cumulants method combined with the maximum entropy (CCME) principle. The test results show that the proposed approach gives accurate results, with the lower computational burden comparing CCME. Furthermore, the method formulation and case study results demonstrate that the CCLT method is mathematically straightforward and computationally efficient.
IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2017.0097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold Published in a Diamond OA journal 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IET Generation, Tran... arrow_drop_down IET Generation, Transmission & DistributionArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/iet-gtd.2017.0097&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:Elsevier BV Firouzi, Mehdi; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalão; João P.S.;This paper presents an integrated framework for the optimal resilient scheduling of an active distribution system in the day-ahead and real-time markets considering aggregators, parking lots, distributed energy resources, and Plug-in Hybrid Electric Vehicles (PHEVs) interactions. The main contribution of this paper is that the impacts of traffic patterns on the available dispatchable active power of PHEVs in day-ahead and real-time markets are explored. A two stage framework is considered. Each stage consists of a four-level optimization procedure that optimizes the scheduling problems of PHEVs, parking lots and distributed energy resources, aggregators, and active distribution system. The distribution system procures ramp-up and ramp-down services for the upward electricity market in a real-time horizon. The active distribution system can utilize a switching procedure to sectionalize its system into a multi-microgrid system to mitigate the impacts of external shocks. The model was assessed by the 123-bus test system. The proposed algorithm reduced the interruption and operating costs of the 123-bus test system by about 94.56% for the worst-case external shock. Further, the traffic pattern decreased the available ramp-up and ramp-down of parking lots by about 58.61% concerning the no-traffic case. ; © 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ; fi=vertaisarvioitu|en=peerReviewed|
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2023.120703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 FinlandPublisher:Elsevier BV Aboutalebi, Meysam; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalao; Joao, P.S.;Abstract This paper presents a multi-stage day-ahead and real-time optimization algorithm for scheduling of system’s energy resources in the normal and external shock operational conditions. The main contribution of this paper is that the model considers the non-utility electricity generation facilities capacity withholding opportunities in the optimal scheduling of system resources. The real-time simulation of external shock impacts is another contribution of this paper that the algorithm simulates the sectionalizing of the system into multi-microgrids to increase the resiliency of the system. The optimization process is categorized into two stages that compromise normal and contingent operational conditions. Further, the normal operational scheduling problem is decomposed into three steps. At the first step, the optimal day-ahead scheduling of system resources and the switching of normally opened switches are determined. At the second step, the optimal real-time market scheduling is performed and the switching of normally closed switches is optimized. At the third step, different extreme shock scenarios are simulated in the real-time horizon and the effectiveness of sectionalizing the system into multi-micro grids are assessed. Finally, at the contingent operational conditions, the optimal topology of the system and scheduling of energy resources are determined. The proposed method was successfully assessed for the 33-bus and 123-bus test systems. The algorithm were reduced the expected cost of the worst-case contingencies for the 33-bus and 123-bus systems by about 97.89% and 88.11%, respectively. Further, the average and maximum values of the 123-bus system capacity-withholding index for real-time conditions reduced by about 67.40% and 71.05%, respectively.
Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107662Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Osuva (University of... arrow_drop_down Osuva (University of Vaasa)Article . 2022License: CC BY NC NDFull-Text: https://doi.org/10.1016/j.ijepes.2021.107662Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Electrical Power & Energy SystemsArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInternational Journal of Electrical Power & Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijepes.2021.107662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FinlandPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Tehrani Nowbandegani, Motahhar; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalão; +1 AuthorsTehrani Nowbandegani, Motahhar; Setayesh Nazar, Mehrdad; Shafie-khah, Miadreza; Catalão; João P. S.;This article presents a distributed resilient demand response program integrated with electrical energy storage systems for residential consumers to maximize their comfort level. A dynamic real-time pricing method is proposed to determine the hourly electricity prices and schedule the electricity consumption of smart home appliances and energy storage systems commitment. The algorithm is employed in normal and emergency operating conditions, taking into account the comfort level of consumers. In emergency conditions, the power outage of consumers is modeled for different hours and outage patterns. To evaluate the applicability of the proposed model, real samples of Southern California households are considered to model the smart homes and their appliances. Further, a sensitivity analysis is performed to assess the impacts of the number of households and number of persons per household on the output results. The results showed that the proposed model reduced the costs of utility in normal and emergency conditions by about 33.77% and 30.92%, respectively. The values of total payments of consumers in normal and emergency conditions were decreased by about 34.26% and 31.31%, respectively. Further, the consumers comfort level for normal and emergency conditions increased by about 146.78% and 110.2%, respectively. Finally, the social welfare for normal and emergency conditions increased by about 46% and 49.06%, respectively. ; © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. ; fi=vertaisarvioitu|en=peerReviewed|
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2022.3148536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jsyst.2022.3148536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Hindawi Limited Authors: Mehrdad Setayesh Nazar; Saeed Salarkheili;doi: 10.1002/etep.1834
Summary Market power evaluation and mitigation influence the efficiency of the electricity markets. The traditional indices cannot analyze market power, which caused by capacity withholding of generation companies. This paper describes a new approach to assess capacity withholding. The method is an improvement of a strategy previously proposed by the authors. The contributions of the new approach can be summarized as the following. First, the supply function equilibrium model and Cournot model are used to develop the concept of capacity withholding in electricity markets. Then, distortion–withheld index is calculated according to capacity constraints, reliability, and demand elasticity. Based on distortion–withheld index, the value of capacity withholding index, which shows the cost that independent system operator could spend for market power mitigation, can be obtained. It has been proved that the new approach is able to assess capacity withholding exactly and identify the proper market power mitigation program. The finding in this paper is helpful for market designers and regulators. Copyright © 2013 John Wiley & Sons, Ltd.
International Transa... arrow_drop_down International Transactions on Electrical Energy SystemsArticle . 2013 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefInternational Transactions on Electrical Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/etep.1834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert International Transa... arrow_drop_down International Transactions on Electrical Energy SystemsArticle . 2013 . Peer-reviewedLicense: Wiley TDMData sources: CrossrefInternational Transactions on Electrical Energy SystemsJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/etep.1834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FinlandPublisher:Elsevier BV Funded by:EC | SINGULAREC| SINGULARAuthors: Varasteh, Farid; Nazar, Mehrdad Setayesh; Heidari, Alireza; Shafie-khah, Miadreza; +2 AuthorsVarasteh, Farid; Nazar, Mehrdad Setayesh; Heidari, Alireza; Shafie-khah, Miadreza; Catalãof; João P.S.;Abstract This paper addresses the network expansion planning of an active microgrid that utilizes Distributed Energy Resources (DERs). The microgrid uses Combined Cooling, Heating and Power (CCHP) systems with their heating and cooling network. The proposed method uses a bi-level iterative optimization algorithm for optimal expansion and operational planning of the microgrid that consists of different zones, and each zone can transact electricity with the upward utility. The transaction of electricity with the upward utility can be performed based on demand response programs that consist of the time-of-use program and/or direct load control. DERs are CHPs, small wind turbines, photovoltaic systems, electric and cooling storage, gas fired boilers and absorption and compression chillers are used to supply different zones' electrical, heating, and cooling loads. The proposed model minimizes the system's investment, operation, interruption and environmental costs; meanwhile, it maximizes electricity export revenues and the reliability of the system. The proposed method is applied to a real building complex and five different scenarios are considered to evaluate the impact of different energy supply configurations and operational paradigm on the investment and operational costs. The effectiveness of the introduced algorithm has been assessed. The implementation of the proposed algorithm reduces the aggregated investment and operational costs of the test system in about 54.7% with respect to the custom expansion planning method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2019.01.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu