- home
- Advanced Search
- Energy Research
- 7. Clean energy
- Energy Research
- 7. Clean energy
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Yuandong Xu;
Baoshan Huang;Yuandong Xu
Yuandong Xu in OpenAIREYuliang Yun;
Robert Cattley; +2 AuthorsYuliang Yun
Yuliang Yun in OpenAIREYuandong Xu;
Baoshan Huang;Yuandong Xu
Yuandong Xu in OpenAIREYuliang Yun;
Robert Cattley;Yuliang Yun
Yuliang Yun in OpenAIREFengshou Gu;
Fengshou Gu
Fengshou Gu in OpenAIREAndrew D. Ball;
Andrew D. Ball
Andrew D. Ball in OpenAIREdoi: 10.3390/en13030565
Internal combustion (IC) engine based powertrains are one of the most commonly used transmission systems in various industries such as train, ship and power generation industries. The powertrains, acting as the cores of machinery, dominate the performance of the systems; however, the powertrain systems are inevitably degraded in service. Consequently, it is essential to monitor the health of the powertrains, which can secure the high efficiency and pronounced reliability of the machines. Conventional vibration based monitoring approaches often require a considerable number of transducers due to large layout of the systems, which results in a cost-intensive, difficultly-deployed and not-robust monitoring scheme. This study aims to develop an efficient and cost-effective approach for monitoring large engine powertrains. Our model based investigation showed that a single measurement at the position of coupling is optimal for monitoring deployment. By using the instantaneous angular speed (IAS) obtained at the coupling, a novel fault indicator and polar representation showed the effective and efficient fault diagnosis for the misfire faults in different cylinders under wide working conditions of engines; we also verified that by experimental studies. Based on the simulation and experimental investigation, it can be seen that single IAS channel is effective and efficient at monitoring the misfire faults in large powertrain systems.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/565/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/3/565/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13030565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Jinxin Wang; Chi Zhang; Xiuzhen Ma; Zhongwei Wang;Yuandong Xu;
Robert Cattley;Yuandong Xu
Yuandong Xu in OpenAIREdoi: 10.3390/en13040873
The problem of timely detecting the engine faults that make engine operating parameters exceed their control limits has been well-solved. However, in practice, a fault of a diesel engine can be present with weak signatures, with the parameters fluctuating within their control limits when the fault occurs. The weak signatures of engine faults bring considerable difficulties to the effective condition monitoring of diesel engines. In this paper, a multivariate statistics-based fault detection approach is proposed to monitor engine faults with weak signatures by taking the correlation of various parameters into consideration. This approach firstly uses principal component analysis (PCA) to project the engine observations into a principal component subspace (PCS) and a residual subspace (RS). Two statistics, i.e., Hotelling’s T 2 and Q statistics, are then introduced to detect deviations in the PCS and the RS, respectively. The Hotelling’s T 2 and Q statistics are constructed by taking the correlation of various parameters into consideration, so that faults with weak signatures can be effectively detected via these two statistics. In order to reasonably determine the control limits of the statistics, adaptive kernel density estimation (KDE) is utilized to estimate the probability density functions (PDFs) of Hotelling’s T 2 and Q statistics. The control limits are accordingly derived from the PDFs by giving a desired confidence level. The proposed approach is demonstrated by using a marine diesel engine. Experimental results show that the proposed approach can effectively detect engine faults with weak signatures.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/873/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/4/873/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13040873&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Nasha Wei; Zhi Chen;Yuandong Xu;
Yuandong Xu
Yuandong Xu in OpenAIREFengshou Gu;
+1 AuthorsFengshou Gu
Fengshou Gu in OpenAIRENasha Wei; Zhi Chen;Yuandong Xu;
Yuandong Xu
Yuandong Xu in OpenAIREFengshou Gu;
Fengshou Gu
Fengshou Gu in OpenAIREAndrew Ball;
Andrew Ball
Andrew Ball in OpenAIREdoi: 10.3390/en14082315
handle: 10044/1/94587
The wide use of different alternative fuels (AL) has led to challenges to the internal combustion (IC) engine tribology. To avoid any unpredicted damages to lubrication joints by using AL fuels, this study aims to accurately evaluate the influences of alternative fuels on the tribological behavior of IC engines. Recent achievements of the acoustic emission (AE) mechanism in sliding friction provide an opportunity to explain the tribological AE responses on engines. The asperity–asperity–collision (AAC) and fluid–asperity–shearing (FAS) mechanisms were applied to explain the AE responses from the piston ring and cylinder liner system. A new adaptive threshold–wavelet packets transform (WPT) method was developed to extract tribological AE features. Experimental tests were conducted by fueling three fuels: pure diesel (PD), biodiesel (BD), and Fischer–Tropsch (F–T) diesel. The FAS–AE indicators of biodiesel and F–T diesel show a tiny difference compared to the baseline diesel using two types of lubricants. Biodiesel produces more AAC impacts with higher AAC–AE responses than F–T diesel, which occurs at high speeds due to high temperatures and more particles after combustion than diesel. This new algorithm demonstrated the high performance of using AE signals in monitoring the tribological impacts of alternative fuels on engines.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2315/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94587Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/8/2315/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/94587Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14082315&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu