- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Chemical Society (ACS) Authors: Congling Wang; Xuebin Wang; Houzhang Tan; Tongmo Xu;doi: 10.1021/ef800935u
Experimental investigation on the removal of hydrogen cyanide (HCN) using calcium oxide (CaO) was carried out in a fixed bed reactor at temperature ranging from 300 to 1173 K, and the original HCN ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef800935u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef800935u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 CroatiaPublisher:Elsevier BV Hrvoje Stančin; Hrvoje Mikulčić; Hrvoje Mikulčić; Neven Duić; Xuebin Wang;Transition and decarbonization of the energy sector require the utilization of new technologies and energy sources. Higher penetration of intermittent renewable energy sources implies following ; the installation of energy storages, to store electricity excess, and enhanced system efficiency. This electricity surpluses that will occur more often in the future energy system, could be effectively utilized for the production of alternative fuels. Most of the alternative fuels that are considered for future application are already known chemicals or products, nowadays used for other purposes. Another great advantage of some alternative fuels lies in their possibilities to act as an energy carrier. This feature might be crucial while discussing their utilization potential and further development. Fuels which can simultaneously be used for power generation and as an energy carrier will have a more important role in the future and are likely to be utilized on a greater scale. Renewable energy source like biomass, on the other hand, is already widely used and their role in the future system is not questionable. Even though, significant increment in their consumption raises serious concerns about their sustainability. For this reason, new approaches to upgrading biomass products were presented. In these new approaches, demands for biomass are partially satisfied by some other type of feedstock (i.e. waste) and obtained characteristics of derived products are enhanced. In this work, the Authors tried to review alternative fuel characteristics, alongside their utilization and production opportunities. In the end, the Authors emphasized the importance of a more comprehensive approach toward this topic in order to come up with the optimal and most appropriate solutions and successfully prevail existing barriers.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRenewable and Sustainable Energy ReviewsArticle . 2020Data sources: Croatian Research Information SystemRenewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 324 citations 324 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRenewable and Sustainable Energy ReviewsArticle . 2020Data sources: Croatian Research Information SystemRenewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 CroatiaPublisher:Elsevier BV Hrvoje Mikulčić; Hrvoje Mikulčić; Xuebin Wang; Raf Dewil; Neven Duić;pmid: 32072943
Integration of energy, water and environment systems is essential in the multidisciplinary concept of sustainable development, as they represent the basic life needs of mankind. Therefore, problems arising from the sustainable development concept need to be carefully addressed to preserve the energy, water and environment resources for future generations. This article discusses some of the latest developments in three main areas of sustainability themes, namely energy, water and environment, that emerged from three Sustainable Development of Energy, Water and Environment Systems (SDEWES) conferences held in 2018. As such, it acts as an editorial paper for the virtual special issue of the Journal of Environmental Management, dedicated to the SDEWES2018 conferences.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIJournal of Environmental ManagementOther literature type . 2020Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIJournal of Environmental ManagementOther literature type . 2020Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Jiaye Zhang; Houzhang Tan; Chongming Chen; Shijie Zheng; Xuebin Wang; Zia ur Rahman;Abstract Pyrolysis is the key step in biomass thermochemical conversion process. The network model can accurately predict the pyrolysis process but generally cannot incorporate the combustion and gasification sub-models due to its complexity. This paper used the Bio-CPD model to predict the pyrolysis products of softwood and hardwood respectively; based on the predicted results, two empirical-simple forms of pyrolysis models were further optimized. The ultimate kinetic parameters obtained are suitable for biomass pyrolysis at high heating rate. For softwood, after being optimized, the apparent frequency factor and E/R of single rate are 4.3106e + 07 s−1, 10042 K respectively. While for two-competing rates model, the parameters are, α1 = 0.75, α2 = 0.89, A1 = 7992 s−1, E1/R = 7000 K, A2 = 8.3e + 09 s−1, E2/R = 14520 K, respectively. The numerical simulation of biomass pyrolysis and combustion process were performed by using CFD code Ansys Fluent. The results reveal that the release of volatile predicted by the default parameters have a delay compared with the actual process and is not appropriate for biomass simulation, while the optimized parameters in two simple models are accurate enough to simulate the biomass pyrolysis at high heating rate (103–105 K/s).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Chemical Society (ACS) Zhongfa Hu; Xuebin Wang; Renhui Ruan; Shuaishuai Li; Shengjie Bai; Jiaye Zhang; Houzhang Tan;The sulfation process during biomass combustion and cofiring, by converting KCl into K2SO4, can affect particulate matter (PM) formation, ash deposition, and corrosion in a furnace. In this study, the effects of temperature, SO2 concentration, O2 concentration, and oxy-combustion atmosphere on the sulfation and PM formation were investigated in an entrained flow reactor. Results show that the particle size distribution (PSD) of PM10 from biomass combustion is bimodal and that PM10 is dominated by PM1.0 consisting of KCl and K2SO4. Enhanced sulfation by SO2 addition generally increases the particle size of PM1.0 and the K2SO4 content in PM1.0, but its effect on PM1.0–10 is marginal. The effect of sulfation on PM1.0 formation strongly depends on the temperature: at high temperature (e.g., 1300 °C), sulfation is not favorable, thereby having negligible influence on PM1.0 formation; while at moderate temperature (e.g., 1100 °C), sulfation is significantly promoted, resulting in a larger size and higher yield ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b02831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b02831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Ao Zhou; Wenjing Ma; Renhui Ruan; Yuan Li; Qingfu Zhang; Rui Mao; Shilin Yu; Shuanghui Deng; Houzhang Tan; Xuebin Wang;Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Tongmo Xu; Jipeng Si; Xuebin Wang; Houzhang Tan; Houzhang Tan; Lin Ma; Mohamed Pourkashanian;doi: 10.1021/ef1007215
Transformation of nitrogen, sulfur, and chlorine during straw pyrolysis at temperatures from 35 to 1450 °C was investigated by using the coupled thermogravimetry−differential scanning calorimetry−mass spectrometry (TG-DSC-MS) techniques and compared with that of coal. The characteristics of the residual solid char from the straw were analyzed using x-ray diffraction (XRD). Results show that all the nitrogen species (HCN, NH3, HNCO, and CH3CN), chloric species (HCl and Cl2), and sulfur species (SO2, H2S and COS) began to release from straw from 200 °C, compared with 350 °C for the case of coal. Most of the gaseous species from the straw were released in the form of a sharp peak, compared with the coal which has a much wider peak. NH3 and HNCO were the primary nitrogen species for both straw and coal; however for the straw the amount of NH3 released was much higher than that of HNCO. Sulfur species from the straw pyrolysis are sparse, and there was only a little COS released. During coal pyrolysis no COS wa...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef1007215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef1007215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Yanqing Niu; Yingying Xiong; Houzhang Tan; Xuebin Wang;AbstractIn lignite-fired power plants, the high water content of lignite (35-40%) is responsible for significant reductions in boiler efficiency due to the large amounts of heat loss experienced through water evaporation during coal combustion. Installation of a water condensation device in the outlet of the desulfurization absorption tower can recover substantial amounts of water and latent heat from the flue gas that containing saturated steam. In the present study, a pilot test platform was built into a 600MW lignite-fired power plant, and a 50,000m3/h flue gas flow was been extracted and cooled by 5°Cduring the test. Using our theoretical model for this energy efficiency innovation, the test results demonstrate that 129.5GJ/h of latent heat can be recovered and 61.6t/h condensate water can be collected from the flue gas (2,500,000m3/h) for the600MWlignite-fired power plant. The wet flue gas desulphurization system (wet FGD) consumes the supplemental water of 60-80 t/h for this power plant. Consequently, the water recovery quantity of 73 t/h demonstrate that zero net water consumption can be achieved by returning the recovered water back into wet FGD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Malaysia, Denmark, MalaysiaPublisher:Elsevier BV Authors: Mikulcic, Hrvoje; Ridjan Skov, Iva; Dominkovic, Dominik Franjo; Wan Alwi, Sharifah Rafidah; +5 AuthorsMikulcic, Hrvoje; Ridjan Skov, Iva; Dominkovic, Dominik Franjo; Wan Alwi, Sharifah Rafidah; Abdul Manan, Zainuddin; Tan, Raymond; Duic, Neven; Mohamad, Siti Nur Hidayah; Wang, Xuebin;Future 100% renewable energy systems will have to integrate different sectors, including provision of power, heating, cooling and transport. Such energy systems will be needed to mitigate the negative impacts of economic development based on the use of fossil fuels, but will rely on variable renewable energy resources. As two-thirds of global greenhouse gas emissions can be attributed to fossil fuel combustion, decarbonization of energy systems is imperative for combating the climate change. Integrating future energy systems with CO2 capture and utilization technologies can contribute to deep decarbonization. As these technologies can be operated flexibly, they can be used to balance the grid to allow for high levels of variable renewable energy in the power mix. The captured CO2 can be either utilized as a feedstock for various value-added applications in the chemical industry and related sectors such as the food and beverage industries. This paper reviews the state-of-the-art literature on CO2 capture and utilization technologies, with an emphasis on their potential integration into a low-carbon, high-renewables penetration grid. The potential market size for CO2 as raw material is also elaborated and discussed. The review paper provides an insight to the development and the technological needs of different energy system sectors, as well the limitations, challenges and research gaps to the integration of the variable renewable energy sources and flexible carbon capture and utilization technologies.
Renewable and Sustai... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 CroatiaPublisher:Elsevier BV Gaofeng Dai; Milan Vujanović; Houzhang Tan; Jiaye Zhang; Xuebin Wang; Hrvoje Mikulčić; Hrvoje Mikulčić;A waste by-product from chemical industry, called high-carbon-ash (HCA), appears to be a potential alternative fuel for cement industry. However, because of different fuel characteristics, use of HCA as a fuel directly affects the performance characteristics of existing pulverized fuel fired furnaces. To achieve the aim of HCA utilisation in existing pulverized coal fired furnaces, it is significant to investigate the combustibility of HCA and then propose a comprehensive way of its utilisation. In this study, the physical and chemical properties of the HCA were investigated. A drop tube furnace was employed to test the combustibility of HCA in a pulverized furnace. After the pulverized HCA was experimentally investigated, an HCA combustion model was developed within a computational fluid dynamics (CFD) code AVL FIRE®. The CFD code was then used for the analysis. The experimentally obtained results were used to validate the numerical model. The comparison of results showed satisfactory agreement between the numerical predictions and experimental data. Finally, the validated numerical model was used to numerically study the co-firing of coal and HCA inside of a real industrial cement calciner furnace. It is suggested that no more than 30% of HCA, in thermal share, should be burned in order not to affect the rate of calcium carbonate decomposition on the calciner’s outlet. The study results show that 78, 408 tonnes of HCA per year could be utilised in cement production and avoid landfilling. This indicates that HCA used in cement industry and avoided from the landfill contributes to a more sustainable waste management of HCA and to a cleaner cement production.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2020Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2020Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:American Chemical Society (ACS) Authors: Congling Wang; Xuebin Wang; Houzhang Tan; Tongmo Xu;doi: 10.1021/ef800935u
Experimental investigation on the removal of hydrogen cyanide (HCN) using calcium oxide (CaO) was carried out in a fixed bed reactor at temperature ranging from 300 to 1173 K, and the original HCN ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef800935u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu49 citations 49 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef800935u&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 CroatiaPublisher:Elsevier BV Hrvoje Stančin; Hrvoje Mikulčić; Hrvoje Mikulčić; Neven Duić; Xuebin Wang;Transition and decarbonization of the energy sector require the utilization of new technologies and energy sources. Higher penetration of intermittent renewable energy sources implies following ; the installation of energy storages, to store electricity excess, and enhanced system efficiency. This electricity surpluses that will occur more often in the future energy system, could be effectively utilized for the production of alternative fuels. Most of the alternative fuels that are considered for future application are already known chemicals or products, nowadays used for other purposes. Another great advantage of some alternative fuels lies in their possibilities to act as an energy carrier. This feature might be crucial while discussing their utilization potential and further development. Fuels which can simultaneously be used for power generation and as an energy carrier will have a more important role in the future and are likely to be utilized on a greater scale. Renewable energy source like biomass, on the other hand, is already widely used and their role in the future system is not questionable. Even though, significant increment in their consumption raises serious concerns about their sustainability. For this reason, new approaches to upgrading biomass products were presented. In these new approaches, demands for biomass are partially satisfied by some other type of feedstock (i.e. waste) and obtained characteristics of derived products are enhanced. In this work, the Authors tried to review alternative fuel characteristics, alongside their utilization and production opportunities. In the end, the Authors emphasized the importance of a more comprehensive approach toward this topic in order to come up with the optimal and most appropriate solutions and successfully prevail existing barriers.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRenewable and Sustainable Energy ReviewsArticle . 2020Data sources: Croatian Research Information SystemRenewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 324 citations 324 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIRenewable and Sustainable Energy ReviewsArticle . 2020Data sources: Croatian Research Information SystemRenewable and Sustainable Energy ReviewsArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2019Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.109927&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 CroatiaPublisher:Elsevier BV Hrvoje Mikulčić; Hrvoje Mikulčić; Xuebin Wang; Raf Dewil; Neven Duić;pmid: 32072943
Integration of energy, water and environment systems is essential in the multidisciplinary concept of sustainable development, as they represent the basic life needs of mankind. Therefore, problems arising from the sustainable development concept need to be carefully addressed to preserve the energy, water and environment resources for future generations. This article discusses some of the latest developments in three main areas of sustainability themes, namely energy, water and environment, that emerged from three Sustainable Development of Energy, Water and Environment Systems (SDEWES) conferences held in 2018. As such, it acts as an editorial paper for the virtual special issue of the Journal of Environmental Management, dedicated to the SDEWES2018 conferences.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIJournal of Environmental ManagementOther literature type . 2020Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2020Data sources: Croatian Scientific Bibliography - CROSBIJournal of Environmental ManagementOther literature type . 2020Data sources: Croatian Research Information SystemJournal of Environmental ManagementArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2019.109666&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Jiaye Zhang; Houzhang Tan; Chongming Chen; Shijie Zheng; Xuebin Wang; Zia ur Rahman;Abstract Pyrolysis is the key step in biomass thermochemical conversion process. The network model can accurately predict the pyrolysis process but generally cannot incorporate the combustion and gasification sub-models due to its complexity. This paper used the Bio-CPD model to predict the pyrolysis products of softwood and hardwood respectively; based on the predicted results, two empirical-simple forms of pyrolysis models were further optimized. The ultimate kinetic parameters obtained are suitable for biomass pyrolysis at high heating rate. For softwood, after being optimized, the apparent frequency factor and E/R of single rate are 4.3106e + 07 s−1, 10042 K respectively. While for two-competing rates model, the parameters are, α1 = 0.75, α2 = 0.89, A1 = 7992 s−1, E1/R = 7000 K, A2 = 8.3e + 09 s−1, E2/R = 14520 K, respectively. The numerical simulation of biomass pyrolysis and combustion process were performed by using CFD code Ansys Fluent. The results reveal that the release of volatile predicted by the default parameters have a delay compared with the actual process and is not appropriate for biomass simulation, while the optimized parameters in two simple models are accurate enough to simulate the biomass pyrolysis at high heating rate (103–105 K/s).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2021.120266&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:American Chemical Society (ACS) Zhongfa Hu; Xuebin Wang; Renhui Ruan; Shuaishuai Li; Shengjie Bai; Jiaye Zhang; Houzhang Tan;The sulfation process during biomass combustion and cofiring, by converting KCl into K2SO4, can affect particulate matter (PM) formation, ash deposition, and corrosion in a furnace. In this study, the effects of temperature, SO2 concentration, O2 concentration, and oxy-combustion atmosphere on the sulfation and PM formation were investigated in an entrained flow reactor. Results show that the particle size distribution (PSD) of PM10 from biomass combustion is bimodal and that PM10 is dominated by PM1.0 consisting of KCl and K2SO4. Enhanced sulfation by SO2 addition generally increases the particle size of PM1.0 and the K2SO4 content in PM1.0, but its effect on PM1.0–10 is marginal. The effect of sulfation on PM1.0 formation strongly depends on the temperature: at high temperature (e.g., 1300 °C), sulfation is not favorable, thereby having negligible influence on PM1.0 formation; while at moderate temperature (e.g., 1100 °C), sulfation is significantly promoted, resulting in a larger size and higher yield ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b02831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.8b02831&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Ao Zhou; Wenjing Ma; Renhui Ruan; Yuan Li; Qingfu Zhang; Rui Mao; Shilin Yu; Shuanghui Deng; Houzhang Tan; Xuebin Wang;Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2022.107438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:American Chemical Society (ACS) Tongmo Xu; Jipeng Si; Xuebin Wang; Houzhang Tan; Houzhang Tan; Lin Ma; Mohamed Pourkashanian;doi: 10.1021/ef1007215
Transformation of nitrogen, sulfur, and chlorine during straw pyrolysis at temperatures from 35 to 1450 °C was investigated by using the coupled thermogravimetry−differential scanning calorimetry−mass spectrometry (TG-DSC-MS) techniques and compared with that of coal. The characteristics of the residual solid char from the straw were analyzed using x-ray diffraction (XRD). Results show that all the nitrogen species (HCN, NH3, HNCO, and CH3CN), chloric species (HCl and Cl2), and sulfur species (SO2, H2S and COS) began to release from straw from 200 °C, compared with 350 °C for the case of coal. Most of the gaseous species from the straw were released in the form of a sharp peak, compared with the coal which has a much wider peak. NH3 and HNCO were the primary nitrogen species for both straw and coal; however for the straw the amount of NH3 released was much higher than that of HNCO. Sulfur species from the straw pyrolysis are sparse, and there was only a little COS released. During coal pyrolysis no COS wa...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef1007215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/ef1007215&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Yanqing Niu; Yingying Xiong; Houzhang Tan; Xuebin Wang;AbstractIn lignite-fired power plants, the high water content of lignite (35-40%) is responsible for significant reductions in boiler efficiency due to the large amounts of heat loss experienced through water evaporation during coal combustion. Installation of a water condensation device in the outlet of the desulfurization absorption tower can recover substantial amounts of water and latent heat from the flue gas that containing saturated steam. In the present study, a pilot test platform was built into a 600MW lignite-fired power plant, and a 50,000m3/h flue gas flow was been extracted and cooled by 5°Cduring the test. Using our theoretical model for this energy efficiency innovation, the test results demonstrate that 129.5GJ/h of latent heat can be recovered and 61.6t/h condensate water can be collected from the flue gas (2,500,000m3/h) for the600MWlignite-fired power plant. The wet flue gas desulphurization system (wet FGD) consumes the supplemental water of 60-80 t/h for this power plant. Consequently, the water recovery quantity of 73 t/h demonstrate that zero net water consumption can be achieved by returning the recovered water back into wet FGD.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2014.12.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Malaysia, Denmark, MalaysiaPublisher:Elsevier BV Authors: Mikulcic, Hrvoje; Ridjan Skov, Iva; Dominkovic, Dominik Franjo; Wan Alwi, Sharifah Rafidah; +5 AuthorsMikulcic, Hrvoje; Ridjan Skov, Iva; Dominkovic, Dominik Franjo; Wan Alwi, Sharifah Rafidah; Abdul Manan, Zainuddin; Tan, Raymond; Duic, Neven; Mohamad, Siti Nur Hidayah; Wang, Xuebin;Future 100% renewable energy systems will have to integrate different sectors, including provision of power, heating, cooling and transport. Such energy systems will be needed to mitigate the negative impacts of economic development based on the use of fossil fuels, but will rely on variable renewable energy resources. As two-thirds of global greenhouse gas emissions can be attributed to fossil fuel combustion, decarbonization of energy systems is imperative for combating the climate change. Integrating future energy systems with CO2 capture and utilization technologies can contribute to deep decarbonization. As these technologies can be operated flexibly, they can be used to balance the grid to allow for high levels of variable renewable energy in the power mix. The captured CO2 can be either utilized as a feedstock for various value-added applications in the chemical industry and related sectors such as the food and beverage industries. This paper reviews the state-of-the-art literature on CO2 capture and utilization technologies, with an emphasis on their potential integration into a low-carbon, high-renewables penetration grid. The potential market size for CO2 as raw material is also elaborated and discussed. The review paper provides an insight to the development and the technological needs of different energy system sectors, as well the limitations, challenges and research gaps to the integration of the variable renewable energy sources and flexible carbon capture and utilization technologies.
Renewable and Sustai... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 210 citations 210 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Online Research Database In TechnologyArticle . 2019Data sources: Online Research Database In TechnologyRenewable and Sustainable Energy ReviewsArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversiti Teknologi Malaysia: Institutional RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2019.109338&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 CroatiaPublisher:Elsevier BV Gaofeng Dai; Milan Vujanović; Houzhang Tan; Jiaye Zhang; Xuebin Wang; Hrvoje Mikulčić; Hrvoje Mikulčić;A waste by-product from chemical industry, called high-carbon-ash (HCA), appears to be a potential alternative fuel for cement industry. However, because of different fuel characteristics, use of HCA as a fuel directly affects the performance characteristics of existing pulverized fuel fired furnaces. To achieve the aim of HCA utilisation in existing pulverized coal fired furnaces, it is significant to investigate the combustibility of HCA and then propose a comprehensive way of its utilisation. In this study, the physical and chemical properties of the HCA were investigated. A drop tube furnace was employed to test the combustibility of HCA in a pulverized furnace. After the pulverized HCA was experimentally investigated, an HCA combustion model was developed within a computational fluid dynamics (CFD) code AVL FIRE®. The CFD code was then used for the analysis. The experimentally obtained results were used to validate the numerical model. The comparison of results showed satisfactory agreement between the numerical predictions and experimental data. Finally, the validated numerical model was used to numerically study the co-firing of coal and HCA inside of a real industrial cement calciner furnace. It is suggested that no more than 30% of HCA, in thermal share, should be burned in order not to affect the rate of calcium carbonate decomposition on the calciner’s outlet. The study results show that 78, 408 tonnes of HCA per year could be utilised in cement production and avoid landfilling. This indicates that HCA used in cement industry and avoided from the landfill contributes to a more sustainable waste management of HCA and to a cleaner cement production.
Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2020Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Croatian Scientific ... arrow_drop_down Croatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIJournal of Cleaner ProductionArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefCroatian Scientific Bibliography - CROSBIConference object . 2020Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2021.126090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu