- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Samsudin Anis; Galuh Nur Budiandono;Abstract The use of high viscosity biodiesel resulted in poor fuel injection pump performance, leading to a decrease in diesel engine performance. This problem is expected to be solved by preheating high-viscosity fuel. This study aims to investigate effect of preheating temperature of biodiesel-diesel fuel blends on fuel spray characteristic and injection pump performance. The study was conducted by using a fuel injection system apparatus in which the fuel was supplied into an injector using a single-plunger fuel injection pump. Several biodiesel-diesel blends were tested at preheating temperatures of 30 °C–70 °C. Fuel spray pattern was taken using a high speed camera. The result showed that preheating temperature highly influenced fuel spray characteristic and injection pump performance. The higher the biodiesel-diesel fuel blends, the higher the preheating temperatures were needed. Injection pump and injector required different fuel preheating temperatures for obtaining better performance. For B100, the best conditions were obtained at 50 °C for injection pump and 70 °C for fuel injector that produce almost similar pump efficiency and fuel spray cone angle to diesel fuel. As a whole, a new option of fuel supply system for biodiesel and blends was proposed in order to overcome the transport difficulty of high viscosity fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Samsudin Anis; Galuh Nur Budiandono;Abstract The use of high viscosity biodiesel resulted in poor fuel injection pump performance, leading to a decrease in diesel engine performance. This problem is expected to be solved by preheating high-viscosity fuel. This study aims to investigate effect of preheating temperature of biodiesel-diesel fuel blends on fuel spray characteristic and injection pump performance. The study was conducted by using a fuel injection system apparatus in which the fuel was supplied into an injector using a single-plunger fuel injection pump. Several biodiesel-diesel blends were tested at preheating temperatures of 30 °C–70 °C. Fuel spray pattern was taken using a high speed camera. The result showed that preheating temperature highly influenced fuel spray characteristic and injection pump performance. The higher the biodiesel-diesel fuel blends, the higher the preheating temperatures were needed. Injection pump and injector required different fuel preheating temperatures for obtaining better performance. For B100, the best conditions were obtained at 50 °C for injection pump and 70 °C for fuel injector that produce almost similar pump efficiency and fuel spray cone angle to diesel fuel. As a whole, a new option of fuel supply system for biodiesel and blends was proposed in order to overcome the transport difficulty of high viscosity fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Adhi Kusumastuti; Samsudin Anis; Rais Alhakim; Ahmad Mustamil Khoiron; Wahyudi;Abstract The goals of this study are to produce and to characterize bio-oil from pyrolysis and distillation of liquid samples in a microwave reactor. Waste cooking oil (WCO) and fresh cooking oil (FCO) were employed as the feedstocks. A 900 W microwave reactor was modified and filled with 300 g of charcoal. It was used for both pyrolysis and distillation experiments. The pyrolysis experiments were performed at various feed flow rates and temperatures ranging from 0.051 kg/h to 0.306 kg/h and 400 °C–550 °C, respectively. The sample was introduced continuously into the microwave reactor for 60 min. Nitrogen gas was also supplied to ensure pyrolysis condition. The bio-oil product was then distilled to obtain fuel fractions. The results showed that the products yield and bio-oils composition were strongly influenced by pyrolysis temperature and type of cooking oils, while there was almost no influence of feed flow rate under the investigated condition. The bio-oil contained 90−100 wt.% aliphatic hydrocarbons and the rest were aromatic hydrocarbons. The bio-oil produced from WCO contained more than 50 wt.% green-diesel (C10-C15) which was comparable to that from FCO. The green-diesel fraction showed good fuel properties agreement to that of fossil diesels. Overall, microwave-assisted pyrolysis and distillation processes are potential ways to convert problematic WCO into useful liquid bio-fuel and green-diesel fuel.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Adhi Kusumastuti; Samsudin Anis; Rais Alhakim; Ahmad Mustamil Khoiron; Wahyudi;Abstract The goals of this study are to produce and to characterize bio-oil from pyrolysis and distillation of liquid samples in a microwave reactor. Waste cooking oil (WCO) and fresh cooking oil (FCO) were employed as the feedstocks. A 900 W microwave reactor was modified and filled with 300 g of charcoal. It was used for both pyrolysis and distillation experiments. The pyrolysis experiments were performed at various feed flow rates and temperatures ranging from 0.051 kg/h to 0.306 kg/h and 400 °C–550 °C, respectively. The sample was introduced continuously into the microwave reactor for 60 min. Nitrogen gas was also supplied to ensure pyrolysis condition. The bio-oil product was then distilled to obtain fuel fractions. The results showed that the products yield and bio-oils composition were strongly influenced by pyrolysis temperature and type of cooking oils, while there was almost no influence of feed flow rate under the investigated condition. The bio-oil contained 90−100 wt.% aliphatic hydrocarbons and the rest were aromatic hydrocarbons. The bio-oil produced from WCO contained more than 50 wt.% green-diesel (C10-C15) which was comparable to that from FCO. The green-diesel fraction showed good fuel properties agreement to that of fossil diesels. Overall, microwave-assisted pyrolysis and distillation processes are potential ways to convert problematic WCO into useful liquid bio-fuel and green-diesel fuel.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24185417
This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24185417
This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; M.Z.A. Bakar; Zainal Alimuddin Zainal;pmid: 23567671
A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; M.Z.A. Bakar; Zainal Alimuddin Zainal;pmid: 23567671
A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Penerbit Universiti Sains Malaysia Authors: Moh. Arif Budianto; Samsudin Anis; Wirawan Sumbodo;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Penerbit Universiti Sains Malaysia Authors: Moh. Arif Budianto; Samsudin Anis; Wirawan Sumbodo;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Universitas Negeri Semarang Authors: Samsudin Anis; Galuh Nur Budiandono; Danang Dwi Saputro; Zulkarnain Zainal;Biodiesel as a renewable alternative energy produced from vegetable and animal oils can be used as a fuel for diesel engines. However, biodiesel has a high viscosity that affects the performance of the pump, thereby reducing diesel engine performance. One of the ways to overcome this problem is by preheating the fuel. The purpose of this study is to investigate fuel spray pattern and pump performance including capacity, head, and efficiency at various biodiesel/diesel blends (B0-B30) and preheating temperatures of B30 (30°C-70°C) at constant injection pressure. The results showed that pump performance decreased with increasing percentage of biodiesel. The weakest pump performance occurred at B30. Fuel spray pattern did not change too much, except for B30 where the spray angle decreased significantly. Better results were obtained when biodiesel blend of B30 was heated. The highest pump capacity and efficiency occurred at 50°C, while the highest pump head was at 70°C. At 60°C and 70°C, pump experienced an excessive vibration. Fuel spray angle also increased as the preheating temperature rises. The widest spray angle occurred at fuel preheating temperature of 70°C.
Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Universitas Negeri Semarang Authors: Samsudin Anis; Galuh Nur Budiandono; Danang Dwi Saputro; Zulkarnain Zainal;Biodiesel as a renewable alternative energy produced from vegetable and animal oils can be used as a fuel for diesel engines. However, biodiesel has a high viscosity that affects the performance of the pump, thereby reducing diesel engine performance. One of the ways to overcome this problem is by preheating the fuel. The purpose of this study is to investigate fuel spray pattern and pump performance including capacity, head, and efficiency at various biodiesel/diesel blends (B0-B30) and preheating temperatures of B30 (30°C-70°C) at constant injection pressure. The results showed that pump performance decreased with increasing percentage of biodiesel. The weakest pump performance occurred at B30. Fuel spray pattern did not change too much, except for B30 where the spray angle decreased significantly. Better results were obtained when biodiesel blend of B30 was heated. The highest pump capacity and efficiency occurred at 50°C, while the highest pump head was at 70°C. At 60°C and 70°C, pump experienced an excessive vibration. Fuel spray angle also increased as the preheating temperature rises. The widest spray angle occurred at fuel preheating temperature of 70°C.
Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ibrahim I. Enagi; K.A. Al-attab; Z.A. Zainal;Abstract Micro-gas turbines (MGT) are small-scale independent and reliable distributed generation systems that offer potential for saving energy and reducing carbon monoxide (CO) emissions. They are expected to play a vital role in future energy supplies for remote locations with or without grid connections. In this paper, a design and development of a combustion chamber for micro-gas turbine was performed by SOLID-WORKS and computational fluid dynamics (CFD) ANSYS-FLUENT simulation software. Different chamber geometries were used to simulate with species transport and non-premixed combustion models to determine the optimum chamber design. The best chamber geometry adopted after optimization was 50 mm flame holder diameter, 60 cm chamber height, having 4 holes of 6, 8 and10 mm with dead zone between the combustion zone and dilution zone. A two-stage MGT was developed based on vehicular turbochargers to test the chamber. The experimental test of the chamber with liquefied petroleum gas (LPG) fuel resulted in a stable combustion with CO emission below 100 ppm and turbine inlet temperature below 900 °C.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ibrahim I. Enagi; K.A. Al-attab; Z.A. Zainal;Abstract Micro-gas turbines (MGT) are small-scale independent and reliable distributed generation systems that offer potential for saving energy and reducing carbon monoxide (CO) emissions. They are expected to play a vital role in future energy supplies for remote locations with or without grid connections. In this paper, a design and development of a combustion chamber for micro-gas turbine was performed by SOLID-WORKS and computational fluid dynamics (CFD) ANSYS-FLUENT simulation software. Different chamber geometries were used to simulate with species transport and non-premixed combustion models to determine the optimum chamber design. The best chamber geometry adopted after optimization was 50 mm flame holder diameter, 60 cm chamber height, having 4 holes of 6, 8 and10 mm with dead zone between the combustion zone and dilution zone. A two-stage MGT was developed based on vehicular turbochargers to test the chamber. The experimental test of the chamber with liquefied petroleum gas (LPG) fuel resulted in a stable combustion with CO emission below 100 ppm and turbine inlet temperature below 900 °C.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:Author(s) Authors: Wahyudi; Laily Shahadati; Samsudin Anis; Wirawan Sumbodo;doi: 10.1063/1.4976867
The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to p...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:Author(s) Authors: Wahyudi; Laily Shahadati; Samsudin Anis; Wirawan Sumbodo;doi: 10.1063/1.4976867
The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to p...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24231266
Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24231266
Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Samsudin Anis; Samsudin Anis; Zainal Alimuddin Zainal;Biomass gasification presents highly interesting possibilities for expanding the utilization of biomass as power generation using internal combustion engines or turbines. However, the need to reduce the tar in the producer gas is very important. The successful application of producer gas depends not only on the quantity of tar, but also on its properties and compositions, which is associated with the dew-point of tar components. Class 5, 4, and 2 tar become a major cause of condensation which can foul the engines and turbines. Hence, the selectivity of tar treatment method to remove or convert class 5, 4, and 2 tar is a challenge in producer gas utilization. This review was conducted to present the recent studies in tar treatment from biomass gasification. The new technologies with their strengths and the weaknesses in term of tar reduction are discussed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu686 citations 686 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Samsudin Anis; Samsudin Anis; Zainal Alimuddin Zainal;Biomass gasification presents highly interesting possibilities for expanding the utilization of biomass as power generation using internal combustion engines or turbines. However, the need to reduce the tar in the producer gas is very important. The successful application of producer gas depends not only on the quantity of tar, but also on its properties and compositions, which is associated with the dew-point of tar components. Class 5, 4, and 2 tar become a major cause of condensation which can foul the engines and turbines. Hence, the selectivity of tar treatment method to remove or convert class 5, 4, and 2 tar is a challenge in producer gas utilization. This review was conducted to present the recent studies in tar treatment from biomass gasification. The new technologies with their strengths and the weaknesses in term of tar reduction are discussed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu686 citations 686 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Samsudin Anis; Galuh Nur Budiandono;Abstract The use of high viscosity biodiesel resulted in poor fuel injection pump performance, leading to a decrease in diesel engine performance. This problem is expected to be solved by preheating high-viscosity fuel. This study aims to investigate effect of preheating temperature of biodiesel-diesel fuel blends on fuel spray characteristic and injection pump performance. The study was conducted by using a fuel injection system apparatus in which the fuel was supplied into an injector using a single-plunger fuel injection pump. Several biodiesel-diesel blends were tested at preheating temperatures of 30 °C–70 °C. Fuel spray pattern was taken using a high speed camera. The result showed that preheating temperature highly influenced fuel spray characteristic and injection pump performance. The higher the biodiesel-diesel fuel blends, the higher the preheating temperatures were needed. Injection pump and injector required different fuel preheating temperatures for obtaining better performance. For B100, the best conditions were obtained at 50 °C for injection pump and 70 °C for fuel injector that produce almost similar pump efficiency and fuel spray cone angle to diesel fuel. As a whole, a new option of fuel supply system for biodiesel and blends was proposed in order to overcome the transport difficulty of high viscosity fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Samsudin Anis; Galuh Nur Budiandono;Abstract The use of high viscosity biodiesel resulted in poor fuel injection pump performance, leading to a decrease in diesel engine performance. This problem is expected to be solved by preheating high-viscosity fuel. This study aims to investigate effect of preheating temperature of biodiesel-diesel fuel blends on fuel spray characteristic and injection pump performance. The study was conducted by using a fuel injection system apparatus in which the fuel was supplied into an injector using a single-plunger fuel injection pump. Several biodiesel-diesel blends were tested at preheating temperatures of 30 °C–70 °C. Fuel spray pattern was taken using a high speed camera. The result showed that preheating temperature highly influenced fuel spray characteristic and injection pump performance. The higher the biodiesel-diesel fuel blends, the higher the preheating temperatures were needed. Injection pump and injector required different fuel preheating temperatures for obtaining better performance. For B100, the best conditions were obtained at 50 °C for injection pump and 70 °C for fuel injector that produce almost similar pump efficiency and fuel spray cone angle to diesel fuel. As a whole, a new option of fuel supply system for biodiesel and blends was proposed in order to overcome the transport difficulty of high viscosity fuels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.03.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Adhi Kusumastuti; Samsudin Anis; Rais Alhakim; Ahmad Mustamil Khoiron; Wahyudi;Abstract The goals of this study are to produce and to characterize bio-oil from pyrolysis and distillation of liquid samples in a microwave reactor. Waste cooking oil (WCO) and fresh cooking oil (FCO) were employed as the feedstocks. A 900 W microwave reactor was modified and filled with 300 g of charcoal. It was used for both pyrolysis and distillation experiments. The pyrolysis experiments were performed at various feed flow rates and temperatures ranging from 0.051 kg/h to 0.306 kg/h and 400 °C–550 °C, respectively. The sample was introduced continuously into the microwave reactor for 60 min. Nitrogen gas was also supplied to ensure pyrolysis condition. The bio-oil product was then distilled to obtain fuel fractions. The results showed that the products yield and bio-oils composition were strongly influenced by pyrolysis temperature and type of cooking oils, while there was almost no influence of feed flow rate under the investigated condition. The bio-oil contained 90−100 wt.% aliphatic hydrocarbons and the rest were aromatic hydrocarbons. The bio-oil produced from WCO contained more than 50 wt.% green-diesel (C10-C15) which was comparable to that from FCO. The green-diesel fraction showed good fuel properties agreement to that of fossil diesels. Overall, microwave-assisted pyrolysis and distillation processes are potential ways to convert problematic WCO into useful liquid bio-fuel and green-diesel fuel.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Adhi Kusumastuti; Samsudin Anis; Rais Alhakim; Ahmad Mustamil Khoiron; Wahyudi;Abstract The goals of this study are to produce and to characterize bio-oil from pyrolysis and distillation of liquid samples in a microwave reactor. Waste cooking oil (WCO) and fresh cooking oil (FCO) were employed as the feedstocks. A 900 W microwave reactor was modified and filled with 300 g of charcoal. It was used for both pyrolysis and distillation experiments. The pyrolysis experiments were performed at various feed flow rates and temperatures ranging from 0.051 kg/h to 0.306 kg/h and 400 °C–550 °C, respectively. The sample was introduced continuously into the microwave reactor for 60 min. Nitrogen gas was also supplied to ensure pyrolysis condition. The bio-oil product was then distilled to obtain fuel fractions. The results showed that the products yield and bio-oils composition were strongly influenced by pyrolysis temperature and type of cooking oils, while there was almost no influence of feed flow rate under the investigated condition. The bio-oil contained 90−100 wt.% aliphatic hydrocarbons and the rest were aromatic hydrocarbons. The bio-oil produced from WCO contained more than 50 wt.% green-diesel (C10-C15) which was comparable to that from FCO. The green-diesel fraction showed good fuel properties agreement to that of fossil diesels. Overall, microwave-assisted pyrolysis and distillation processes are potential ways to convert problematic WCO into useful liquid bio-fuel and green-diesel fuel.
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2020.105014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24185417
This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24185417
This study focused on improving the producer gas quality using radio frequency (RF) tar thermocatalytic treatment reactor. The producer gas containing tar, particles and water was directly passed at a particular flow rate into the RF reactor at various temperatures for catalytic and thermal treatments. Thermal treatment generates higher heating value of 5.76 MJ Nm(-3) at 1200°C. Catalytic treatments using both dolomite and Y-zeolite provide high tar and particles conversion efficiencies of about 97% on average. The result also showed that light poly-aromatic hydrocarbons especially naphthalene and aromatic compounds particularly benzene and toluene were still found even at higher reaction temperatures. Low energy intensive RF tar thermocatalytic treatment was found to be effective for upgrading the producer gas quality to meet the end user requirements and increasing its energy content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; M.Z.A. Bakar; Zainal Alimuddin Zainal;pmid: 23567671
A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Samsudin Anis; M.Z.A. Bakar; Zainal Alimuddin Zainal;pmid: 23567671
A new effective RF tar thermocatalytic treatment process with low energy intensive has been proposed to remove tar from biomass gasification. Toluene and naphthalene as biomass tar model compounds were removed via both thermal and catalytic treatment over a wide temperature range from 850 °C to 1200 °C and 450 °C to 900 °C, respectively at residence time of 0-0.7 s. Thermal characteristics of the new technique are also described in this paper. This study clearly clarified that toluene was much easier to be removed than naphthalene. Soot was found as the final product of thermal treatment of the tar model and completely removed during catalytic treatment. Radical reactions generated by RF non-thermal effect improve the tar removal. The study showed that Y-zeolite has better catalytic activity compared to dolomite on toluene and naphthalene removal due to its acidic nature and large surface area, even at lower reaction temperature of about 550 °C.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.02.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Penerbit Universiti Sains Malaysia Authors: Moh. Arif Budianto; Samsudin Anis; Wirawan Sumbodo;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Penerbit Universiti Sains Malaysia Authors: Moh. Arif Budianto; Samsudin Anis; Wirawan Sumbodo;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21315/jps2018.29.s2.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Universitas Negeri Semarang Authors: Samsudin Anis; Galuh Nur Budiandono; Danang Dwi Saputro; Zulkarnain Zainal;Biodiesel as a renewable alternative energy produced from vegetable and animal oils can be used as a fuel for diesel engines. However, biodiesel has a high viscosity that affects the performance of the pump, thereby reducing diesel engine performance. One of the ways to overcome this problem is by preheating the fuel. The purpose of this study is to investigate fuel spray pattern and pump performance including capacity, head, and efficiency at various biodiesel/diesel blends (B0-B30) and preheating temperatures of B30 (30°C-70°C) at constant injection pressure. The results showed that pump performance decreased with increasing percentage of biodiesel. The weakest pump performance occurred at B30. Fuel spray pattern did not change too much, except for B30 where the spray angle decreased significantly. Better results were obtained when biodiesel blend of B30 was heated. The highest pump capacity and efficiency occurred at 50°C, while the highest pump head was at 70°C. At 60°C and 70°C, pump experienced an excessive vibration. Fuel spray angle also increased as the preheating temperature rises. The widest spray angle occurred at fuel preheating temperature of 70°C.
Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Universitas Negeri Semarang Authors: Samsudin Anis; Galuh Nur Budiandono; Danang Dwi Saputro; Zulkarnain Zainal;Biodiesel as a renewable alternative energy produced from vegetable and animal oils can be used as a fuel for diesel engines. However, biodiesel has a high viscosity that affects the performance of the pump, thereby reducing diesel engine performance. One of the ways to overcome this problem is by preheating the fuel. The purpose of this study is to investigate fuel spray pattern and pump performance including capacity, head, and efficiency at various biodiesel/diesel blends (B0-B30) and preheating temperatures of B30 (30°C-70°C) at constant injection pressure. The results showed that pump performance decreased with increasing percentage of biodiesel. The weakest pump performance occurred at B30. Fuel spray pattern did not change too much, except for B30 where the spray angle decreased significantly. Better results were obtained when biodiesel blend of B30 was heated. The highest pump capacity and efficiency occurred at 50°C, while the highest pump head was at 70°C. At 60°C and 70°C, pump experienced an excessive vibration. Fuel spray angle also increased as the preheating temperature rises. The widest spray angle occurred at fuel preheating temperature of 70°C.
Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Jurnal Bahan Alam Te... arrow_drop_down Jurnal Bahan Alam TerbarukanArticle . 2018 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15294/jbat.v7i2.11891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ibrahim I. Enagi; K.A. Al-attab; Z.A. Zainal;Abstract Micro-gas turbines (MGT) are small-scale independent and reliable distributed generation systems that offer potential for saving energy and reducing carbon monoxide (CO) emissions. They are expected to play a vital role in future energy supplies for remote locations with or without grid connections. In this paper, a design and development of a combustion chamber for micro-gas turbine was performed by SOLID-WORKS and computational fluid dynamics (CFD) ANSYS-FLUENT simulation software. Different chamber geometries were used to simulate with species transport and non-premixed combustion models to determine the optimum chamber design. The best chamber geometry adopted after optimization was 50 mm flame holder diameter, 60 cm chamber height, having 4 holes of 6, 8 and10 mm with dead zone between the combustion zone and dilution zone. A two-stage MGT was developed based on vehicular turbochargers to test the chamber. The experimental test of the chamber with liquefied petroleum gas (LPG) fuel resulted in a stable combustion with CO emission below 100 ppm and turbine inlet temperature below 900 °C.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Authors: Ibrahim I. Enagi; K.A. Al-attab; Z.A. Zainal;Abstract Micro-gas turbines (MGT) are small-scale independent and reliable distributed generation systems that offer potential for saving energy and reducing carbon monoxide (CO) emissions. They are expected to play a vital role in future energy supplies for remote locations with or without grid connections. In this paper, a design and development of a combustion chamber for micro-gas turbine was performed by SOLID-WORKS and computational fluid dynamics (CFD) ANSYS-FLUENT simulation software. Different chamber geometries were used to simulate with species transport and non-premixed combustion models to determine the optimum chamber design. The best chamber geometry adopted after optimization was 50 mm flame holder diameter, 60 cm chamber height, having 4 holes of 6, 8 and10 mm with dead zone between the combustion zone and dilution zone. A two-stage MGT was developed based on vehicular turbochargers to test the chamber. The experimental test of the chamber with liquefied petroleum gas (LPG) fuel resulted in a stable combustion with CO emission below 100 ppm and turbine inlet temperature below 900 °C.
Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Fuel Processing Tech... arrow_drop_down Fuel Processing TechnologyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuproc.2017.05.037&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:Author(s) Authors: Wahyudi; Laily Shahadati; Samsudin Anis; Wirawan Sumbodo;doi: 10.1063/1.4976867
The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to p...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017Publisher:Author(s) Authors: Wahyudi; Laily Shahadati; Samsudin Anis; Wirawan Sumbodo;doi: 10.1063/1.4976867
The research is objected to develop microwave reactor for pyrolysis of used cooking oil. The effect of microwave power as well as addition of char as absorber towards its thermal characteristic were investigated. Domestic microwave was modified and used to test the thermal characteristic of used cooking oil in the terms of temperature evolution, heating rate, and thermal efficiency. The samples were examined under various microwave power of 347W, 399W, 572W and 642W for 25 minutes of irradiation time. The char loading was tested in the level of 0, 50, and 100 g. Microwave reactor consists of microwave unit with a maximum power of 642W, a ceramic reactor, and a condenser equipped with temperature measurement system was successfully developed. It was found that microwave power and addition of absorber significantly influenced the thermal characteristic of microwave reactor. Under investigated condition, the optimum result was obtained at microwave power of 642W and 100 g of char. The condition was able to p...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4976867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24231266
Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Samsudin Anis; Zainal Alimuddin Zainal;pmid: 24231266
Kinetic model parameters for toluene conversion under microwave thermocatalytic treatment were evaluated. The kinetic rate constants were determined using integral method based on experimental data and coupled with Arrhenius equation for obtaining the activation energies and pre-exponential factors. The model provides a good agreement with the experimental data. The kinetic model was also validated with standard error of 3% on average. The extrapolation of the model showed a reasonable trend to predict toluene conversion and product yield both in thermal and catalytic treatments. Under microwave irradiation, activation energy of toluene conversion was lower in the range of 3-27 kJ mol(-1) compared to those of conventional heating reported in the literatures. The overall reaction rate was six times higher compared to conventional heating. As a whole, the kinetic model works better for tar model removal in the absence of gas reforming within a level of reliability demonstrated in this study.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.10.065&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Samsudin Anis; Samsudin Anis; Zainal Alimuddin Zainal;Biomass gasification presents highly interesting possibilities for expanding the utilization of biomass as power generation using internal combustion engines or turbines. However, the need to reduce the tar in the producer gas is very important. The successful application of producer gas depends not only on the quantity of tar, but also on its properties and compositions, which is associated with the dew-point of tar components. Class 5, 4, and 2 tar become a major cause of condensation which can foul the engines and turbines. Hence, the selectivity of tar treatment method to remove or convert class 5, 4, and 2 tar is a challenge in producer gas utilization. This review was conducted to present the recent studies in tar treatment from biomass gasification. The new technologies with their strengths and the weaknesses in term of tar reduction are discussed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu686 citations 686 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Samsudin Anis; Samsudin Anis; Zainal Alimuddin Zainal;Biomass gasification presents highly interesting possibilities for expanding the utilization of biomass as power generation using internal combustion engines or turbines. However, the need to reduce the tar in the producer gas is very important. The successful application of producer gas depends not only on the quantity of tar, but also on its properties and compositions, which is associated with the dew-point of tar components. Class 5, 4, and 2 tar become a major cause of condensation which can foul the engines and turbines. Hence, the selectivity of tar treatment method to remove or convert class 5, 4, and 2 tar is a challenge in producer gas utilization. This review was conducted to present the recent studies in tar treatment from biomass gasification. The new technologies with their strengths and the weaknesses in term of tar reduction are discussed.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu686 citations 686 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2011.02.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu