Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Jurnal Bahan Alam Te...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal Bahan Alam Terbarukan
Article . 2018 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal Bahan Alam Terbarukan
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Jurnal Bahan Alam Terbarukan
Article . 2018
Data sources: DOAJ
https://dx.doi.org/10.60692/dn...
Other literature type . 2018
Data sources: Datacite
https://dx.doi.org/10.60692/ga...
Other literature type . 2018
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

EFFECT OF BIODIESEL/DIESEL BLEND AND TEMPERATURE ON 1-CYLINDER DIESEL FUEL INJECTION PUMP PERFORMANCE AND SPRAY PATTERN

تأثير مزيج الديزل الحيوي/الديزل ودرجة الحرارة على 1 أسطوانة أداء مضخة حقن وقود الديزل ونمط الرش
Authors: Samsudin Anis; Galuh Nur Budiandono; Danang Dwi Saputro; Zulkarnain Zainal;

EFFECT OF BIODIESEL/DIESEL BLEND AND TEMPERATURE ON 1-CYLINDER DIESEL FUEL INJECTION PUMP PERFORMANCE AND SPRAY PATTERN

Abstract

Biodiesel as a renewable alternative energy produced from vegetable and animal oils can be used as a fuel for diesel engines. However, biodiesel has a high viscosity that affects the performance of the pump, thereby reducing diesel engine performance. One of the ways to overcome this problem is by preheating the fuel. The purpose of this study is to investigate fuel spray pattern and pump performance including capacity, head, and efficiency at various biodiesel/diesel blends (B0-B30) and preheating temperatures of B30 (30°C-70°C) at constant injection pressure. The results showed that pump performance decreased with increasing percentage of biodiesel. The weakest pump performance occurred at B30. Fuel spray pattern did not change too much, except for B30 where the spray angle decreased significantly. Better results were obtained when biodiesel blend of B30 was heated. The highest pump capacity and efficiency occurred at 50°C, while the highest pump head was at 70°C. At 60°C and 70°C, pump experienced an excessive vibration. Fuel spray angle also increased as the preheating temperature rises. The widest spray angle occurred at fuel preheating temperature of 70°C.

Keywords

Diesel engine, Composite material, Pulp and paper industry, Engine Performance, Technical Aspects of Biodiesel Production, Biomedical Engineering, Organic chemistry, FOS: Mechanical engineering, biodiesel, FOS: Medical engineering, Fuel Chemistry, Automotive engineering, Catalysis, Engineering, Chemical engineering, Fuel injection, FOS: Electrical engineering, electronic engineering, information engineering, Electrical and Electronic Engineering, Waste management, FOS: Chemical engineering, Fluid Flow and Transfer Processes, spray pattern, preheating, Chemical Kinetics of Combustion Processes, Nozzle, pump performance, Chemical Engineering, Fuel Cell Durability, Spray characteristics, Spray nozzle, Materials science, Mechanical engineering, Chemistry, Fuel Cell Membrane Technology, Physical Sciences, TP155-156, Biodiesel, Diesel fuel, injection pump

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
gold
Related to Research communities
Energy Research