- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2021 Norway, Australia, Denmark, Norway, Austria, United States, Germany, United Kingdom, United KingdomPublisher:IOP Publishing Funded by:EC | MAT_STOCKSEC| MAT_STOCKSWilliam F. Lamb; Thomas Wiedmann; Julia Pongratz; Robbie M. Andrew; Monica Crippa; J. G. J. Olivier; Dominik Wiedenhofer; Giulio Mattioli; Alaa Al Khourdajie; Joanna I. House; Shonali Pachauri; María Figueroa; Yamina Saheb; Raphael Slade; Klaus Hubacek; Laixiang Sun; Suzana Kahn Ribeiro; Smail Khennas; Stéphane de la Rue du Can; Lazarus Chapungu; Steven J. Davis; I. A. Bashmakov; Hancheng Dai; Shobhakar Dhakal; Xianjun Tan; Yong Geng; Baihe Gu; Jan C. Minx;AbstractGlobal greenhouse gas (GHG) emissions can be traced to five economic sectors: energy, industry, buildings, transport and AFOLU (agriculture, forestry and other land uses). In this topical review, we synthesise the literature to explain recent trends in global and regional emissions in each of these sectors. To contextualise our review, we present estimates of GHG emissions trends by sector from 1990 to 2018, describing the major sources of emissions growth, stability and decline across ten global regions. Overall, the literature and data emphasise that progress towards reducing GHG emissions has been limited. The prominent global pattern is a continuation of underlying drivers with few signs of emerging limits to demand, nor of a deep shift towards the delivery of low and zero carbon services across sectors. We observe a moderate decarbonisation of energy systems in Europe and North America, driven by fuel switching and the increasing penetration of renewables. By contrast, in rapidly industrialising regions, fossil-based energy systems have continuously expanded, only very recently slowing down in their growth. Strong demand for materials, floor area, energy services and travel have driven emissions growth in the industry, buildings and transport sectors, particularly in Eastern Asia, Southern Asia and South-East Asia. An expansion of agriculture into carbon-dense tropical forest areas has driven recent increases in AFOLU emissions in Latin America, South-East Asia and Africa. Identifying, understanding, and tackling the most persistent and climate-damaging trends across sectors is a fundamental concern for research and policy as humanity treads deeper into the Anthropocene.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/53r1q6x4Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_76669Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/90455Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersReview . 2021License: CC BYData sources: University of Groningen Research PortalSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abee4e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 698 citations 698 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 1visibility views 1 download downloads 55 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/53r1q6x4Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_76669Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/90455Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersReview . 2021License: CC BYData sources: University of Groningen Research PortalSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abee4e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Springer Science and Business Media LLC Giacomo Grassi; Roberto Pilli; Jo House; Sandro Federici; Werner A. Kurz;pmid: 29774443
pmc: PMC5957018
The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013-2020) was accounting mitigation as deviation from a projected (forward-looking) "forest reference level", which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013-2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110-120 Mt CO2/year (capped at 70-80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000-2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000-2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
Carbon Balance and M... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-018-0096-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Carbon Balance and M... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-018-0096-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Terence P. Dawson; Georgina M. Mace; Iain Colin Prentice; Iain Colin Prentice; Iain Colin Prentice; Stephen T. Jackson; Joanna Isobel House;Climate change is predicted to become a major threat to biodiversity in the 21st century, but accurate predictions and effective solutions have proved difficult to formulate. Alarming predictions have come from a rather narrow methodological base, but a new, integrated science of climate-change biodiversity assessment is emerging, based on multiple sources and approaches. Drawing on evidence from paleoecological observations, recent phenological and microevolutionary responses, experiments, and computational models, we review the insights that different approaches bring to anticipating and managing the biodiversity consequences of climate change, including the extent of species’ natural resilience. We introduce a framework that uses information from different sources to identify vulnerability and to support the design of conservation responses. Although much of the information reviewed is on species, our framework and conclusions are also applicable to ecosystems, habitats, ecological communities, and genetic diversity, whether terrestrial, marine, or fresh water.
University of Bristo... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1200303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,549 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of Bristo... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1200303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 1995 United KingdomPublisher:SAGE Publications Authors: Hall, D. O.; House, J.;Biomass fuels currently supply around 15 per cent of the World's energy. Much of this is in the form of traditional fuelwood, plant residues and dung, which are often inefficiently used and can be environmentally detrimental. There is great potential for the modernization of biomass fuels to produce convenient energy carriers, such as electricity, gases and transportation fuels, while continuing to provide for traditional uses of biomass; this is already happening in many countries. When produced in an efficient and sustainable manner, biomass energy has numerous environmental and social benefits compared with fossil fuels. These include waste control, nutrient recycling, job creation, use of surplus agricultural land in industrialized countries, provision of modern energy carriers to rural communities of developing countries, improved land management, and a reduction of CO2 levels. Using biomass to substitute for fossil fuels is afar more effective use of available land than simply growing trees as a carbon store. Biomass fuels can form part of a matrix of renewable fuel sources that increases the energy available for economic development in developing countries. In OECD Europe it is calculated that a potential of 9.0–13.5 EJ could be produced in 2050 on available land, which represents 17–30 per cent of projected total energy requirements.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 1995 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1243/pime_proc_1995_209_038_02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 1995 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1243/pime_proc_1995_209_038_02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Inter-Research Science Center Clark, J. M.; Gallego-Sala, A. V.; Allott, T. E. H.; Chapman, S. J.; Farewell, T.; Freeman, C.; House, J. I.; Orr, H. G.; Prentice, I. C.; Smith, P.;doi: 10.3354/cr00929
We assessed the vulnerability of blanket peat to climate change in Great Britain using an ensemble of 8 bioclimatic envelope models. We used 4 published models that ranged from simple thresh- old models, based on total annual precipitation, to Generalised Linear Models (GLMs, based on mean an- nual temperature). In addition, 4 new models were developed which included measures of water deficit as threshold, classification tree, GLM and generalised additive models (GAM). Models that included measures of both hydrological conditions and maximum temperature provided a better fit to the mapped peat area than models based on hydrological variables alone. Under UKCIP02 projections for high (A1F1) and low (B1) greenhouse gas emission scenarios, 7 out of the 8 models showed a decline in the bioclimatic space associated with blanket peat. Eastern regions (Northumbria, North York Moors, Orkney) were shown to be more vulnerable than higher-altitude, western areas (Highlands, Western Isles and Argyle, Bute and The Trossachs). These results suggest a long-term decline in the distribution of actively grow- ing blanket peat, especially under the high emissions scenario, although it is emphasised that existing peatlands may well persist for decades under a changing climate. Observational data from long-term monitoring and manipulation experiments in combination with process-based models are required to explore the nature and magnitude of climate change impacts on these vulnerable areas more fully.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18969Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18969Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Sweden, United Kingdom, United KingdomPublisher:Inter-Research Science Center I. Colin Prentice; Timothy S. Farewell; Joanna M. Clark; Joanna M. Clark; Angela V. Gallego-Sala; Pete Smith; Joanna Isobel House; Stephen J. Chapman; H Orr;doi: 10.3354/cr00911
Blanket peatlands are rain-fed mires that cover the landscape almost regardless of topography. The geographical extent of this type of peatland is highly sensitive to climate. We applied a global process-based bioclimatic envelope model, PeatStash, to predict the distribution of British blanket peatlands. The model captures the present areal extent (Kappa = 0.77) and is highly sensitive to both temperature and precipitation changes. When the model is run using the UKCIP02 climate projections for the time periods 2011–2040, 2041–2070 and 2071–2100, the geographical distribution of blanket peatlands gradually retreats towards the north and the west. In the UKCIP02 high emissions scenario for 2071–2100, the blanket peatland bioclimatic space is ~84% smaller than contemporary conditions (1961–1990); only parts of the west of Scotland remain inside this space. Increasing summer temperature is the main driver of the projected changes in areal extent. Simulations using 7 climate model outputs resulted in generally similar patterns of declining aereal extent of the bioclimatic space, although differing in degree. The results presented in this study should be viewed as a first step towards understanding the trends likely to affect the blanket peatland distribution in Great Britain. The eventual fate of existing blanket peatlands left outside their bioclimatic space remains uncertain.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18968Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18968Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, United Kingdom, Norway, Netherlands, Netherlands, Norway, United KingdomPublisher:Elsevier BV Funded by:EC | VERIFYEC| VERIFYPerugini, Lucia; Pellis, Guido; Grassi, Giacomo; Ciais, Philippe; Dolman, Han; House, Joanna; Peters, Glen; Smith, Pete; Günther, Dirk; Peylin, Philippe;pmid: 34345221
pmc: PMC8171125
Greenhouse gas (GHG) emission inventories represent the link between national and international political actions on climate change, and climate and environmental sciences. Inventory agencies need to include, in national GHG inventories, emission and removal estimates based on scientific data following specific reporting guidance under the United Nation Framework Convention on Climate Change (UNFCCC) and the Paris Agreement, using the methodologies defined in the Intergovernmental Panel on Climate Change (IPCC) Guidelines. Often however, research communities and inventory agencies have approached the problem of climate change from different angles and by using terminologies, metrics, rules and approaches that do not always match. This is particularly true dealing with "Land Use, Land-Use Change and Forestry" (LULUCF), the most challenging among the inventory sectors to deal with, mainly because of high level of complexity of its carbon dynamics and the difficulties in disaggregating the fluxes between those caused by natural and anthropogenic processes. In this paper, we facilitate the understanding by research communities of the current (UNFCCC) and future (under the Paris Agreement) reporting requirements, and we identify the main issues and topics that should be considered when targeting improvement of the GHG inventory. In relation to these topics, we describe where and how the research community can contribute to producing useful inputs, data, methods and solutions for inventory agencies and policy makers, on the basis of available literature. However, a greater effort by both communities is desirable for closer cooperation and collaboration, for data sharing and the understanding of respective and common aims.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16856Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2021Environmental Science & PolicyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16856Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2021Environmental Science & PolicyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 1995 United KingdomPublisher:Elsevier BV Authors: HALL, DO; House, Joanna Isobel;Abstract Presently biomass energy supplies at least 2 EJ/yr (47 Mtoe) in OECD Europe, which is about 4% of total primary energy consumption (54.1 EJ). Estimates of the potential for bioenergy in the next century range from 2 to 20 EJ/yr. This paper estimates a potential of 9.0–13.5 EJ in 2050, which represents 17–30% of projected total energy requirements. This depends on assumptions of available land areas, achievable yields and the amount of recoverable residues utilized. Greater environmental and net energy benefits can be derived from perennial and woody energy crops compared to annual arable crops as alternative feedstocks for fossil fuels. The relative contribution of biofuels in the future will ultimately depend on markets and incentives, on R&D progress and on environmental requirements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0264-8377(95)90073-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0264-8377(95)90073-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 France, United KingdomPublisher:The Royal Society Evan H. DeLucia; Andras Molnar; Hugo Valin; Hugo Valin; Rocio Diaz-Chavez; Sarah Davis; Joanna Isobel House;pmid: 22482028
pmc: PMC3262264
Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished.
Interface Focus arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverInterface FocusArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsfs.2010.0023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Interface Focus arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverInterface FocusArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsfs.2010.0023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Inter-Research Science Center Clark, J.M.; Billett, M.F.; Coyle, M.; Croft, S.; Daniels, S.; Evans, C.D.; Evans, M.; Freeman, C.; Gallego-Sala, A.V.; Heinemeyer, A.; House, J.I.; Monteith, D.T.; Nayak, D.; Orr, H.G.; Prentice, I.C.; Rose, R.; Rowson, J.; Smith, J.U.; Smith, P.; Tun, Y.M.; Vanguelova, E.; Wetterhall, F.; Worrall, F.;doi: 10.3354/cr00974
We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLEN- NIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble under- pinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland manage- ment. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Edge Hill University: Edge Hill Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Edge Hill University: Edge Hill Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2021 Norway, Australia, Denmark, Norway, Austria, United States, Germany, United Kingdom, United KingdomPublisher:IOP Publishing Funded by:EC | MAT_STOCKSEC| MAT_STOCKSWilliam F. Lamb; Thomas Wiedmann; Julia Pongratz; Robbie M. Andrew; Monica Crippa; J. G. J. Olivier; Dominik Wiedenhofer; Giulio Mattioli; Alaa Al Khourdajie; Joanna I. House; Shonali Pachauri; María Figueroa; Yamina Saheb; Raphael Slade; Klaus Hubacek; Laixiang Sun; Suzana Kahn Ribeiro; Smail Khennas; Stéphane de la Rue du Can; Lazarus Chapungu; Steven J. Davis; I. A. Bashmakov; Hancheng Dai; Shobhakar Dhakal; Xianjun Tan; Yong Geng; Baihe Gu; Jan C. Minx;AbstractGlobal greenhouse gas (GHG) emissions can be traced to five economic sectors: energy, industry, buildings, transport and AFOLU (agriculture, forestry and other land uses). In this topical review, we synthesise the literature to explain recent trends in global and regional emissions in each of these sectors. To contextualise our review, we present estimates of GHG emissions trends by sector from 1990 to 2018, describing the major sources of emissions growth, stability and decline across ten global regions. Overall, the literature and data emphasise that progress towards reducing GHG emissions has been limited. The prominent global pattern is a continuation of underlying drivers with few signs of emerging limits to demand, nor of a deep shift towards the delivery of low and zero carbon services across sectors. We observe a moderate decarbonisation of energy systems in Europe and North America, driven by fuel switching and the increasing penetration of renewables. By contrast, in rapidly industrialising regions, fossil-based energy systems have continuously expanded, only very recently slowing down in their growth. Strong demand for materials, floor area, energy services and travel have driven emissions growth in the industry, buildings and transport sectors, particularly in Eastern Asia, Southern Asia and South-East Asia. An expansion of agriculture into carbon-dense tropical forest areas has driven recent increases in AFOLU emissions in Latin America, South-East Asia and Africa. Identifying, understanding, and tackling the most persistent and climate-damaging trends across sectors is a fundamental concern for research and policy as humanity treads deeper into the Anthropocene.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/53r1q6x4Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_76669Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/90455Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersReview . 2021License: CC BYData sources: University of Groningen Research PortalSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abee4e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 698 citations 698 popularity Top 0.1% influence Top 1% impulse Top 0.01% Powered by BIP!
visibility 1visibility views 1 download downloads 55 Powered bymore_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2021License: CC BY NCFull-Text: https://escholarship.org/uc/item/53r1q6x4Data sources: Bielefeld Academic Search Engine (BASE)UNSWorksArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/1959.4/unsworks_76669Data sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/90455Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersReview . 2021License: CC BYData sources: University of Groningen Research PortalSpiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital RepositoryeScholarship - University of CaliforniaArticle . 2021Data sources: eScholarship - University of CaliforniaEnvironmental Research LettersArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/abee4e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 United KingdomPublisher:Springer Science and Business Media LLC Giacomo Grassi; Roberto Pilli; Jo House; Sandro Federici; Werner A. Kurz;pmid: 29774443
pmc: PMC5957018
The credibility and effectiveness of country climate targets under the Paris Agreement requires that, in all greenhouse gas (GHG) sectors, the accounted mitigation outcomes reflect genuine deviations from the type and magnitude of activities generating emissions in the base year or baseline. This is challenging for the forestry sector, as the future net emissions can change irrespective of actual management activities, because of age-related stand dynamics resulting from past management and natural disturbances. The solution implemented under the Kyoto Protocol (2013-2020) was accounting mitigation as deviation from a projected (forward-looking) "forest reference level", which considered the age-related dynamics but also allowed including the assumed future implementation of approved policies. This caused controversies, as unverifiable counterfactual scenarios with inflated future harvest could lead to credits where no change in management has actually occurred, or conversely, failing to reflect in the accounts a policy-driven increase in net emissions. Instead, here we describe an approach to set reference levels based on the projected continuation of documented historical forest management practice, i.e. reflecting age-related dynamics but not the future impact of policies. We illustrate a possible method to implement this approach at the level of the European Union (EU) using the Carbon Budget Model.Using EU country data, we show that forest sinks between 2013 and 2016 were greater than that assumed in the 2013-2020 EU reference level under the Kyoto Protocol, which would lead to credits of 110-120 Mt CO2/year (capped at 70-80 Mt CO2/year, equivalent to 1.3% of 1990 EU total emissions). By modelling the continuation of management practice documented historically (2000-2009), we show that these credits are mostly due to the inclusion in the reference levels of policy-assumed harvest increases that never materialized. With our proposed approach, harvest is expected to increase (12% in 2030 at EU-level, relative to 2000-2009), but more slowly than in current forest reference levels, and only because of age-related dynamics, i.e. increased growing stocks in maturing forests.Our science-based approach, compatible with the EU post-2020 climate legislation, helps to ensure that only genuine deviations from the continuation of historically documented forest management practices are accounted toward climate targets, therefore enhancing the consistency and comparability across GHG sectors. It provides flexibility for countries to increase harvest in future reference levels when justified by age-related dynamics. It offers a policy-neutral solution to the polarized debate on forest accounting (especially on bioenergy) and supports the credibility of forest sector mitigation under the Paris Agreement.
Carbon Balance and M... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-018-0096-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Carbon Balance and M... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13021-018-0096-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United KingdomPublisher:American Association for the Advancement of Science (AAAS) Terence P. Dawson; Georgina M. Mace; Iain Colin Prentice; Iain Colin Prentice; Iain Colin Prentice; Stephen T. Jackson; Joanna Isobel House;Climate change is predicted to become a major threat to biodiversity in the 21st century, but accurate predictions and effective solutions have proved difficult to formulate. Alarming predictions have come from a rather narrow methodological base, but a new, integrated science of climate-change biodiversity assessment is emerging, based on multiple sources and approaches. Drawing on evidence from paleoecological observations, recent phenological and microevolutionary responses, experiments, and computational models, we review the insights that different approaches bring to anticipating and managing the biodiversity consequences of climate change, including the extent of species’ natural resilience. We introduce a framework that uses information from different sources to identify vulnerability and to support the design of conservation responses. Although much of the information reviewed is on species, our framework and conclusions are also applicable to ecosystems, habitats, ecological communities, and genetic diversity, whether terrestrial, marine, or fresh water.
University of Bristo... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1200303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,549 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of Bristo... arrow_drop_down University of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.1200303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 1995 United KingdomPublisher:SAGE Publications Authors: Hall, D. O.; House, J.;Biomass fuels currently supply around 15 per cent of the World's energy. Much of this is in the form of traditional fuelwood, plant residues and dung, which are often inefficiently used and can be environmentally detrimental. There is great potential for the modernization of biomass fuels to produce convenient energy carriers, such as electricity, gases and transportation fuels, while continuing to provide for traditional uses of biomass; this is already happening in many countries. When produced in an efficient and sustainable manner, biomass energy has numerous environmental and social benefits compared with fossil fuels. These include waste control, nutrient recycling, job creation, use of surplus agricultural land in industrialized countries, provision of modern energy carriers to rural communities of developing countries, improved land management, and a reduction of CO2 levels. Using biomass to substitute for fossil fuels is afar more effective use of available land than simply growing trees as a carbon store. Biomass fuels can form part of a matrix of renewable fuel sources that increases the energy available for economic development in developing countries. In OECD Europe it is calculated that a potential of 9.0–13.5 EJ could be produced in 2050 on available land, which represents 17–30 per cent of projected total energy requirements.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 1995 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1243/pime_proc_1995_209_038_02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Mechanical Engineers Part A Journal of Power and EnergyArticle . 1995 . Peer-reviewedData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 1995Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1243/pime_proc_1995_209_038_02&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Inter-Research Science Center Clark, J. M.; Gallego-Sala, A. V.; Allott, T. E. H.; Chapman, S. J.; Farewell, T.; Freeman, C.; House, J. I.; Orr, H. G.; Prentice, I. C.; Smith, P.;doi: 10.3354/cr00929
We assessed the vulnerability of blanket peat to climate change in Great Britain using an ensemble of 8 bioclimatic envelope models. We used 4 published models that ranged from simple thresh- old models, based on total annual precipitation, to Generalised Linear Models (GLMs, based on mean an- nual temperature). In addition, 4 new models were developed which included measures of water deficit as threshold, classification tree, GLM and generalised additive models (GAM). Models that included measures of both hydrological conditions and maximum temperature provided a better fit to the mapped peat area than models based on hydrological variables alone. Under UKCIP02 projections for high (A1F1) and low (B1) greenhouse gas emission scenarios, 7 out of the 8 models showed a decline in the bioclimatic space associated with blanket peat. Eastern regions (Northumbria, North York Moors, Orkney) were shown to be more vulnerable than higher-altitude, western areas (Highlands, Western Isles and Argyle, Bute and The Trossachs). These results suggest a long-term decline in the distribution of actively grow- ing blanket peat, especially under the high emissions scenario, although it is emphasised that existing peatlands may well persist for decades under a changing climate. Observational data from long-term monitoring and manipulation experiments in combination with process-based models are required to explore the nature and magnitude of climate change impacts on these vulnerable areas more fully.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18969Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18969Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00929&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 Sweden, United Kingdom, United KingdomPublisher:Inter-Research Science Center I. Colin Prentice; Timothy S. Farewell; Joanna M. Clark; Joanna M. Clark; Angela V. Gallego-Sala; Pete Smith; Joanna Isobel House; Stephen J. Chapman; H Orr;doi: 10.3354/cr00911
Blanket peatlands are rain-fed mires that cover the landscape almost regardless of topography. The geographical extent of this type of peatland is highly sensitive to climate. We applied a global process-based bioclimatic envelope model, PeatStash, to predict the distribution of British blanket peatlands. The model captures the present areal extent (Kappa = 0.77) and is highly sensitive to both temperature and precipitation changes. When the model is run using the UKCIP02 climate projections for the time periods 2011–2040, 2041–2070 and 2071–2100, the geographical distribution of blanket peatlands gradually retreats towards the north and the west. In the UKCIP02 high emissions scenario for 2071–2100, the blanket peatland bioclimatic space is ~84% smaller than contemporary conditions (1961–1990); only parts of the west of Scotland remain inside this space. Increasing summer temperature is the main driver of the projected changes in areal extent. Simulations using 7 climate model outputs resulted in generally similar patterns of declining aereal extent of the bioclimatic space, although differing in degree. The results presented in this study should be viewed as a first step towards understanding the trends likely to affect the blanket peatland distribution in Great Britain. The eventual fate of existing blanket peatlands left outside their bioclimatic space remains uncertain.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18968Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 106 citations 106 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYFull-Text: http://hdl.handle.net/10871/18968Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00911&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 France, United Kingdom, Norway, Netherlands, Netherlands, Norway, United KingdomPublisher:Elsevier BV Funded by:EC | VERIFYEC| VERIFYPerugini, Lucia; Pellis, Guido; Grassi, Giacomo; Ciais, Philippe; Dolman, Han; House, Joanna; Peters, Glen; Smith, Pete; Günther, Dirk; Peylin, Philippe;pmid: 34345221
pmc: PMC8171125
Greenhouse gas (GHG) emission inventories represent the link between national and international political actions on climate change, and climate and environmental sciences. Inventory agencies need to include, in national GHG inventories, emission and removal estimates based on scientific data following specific reporting guidance under the United Nation Framework Convention on Climate Change (UNFCCC) and the Paris Agreement, using the methodologies defined in the Intergovernmental Panel on Climate Change (IPCC) Guidelines. Often however, research communities and inventory agencies have approached the problem of climate change from different angles and by using terminologies, metrics, rules and approaches that do not always match. This is particularly true dealing with "Land Use, Land-Use Change and Forestry" (LULUCF), the most challenging among the inventory sectors to deal with, mainly because of high level of complexity of its carbon dynamics and the difficulties in disaggregating the fluxes between those caused by natural and anthropogenic processes. In this paper, we facilitate the understanding by research communities of the current (UNFCCC) and future (under the Paris Agreement) reporting requirements, and we identify the main issues and topics that should be considered when targeting improvement of the GHG inventory. In relation to these topics, we describe where and how the research community can contribute to producing useful inputs, data, methods and solutions for inventory agencies and policy makers, on the basis of available literature. However, a greater effort by both communities is desirable for closer cooperation and collaboration, for data sharing and the understanding of respective and common aims.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16856Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2021Environmental Science & PolicyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03233485Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16856Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)Environmental Science & PolicyArticle . 2021Environmental Science & PolicyArticle . 2021 . Peer-reviewedData sources: European Union Open Data PortalAberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.04.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Part of book or chapter of book 1995 United KingdomPublisher:Elsevier BV Authors: HALL, DO; House, Joanna Isobel;Abstract Presently biomass energy supplies at least 2 EJ/yr (47 Mtoe) in OECD Europe, which is about 4% of total primary energy consumption (54.1 EJ). Estimates of the potential for bioenergy in the next century range from 2 to 20 EJ/yr. This paper estimates a potential of 9.0–13.5 EJ in 2050, which represents 17–30% of projected total energy requirements. This depends on assumptions of available land areas, achievable yields and the amount of recoverable residues utilized. Greater environmental and net energy benefits can be derived from perennial and woody energy crops compared to annual arable crops as alternative feedstocks for fossil fuels. The relative contribution of biofuels in the future will ultimately depend on markets and incentives, on R&D progress and on environmental requirements.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0264-8377(95)90073-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu27 citations 27 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0264-8377(95)90073-b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 France, United KingdomPublisher:The Royal Society Evan H. DeLucia; Andras Molnar; Hugo Valin; Hugo Valin; Rocio Diaz-Chavez; Sarah Davis; Joanna Isobel House;pmid: 22482028
pmc: PMC3262264
Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished.
Interface Focus arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverInterface FocusArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsfs.2010.0023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Interface Focus arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2011Data sources: INRIA a CCSD electronic archive serverInterface FocusArticle . 2011 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefUniversity of Bristol: Bristol ResearchArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsfs.2010.0023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010 United KingdomPublisher:Inter-Research Science Center Clark, J.M.; Billett, M.F.; Coyle, M.; Croft, S.; Daniels, S.; Evans, C.D.; Evans, M.; Freeman, C.; Gallego-Sala, A.V.; Heinemeyer, A.; House, J.I.; Monteith, D.T.; Nayak, D.; Orr, H.G.; Prentice, I.C.; Rose, R.; Rowson, J.; Smith, J.U.; Smith, P.; Tun, Y.M.; Vanguelova, E.; Wetterhall, F.; Worrall, F.;doi: 10.3354/cr00974
We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLEN- NIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble under- pinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland manage- ment. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Edge Hill University: Edge Hill Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 13 citations 13 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2010License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Bristol: Bristol ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Edge Hill University: Edge Hill Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/cr00974&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu