- home
- Advanced Search
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Fatma Ayancik; Karen Mulleners;Dynamic stall on airfoils negatively impacts their aerodynamic performance and can lead to structural damage. Accurate prediction and modelling of the dynamic stall loads are crucial for a more robust design of wings and blades that operate under unsteady conditions susceptible to dynamic stall and for widening the range of operation of these lifting surfaces. Many dynamic stall models rely on empirical parameters that need to be obtained from experimental or numerical data which limits their generalisability. Here, we introduce physically derived time scales to replace the empirical parameters in the Goman–Khrabrov dynamic stall model. The physics-based time constants correspond to the dynamic stall delay and the decay of post-stall load fluctuations. The dynamic stall delay is largely independent of the type of motion, the Reynolds number and the airfoil geometry, and is described as a function of a normalised instantaneous pitch rate. The post-stall decay is independent of the motion kinematics and is related to the Strouhal number of the post-stall vortex shedding. The general validity of our physics-based time constants is demonstrated using three sets of experimental dynamic stall data covering various airfoil profiles, Reynolds numbers varying from 75 000 to 1 000 000, and sinusoidal and ramp-up pitching motions. The use of physics-based time constants generalises the Goman–Khrabrov dynamic stall model and extends its range of application.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Fatma Ayancik; Karen Mulleners;Dynamic stall on airfoils negatively impacts their aerodynamic performance and can lead to structural damage. Accurate prediction and modelling of the dynamic stall loads are crucial for a more robust design of wings and blades that operate under unsteady conditions susceptible to dynamic stall and for widening the range of operation of these lifting surfaces. Many dynamic stall models rely on empirical parameters that need to be obtained from experimental or numerical data which limits their generalisability. Here, we introduce physically derived time scales to replace the empirical parameters in the Goman–Khrabrov dynamic stall model. The physics-based time constants correspond to the dynamic stall delay and the decay of post-stall load fluctuations. The dynamic stall delay is largely independent of the type of motion, the Reynolds number and the airfoil geometry, and is described as a function of a normalised instantaneous pitch rate. The post-stall decay is independent of the motion kinematics and is related to the Strouhal number of the post-stall vortex shedding. The general validity of our physics-based time constants is demonstrated using three sets of experimental dynamic stall data covering various airfoil profiles, Reynolds numbers varying from 75 000 to 1 000 000, and sinusoidal and ramp-up pitching motions. The use of physics-based time constants generalises the Goman–Khrabrov dynamic stall model and extends its range of application.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Julien Deparday; Karen Mulleners;Airfoil stall plays a central role in the design of safe and efficient lifting surfaces. We typically distinguish between static and dynamic stall based on the unsteady rate of change of an airfoil's angle of attack. Despite the somewhat misleading denotation, the force and flow development of an airfoil undergoing static stall are highly unsteady and the boundary with dynamic stall is not clearly defined. We experimentally investigate the forces acting on a two-dimensional airfoil that is subjected to two manoeuvres leading to static stall: a slow continuous increase in angle of attack with a reduced pitch rate of 1.3e-4 and a step-wise increase in angle of attack from 14.2�� to 14.8�� within 0.04 convective times. We systematically quantify the stall reaction delay for many repetitions of these two manoeuvres. The onset of flow stall is marked by the distinct drop in the lift coefficient. The reaction delay for the slow continuous ramp-up manoeuvre is not influenced by the blade kinematics and its occurrence histogram is normally distributed around 32 convective times. The static reaction delay is compared with dynamic stall delays for dynamic ramp-up motions with reduced pitch rates ranging from 9e-4 to 0.14 and for dynamic sinusoidal pitching motions of different airfoils at higher Reynolds numbers up to 1e6. The stall delays for all conditions follows the same power law decrease from 32 convective times for the most steady case down to an asymptotic value of 3 for reduced pitch rates above 0.04. Static stall is not phenomenologically different than dynamic stall and is merely a typical case of stall for low pitch rates. Based on our results, we suggest that conventional measurements of the static stall angle and the static load curves should be conducted using a continuous and uniform ramp-up motion at a reduced frequency around 1e-4.
Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Julien Deparday; Karen Mulleners;Airfoil stall plays a central role in the design of safe and efficient lifting surfaces. We typically distinguish between static and dynamic stall based on the unsteady rate of change of an airfoil's angle of attack. Despite the somewhat misleading denotation, the force and flow development of an airfoil undergoing static stall are highly unsteady and the boundary with dynamic stall is not clearly defined. We experimentally investigate the forces acting on a two-dimensional airfoil that is subjected to two manoeuvres leading to static stall: a slow continuous increase in angle of attack with a reduced pitch rate of 1.3e-4 and a step-wise increase in angle of attack from 14.2�� to 14.8�� within 0.04 convective times. We systematically quantify the stall reaction delay for many repetitions of these two manoeuvres. The onset of flow stall is marked by the distinct drop in the lift coefficient. The reaction delay for the slow continuous ramp-up manoeuvre is not influenced by the blade kinematics and its occurrence histogram is normally distributed around 32 convective times. The static reaction delay is compared with dynamic stall delays for dynamic ramp-up motions with reduced pitch rates ranging from 9e-4 to 0.14 and for dynamic sinusoidal pitching motions of different airfoils at higher Reynolds numbers up to 1e6. The stall delays for all conditions follows the same power law decrease from 32 convective times for the most steady case down to an asymptotic value of 3 for reduced pitch rates above 0.04. Static stall is not phenomenologically different than dynamic stall and is merely a typical case of stall for low pitch rates. Based on our results, we suggest that conventional measurements of the static stall angle and the static load curves should be conducted using a continuous and uniform ramp-up motion at a reduced frequency around 1e-4.
Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineJulien Deparday; Xiaowei He; Jeff D. Eldredge; Karen Mulleners; David R. Williams;We propose here a method to experimentally quantify unsteady leading-edge flow separation on aerofoils with finite thickness. The methodology relies on the computation of a leading-edge suction parameter based on measured values of the partial circulation around the leading edge and the stagnation point location. We validate the computation of the leading-edge suction parameter for both numerical and experimental data under steady and unsteady flow conditions. The leading-order approximation of the definition of the leading-edge suction parameter is proven to be sufficiently accurate for the application to thin aerofoils such as the NACA0009 without a priori knowledge of the stagnation point location. The higher-order terms including the stagnation point location are required to reliably compute the leading-edge suction parameter on thicker aerofoils such as the NACA0015. The computation of the leading-edge suction parameter from inviscid flow theory does not assume the Kutta condition to be valid at the trailing edge which allows us to compute its value for separated flows. The relation between the leading-edge suction parameter and the evolution of the shear layer height is studied in two different unsteady flow conditions, a fixed aerofoil in a fluctuating free-stream velocity and a pitching aerofoil in a steady free stream. We demonstrate here that the instantaneous value of the leading-edge suction parameter based on the partial circulation around the leading edge is unambiguously defined for a given flow field and can serve as a directly quantitative measure of the degree of unsteady flow separation at the leading edge.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineJulien Deparday; Xiaowei He; Jeff D. Eldredge; Karen Mulleners; David R. Williams;We propose here a method to experimentally quantify unsteady leading-edge flow separation on aerofoils with finite thickness. The methodology relies on the computation of a leading-edge suction parameter based on measured values of the partial circulation around the leading edge and the stagnation point location. We validate the computation of the leading-edge suction parameter for both numerical and experimental data under steady and unsteady flow conditions. The leading-order approximation of the definition of the leading-edge suction parameter is proven to be sufficiently accurate for the application to thin aerofoils such as the NACA0009 without a priori knowledge of the stagnation point location. The higher-order terms including the stagnation point location are required to reliably compute the leading-edge suction parameter on thicker aerofoils such as the NACA0015. The computation of the leading-edge suction parameter from inviscid flow theory does not assume the Kutta condition to be valid at the trailing edge which allows us to compute its value for separated flows. The relation between the leading-edge suction parameter and the evolution of the shear layer height is studied in two different unsteady flow conditions, a fixed aerofoil in a fluctuating free-stream velocity and a pitching aerofoil in a steady free stream. We demonstrate here that the instantaneous value of the leading-edge suction parameter based on the partial circulation around the leading edge is unambiguously defined for a given flow field and can serve as a directly quantitative measure of the degree of unsteady flow separation at the leading edge.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Abstract Vertical-axis wind turbines are great candidates to enable wind power extraction in urban and off-shore applications. Currently, concerns around turbine efficiency and structural integrity limit their industrial deployment. Flow control can mitigate these concerns. Here, we experimentally demonstrate the potential of individual blade pitching as a control strategy and explain the flow physics that yields the performance enhancement. We perform automated experiments using a scaled-down turbine model coupled to a genetic algorithm optimiser to identify optimal pitching kinematics at on- and off-design operating conditions. Optimal blade kinematics yields a three-fold power coefficient increase at both operating conditions compared to the non-actuated turbine and a 70% reduction in structure-threatening load fluctuations at off-design conditions. Based on flow field measurements, we uncover how blade pitching manipulates the flow structures to enhance performance. Our results can aid vertical-axis wind turbines to increase their much-needed contribution to our energy needs.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Abstract Vertical-axis wind turbines are great candidates to enable wind power extraction in urban and off-shore applications. Currently, concerns around turbine efficiency and structural integrity limit their industrial deployment. Flow control can mitigate these concerns. Here, we experimentally demonstrate the potential of individual blade pitching as a control strategy and explain the flow physics that yields the performance enhancement. We perform automated experiments using a scaled-down turbine model coupled to a genetic algorithm optimiser to identify optimal pitching kinematics at on- and off-design operating conditions. Optimal blade kinematics yields a three-fold power coefficient increase at both operating conditions compared to the non-actuated turbine and a 70% reduction in structure-threatening load fluctuations at off-design conditions. Based on flow field measurements, we uncover how blade pitching manipulates the flow structures to enhance performance. Our results can aid vertical-axis wind turbines to increase their much-needed contribution to our energy needs.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Ansell, Phillip J.; Mulleners, Karen;doi: 10.2514/1.j057800
The multiscale development of dynamic stall was studied using a scale-based modal analysis technique. Time-resolved velocity field data around an airfoil during dynamic stall were used for this ana...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Ansell, Phillip J.; Mulleners, Karen;doi: 10.2514/1.j057800
The multiscale development of dynamic stall was studied using a scale-based modal analysis technique. Time-resolved velocity field data around an airfoil during dynamic stall were used for this ana...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAnthony D. Gardner; Anya R. Jones; Karen Mulleners; Jonathan W. Naughton; Marilyn J. Smith;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAnthony D. Gardner; Anya R. Jones; Karen Mulleners; Jonathan W. Naughton; Marilyn J. Smith;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Germany, SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ..., DFGSNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbine ,DFGHe, Guosheng; Deparday, Julien; Siegel, Lars; Henning, Arne; Mulleners, Karen;doi: 10.2514/1.j059719
The flow around a pitching NACA0015 airfoil with an oscillating trailing-edge flap is experimentally investigated to characterize the influence of the flap kinematics on the development of dynamic ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Germany, SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ..., DFGSNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbine ,DFGHe, Guosheng; Deparday, Julien; Siegel, Lars; Henning, Arne; Mulleners, Karen;doi: 10.2514/1.j059719
The flow around a pitching NACA0015 airfoil with an oscillating trailing-edge flap is experimentally investigated to characterize the influence of the flap kinematics on the development of dynamic ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Vertical-axis wind turbines (VAWT) are excellent candidates to complement traditional wind turbines and increase the total wind energy capacity. Development of VAWT has been hampered by their low efficiency and structural unreliability, which are related to the occurrence of dynamic stall. Dynamic stall consists of the formation, growth, and shedding of large-scale dynamic stall vortices, followed by massive flow separation. The vortex shedding is detrimental to the turbine's efficiency and causes significant load fluctuations that jeopardise the turbine's structural integrity. We present a comprehensive experimental characterisation of dynamic stall on a VAWT blade including time-resolved load and velocity field measurements. Particular attention is dedicated to the dilemma faced by VAWT to either operate at lower tip-speed ratios to maximise their peak aerodynamic performance but experience dynamic stall, or to avoid dynamic stall at the cost of reducing their peak performance. Based on the results, we map turbine operating conditions to one of three regimes: deep stall, light stall, and no stall. The light stall regime offers VAWT the best compromise in the dynamic stall dilemma as it yields positive tangential forces during the upwind and downwind rotation and reduces load transients by 75% compared to the deep stall regime.
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Vertical-axis wind turbines (VAWT) are excellent candidates to complement traditional wind turbines and increase the total wind energy capacity. Development of VAWT has been hampered by their low efficiency and structural unreliability, which are related to the occurrence of dynamic stall. Dynamic stall consists of the formation, growth, and shedding of large-scale dynamic stall vortices, followed by massive flow separation. The vortex shedding is detrimental to the turbine's efficiency and causes significant load fluctuations that jeopardise the turbine's structural integrity. We present a comprehensive experimental characterisation of dynamic stall on a VAWT blade including time-resolved load and velocity field measurements. Particular attention is dedicated to the dilemma faced by VAWT to either operate at lower tip-speed ratios to maximise their peak aerodynamic performance but experience dynamic stall, or to avoid dynamic stall at the cost of reducing their peak performance. Based on the results, we map turbine operating conditions to one of three regimes: deep stall, light stall, and no stall. The light stall regime offers VAWT the best compromise in the dynamic stall dilemma as it yields positive tangential forces during the upwind and downwind rotation and reduces load transients by 75% compared to the deep stall regime.
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:AIP Publishing Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Julien Deparday; Karen Mulleners;doi: 10.1063/1.5121312
The dynamic stall development on a pitching airfoil at Re = 106 was investigated by time-resolved surface pressure and velocity field measurements. Two stages were identified in the dynamic stall development based on the shear layer evolution. In the first stage, the flow detaches from the trailing edge and the separation point moves gradually upstream. The second stage is characterized by the roll up of the shear layer into a large scale dynamic stall vortex. The two-stage dynamic stall development was independently confirmed by global velocity field and local surface pressure measurements around the leading edge. The leading edge pressure signals were combined into a single leading edge suction parameter. We developed an improved model of the leading edge suction parameter based on thin airfoil theory that links the evolution of the leading edge suction and the shear layer growth during stall development. The shear layer development leads to a change in the effective camber and the effective angle of attack. By taking into account this twofold influence, the model accurately predicts the value and timing of the maximum leading edge suction on a pitching airfoil. The evolution of the experimentally obtained leading edge suction was further analyzed for various sinusoidal motions revealing an increase in the critical value of the leading edge suction parameter with increasing pitch unsteadiness. The characteristic dynamic stall delay decreases with increasing unsteadiness, and the dynamic stall onset is best assessed by critical values of the circulation and the shear layer height which are motion independent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:AIP Publishing Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Julien Deparday; Karen Mulleners;doi: 10.1063/1.5121312
The dynamic stall development on a pitching airfoil at Re = 106 was investigated by time-resolved surface pressure and velocity field measurements. Two stages were identified in the dynamic stall development based on the shear layer evolution. In the first stage, the flow detaches from the trailing edge and the separation point moves gradually upstream. The second stage is characterized by the roll up of the shear layer into a large scale dynamic stall vortex. The two-stage dynamic stall development was independently confirmed by global velocity field and local surface pressure measurements around the leading edge. The leading edge pressure signals were combined into a single leading edge suction parameter. We developed an improved model of the leading edge suction parameter based on thin airfoil theory that links the evolution of the leading edge suction and the shear layer growth during stall development. The shear layer development leads to a change in the effective camber and the effective angle of attack. By taking into account this twofold influence, the model accurately predicts the value and timing of the maximum leading edge suction on a pitching airfoil. The evolution of the experimentally obtained leading edge suction was further analyzed for various sinusoidal motions revealing an increase in the critical value of the leading edge suction parameter with increasing pitch unsteadiness. The characteristic dynamic stall delay decreases with increasing unsteadiness, and the dynamic stall onset is best assessed by critical values of the circulation and the shear layer height which are motion independent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, SwitzerlandPublisher:AIP Publishing Authors: Matthew Melius; Raúl Bayoán Cal; Karen Mulleners;doi: 10.1063/1.4942001
To understand the complex flow phenomena over wind turbine blades during stall development, a scaled three-dimensional non-rotating blade model is designed to be dynamically similar to a rotating full-scale NREL 5 MW wind turbine blade. A time-resolved particle image velocimetry (PIV) investigation of flow behavior during the stall cycle examines the processes of stall development and flow reattachment. Proper orthogonal decomposition (POD) and vortex detection techniques are applied to the PIV fields to quantify relevant flow characteristics such as vortex size, separation angle, and separation point throughout a dynamic pitching cycle. The behavior of the POD coefficients provides time scales for the transitional stages which are quantified and compared, revealing that transition from attached flow to full stall is delayed to higher angles of attack and occurs at a higher rate than the transition from full stall to attached flow. The instantaneous flow fields are then reconstructed using the first four POD modes to demonstrate their prominent roles throughout the stall cycle and their ability to capture the general separation behavior over the blade surface.
Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, SwitzerlandPublisher:AIP Publishing Authors: Matthew Melius; Raúl Bayoán Cal; Karen Mulleners;doi: 10.1063/1.4942001
To understand the complex flow phenomena over wind turbine blades during stall development, a scaled three-dimensional non-rotating blade model is designed to be dynamically similar to a rotating full-scale NREL 5 MW wind turbine blade. A time-resolved particle image velocimetry (PIV) investigation of flow behavior during the stall cycle examines the processes of stall development and flow reattachment. Proper orthogonal decomposition (POD) and vortex detection techniques are applied to the PIV fields to quantify relevant flow characteristics such as vortex size, separation angle, and separation point throughout a dynamic pitching cycle. The behavior of the POD coefficients provides time scales for the transitional stages which are quantified and compared, revealing that transition from attached flow to full stall is delayed to higher angles of attack and occurs at a higher rate than the transition from full stall to attached flow. The instantaneous flow fields are then reconstructed using the first four POD modes to demonstrate their prominent roles throughout the stall cycle and their ability to capture the general separation behavior over the blade surface.
Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Fatma Ayancik; Karen Mulleners;Dynamic stall on airfoils negatively impacts their aerodynamic performance and can lead to structural damage. Accurate prediction and modelling of the dynamic stall loads are crucial for a more robust design of wings and blades that operate under unsteady conditions susceptible to dynamic stall and for widening the range of operation of these lifting surfaces. Many dynamic stall models rely on empirical parameters that need to be obtained from experimental or numerical data which limits their generalisability. Here, we introduce physically derived time scales to replace the empirical parameters in the Goman–Khrabrov dynamic stall model. The physics-based time constants correspond to the dynamic stall delay and the decay of post-stall load fluctuations. The dynamic stall delay is largely independent of the type of motion, the Reynolds number and the airfoil geometry, and is described as a function of a normalised instantaneous pitch rate. The post-stall decay is independent of the motion kinematics and is related to the Strouhal number of the post-stall vortex shedding. The general validity of our physics-based time constants is demonstrated using three sets of experimental dynamic stall data covering various airfoil profiles, Reynolds numbers varying from 75 000 to 1 000 000, and sinusoidal and ramp-up pitching motions. The use of physics-based time constants generalises the Goman–Khrabrov dynamic stall model and extends its range of application.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Fatma Ayancik; Karen Mulleners;Dynamic stall on airfoils negatively impacts their aerodynamic performance and can lead to structural damage. Accurate prediction and modelling of the dynamic stall loads are crucial for a more robust design of wings and blades that operate under unsteady conditions susceptible to dynamic stall and for widening the range of operation of these lifting surfaces. Many dynamic stall models rely on empirical parameters that need to be obtained from experimental or numerical data which limits their generalisability. Here, we introduce physically derived time scales to replace the empirical parameters in the Goman–Khrabrov dynamic stall model. The physics-based time constants correspond to the dynamic stall delay and the decay of post-stall load fluctuations. The dynamic stall delay is largely independent of the type of motion, the Reynolds number and the airfoil geometry, and is described as a function of a normalised instantaneous pitch rate. The post-stall decay is independent of the motion kinematics and is related to the Strouhal number of the post-stall vortex shedding. The general validity of our physics-based time constants is demonstrated using three sets of experimental dynamic stall data covering various airfoil profiles, Reynolds numbers varying from 75 000 to 1 000 000, and sinusoidal and ramp-up pitching motions. The use of physics-based time constants generalises the Goman–Khrabrov dynamic stall model and extends its range of application.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.381&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Julien Deparday; Karen Mulleners;Airfoil stall plays a central role in the design of safe and efficient lifting surfaces. We typically distinguish between static and dynamic stall based on the unsteady rate of change of an airfoil's angle of attack. Despite the somewhat misleading denotation, the force and flow development of an airfoil undergoing static stall are highly unsteady and the boundary with dynamic stall is not clearly defined. We experimentally investigate the forces acting on a two-dimensional airfoil that is subjected to two manoeuvres leading to static stall: a slow continuous increase in angle of attack with a reduced pitch rate of 1.3e-4 and a step-wise increase in angle of attack from 14.2�� to 14.8�� within 0.04 convective times. We systematically quantify the stall reaction delay for many repetitions of these two manoeuvres. The onset of flow stall is marked by the distinct drop in the lift coefficient. The reaction delay for the slow continuous ramp-up manoeuvre is not influenced by the blade kinematics and its occurrence histogram is normally distributed around 32 convective times. The static reaction delay is compared with dynamic stall delays for dynamic ramp-up motions with reduced pitch rates ranging from 9e-4 to 0.14 and for dynamic sinusoidal pitching motions of different airfoils at higher Reynolds numbers up to 1e6. The stall delays for all conditions follows the same power law decrease from 32 convective times for the most steady case down to an asymptotic value of 3 for reduced pitch rates above 0.04. Static stall is not phenomenologically different than dynamic stall and is merely a typical case of stall for low pitch rates. Based on our results, we suggest that conventional measurements of the static stall angle and the static load curves should be conducted using a continuous and uniform ramp-up motion at a reduced frequency around 1e-4.
Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Julien Deparday; Karen Mulleners;Airfoil stall plays a central role in the design of safe and efficient lifting surfaces. We typically distinguish between static and dynamic stall based on the unsteady rate of change of an airfoil's angle of attack. Despite the somewhat misleading denotation, the force and flow development of an airfoil undergoing static stall are highly unsteady and the boundary with dynamic stall is not clearly defined. We experimentally investigate the forces acting on a two-dimensional airfoil that is subjected to two manoeuvres leading to static stall: a slow continuous increase in angle of attack with a reduced pitch rate of 1.3e-4 and a step-wise increase in angle of attack from 14.2�� to 14.8�� within 0.04 convective times. We systematically quantify the stall reaction delay for many repetitions of these two manoeuvres. The onset of flow stall is marked by the distinct drop in the lift coefficient. The reaction delay for the slow continuous ramp-up manoeuvre is not influenced by the blade kinematics and its occurrence histogram is normally distributed around 32 convective times. The static reaction delay is compared with dynamic stall delays for dynamic ramp-up motions with reduced pitch rates ranging from 9e-4 to 0.14 and for dynamic sinusoidal pitching motions of different airfoils at higher Reynolds numbers up to 1e6. The stall delays for all conditions follows the same power law decrease from 32 convective times for the most steady case down to an asymptotic value of 3 for reduced pitch rates above 0.04. Static stall is not phenomenologically different than dynamic stall and is merely a typical case of stall for low pitch rates. Based on our results, we suggest that conventional measurements of the static stall angle and the static load curves should be conducted using a continuous and uniform ramp-up motion at a reduced frequency around 1e-4.
Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluids an... arrow_drop_down Journal of Fluids and StructuresArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jfluidstructs.2021.103304&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineJulien Deparday; Xiaowei He; Jeff D. Eldredge; Karen Mulleners; David R. Williams;We propose here a method to experimentally quantify unsteady leading-edge flow separation on aerofoils with finite thickness. The methodology relies on the computation of a leading-edge suction parameter based on measured values of the partial circulation around the leading edge and the stagnation point location. We validate the computation of the leading-edge suction parameter for both numerical and experimental data under steady and unsteady flow conditions. The leading-order approximation of the definition of the leading-edge suction parameter is proven to be sufficiently accurate for the application to thin aerofoils such as the NACA0009 without a priori knowledge of the stagnation point location. The higher-order terms including the stagnation point location are required to reliably compute the leading-edge suction parameter on thicker aerofoils such as the NACA0015. The computation of the leading-edge suction parameter from inviscid flow theory does not assume the Kutta condition to be valid at the trailing edge which allows us to compute its value for separated flows. The relation between the leading-edge suction parameter and the evolution of the shear layer height is studied in two different unsteady flow conditions, a fixed aerofoil in a fluctuating free-stream velocity and a pitching aerofoil in a steady free stream. We demonstrate here that the instantaneous value of the leading-edge suction parameter based on the partial circulation around the leading edge is unambiguously defined for a given flow field and can serve as a directly quantitative measure of the degree of unsteady flow separation at the leading edge.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Cambridge University Press (CUP) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineJulien Deparday; Xiaowei He; Jeff D. Eldredge; Karen Mulleners; David R. Williams;We propose here a method to experimentally quantify unsteady leading-edge flow separation on aerofoils with finite thickness. The methodology relies on the computation of a leading-edge suction parameter based on measured values of the partial circulation around the leading edge and the stagnation point location. We validate the computation of the leading-edge suction parameter for both numerical and experimental data under steady and unsteady flow conditions. The leading-order approximation of the definition of the leading-edge suction parameter is proven to be sufficiently accurate for the application to thin aerofoils such as the NACA0009 without a priori knowledge of the stagnation point location. The higher-order terms including the stagnation point location are required to reliably compute the leading-edge suction parameter on thicker aerofoils such as the NACA0015. The computation of the leading-edge suction parameter from inviscid flow theory does not assume the Kutta condition to be valid at the trailing edge which allows us to compute its value for separated flows. The relation between the leading-edge suction parameter and the evolution of the shear layer height is studied in two different unsteady flow conditions, a fixed aerofoil in a fluctuating free-stream velocity and a pitching aerofoil in a steady free stream. We demonstrate here that the instantaneous value of the leading-edge suction parameter based on the partial circulation around the leading edge is unambiguously defined for a given flow field and can serve as a directly quantitative measure of the degree of unsteady flow separation at the leading edge.
Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Fluid Mec... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1017/jfm.2022.319&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Abstract Vertical-axis wind turbines are great candidates to enable wind power extraction in urban and off-shore applications. Currently, concerns around turbine efficiency and structural integrity limit their industrial deployment. Flow control can mitigate these concerns. Here, we experimentally demonstrate the potential of individual blade pitching as a control strategy and explain the flow physics that yields the performance enhancement. We perform automated experiments using a scaled-down turbine model coupled to a genetic algorithm optimiser to identify optimal pitching kinematics at on- and off-design operating conditions. Optimal blade kinematics yields a three-fold power coefficient increase at both operating conditions compared to the non-actuated turbine and a 70% reduction in structure-threatening load fluctuations at off-design conditions. Based on flow field measurements, we uncover how blade pitching manipulates the flow structures to enhance performance. Our results can aid vertical-axis wind turbines to increase their much-needed contribution to our energy needs.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Abstract Vertical-axis wind turbines are great candidates to enable wind power extraction in urban and off-shore applications. Currently, concerns around turbine efficiency and structural integrity limit their industrial deployment. Flow control can mitigate these concerns. Here, we experimentally demonstrate the potential of individual blade pitching as a control strategy and explain the flow physics that yields the performance enhancement. We perform automated experiments using a scaled-down turbine model coupled to a genetic algorithm optimiser to identify optimal pitching kinematics at on- and off-design operating conditions. Optimal blade kinematics yields a three-fold power coefficient increase at both operating conditions compared to the non-actuated turbine and a 70% reduction in structure-threatening load fluctuations at off-design conditions. Based on flow field measurements, we uncover how blade pitching manipulates the flow structures to enhance performance. Our results can aid vertical-axis wind turbines to increase their much-needed contribution to our energy needs.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21203/rs.3.rs-3121052/v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Ansell, Phillip J.; Mulleners, Karen;doi: 10.2514/1.j057800
The multiscale development of dynamic stall was studied using a scale-based modal analysis technique. Time-resolved velocity field data around an airfoil during dynamic stall were used for this ana...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Ansell, Phillip J.; Mulleners, Karen;doi: 10.2514/1.j057800
The multiscale development of dynamic stall was studied using a scale-based modal analysis technique. Time-resolved velocity field data around an airfoil during dynamic stall were used for this ana...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j057800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAnthony D. Gardner; Anya R. Jones; Karen Mulleners; Jonathan W. Naughton; Marilyn J. Smith;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 Germany, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAnthony D. Gardner; Anya R. Jones; Karen Mulleners; Jonathan W. Naughton; Marilyn J. Smith;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.paerosci.2023.100887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Germany, SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ..., DFGSNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbine ,DFGHe, Guosheng; Deparday, Julien; Siegel, Lars; Henning, Arne; Mulleners, Karen;doi: 10.2514/1.j059719
The flow around a pitching NACA0015 airfoil with an oscillating trailing-edge flap is experimentally investigated to characterize the influence of the flap kinematics on the development of dynamic ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Germany, SwitzerlandPublisher:American Institute of Aeronautics and Astronautics (AIAA) Funded by:SNSF | Dynamic stall management ..., DFGSNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbine ,DFGHe, Guosheng; Deparday, Julien; Siegel, Lars; Henning, Arne; Mulleners, Karen;doi: 10.2514/1.j059719
The flow around a pitching NACA0015 airfoil with an oscillating trailing-edge flap is experimentally investigated to characterize the influence of the flap kinematics on the development of dynamic ...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/1.j059719&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Vertical-axis wind turbines (VAWT) are excellent candidates to complement traditional wind turbines and increase the total wind energy capacity. Development of VAWT has been hampered by their low efficiency and structural unreliability, which are related to the occurrence of dynamic stall. Dynamic stall consists of the formation, growth, and shedding of large-scale dynamic stall vortices, followed by massive flow separation. The vortex shedding is detrimental to the turbine's efficiency and causes significant load fluctuations that jeopardise the turbine's structural integrity. We present a comprehensive experimental characterisation of dynamic stall on a VAWT blade including time-resolved load and velocity field measurements. Particular attention is dedicated to the dilemma faced by VAWT to either operate at lower tip-speed ratios to maximise their peak aerodynamic performance but experience dynamic stall, or to avoid dynamic stall at the cost of reducing their peak performance. Based on the results, we map turbine operating conditions to one of three regimes: deep stall, light stall, and no stall. The light stall regime offers VAWT the best compromise in the dynamic stall dilemma as it yields positive tangential forces during the upwind and downwind rotation and reduces load transients by 75% compared to the deep stall regime.
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Sébastien Le Fouest; Karen Mulleners;Vertical-axis wind turbines (VAWT) are excellent candidates to complement traditional wind turbines and increase the total wind energy capacity. Development of VAWT has been hampered by their low efficiency and structural unreliability, which are related to the occurrence of dynamic stall. Dynamic stall consists of the formation, growth, and shedding of large-scale dynamic stall vortices, followed by massive flow separation. The vortex shedding is detrimental to the turbine's efficiency and causes significant load fluctuations that jeopardise the turbine's structural integrity. We present a comprehensive experimental characterisation of dynamic stall on a VAWT blade including time-resolved load and velocity field measurements. Particular attention is dedicated to the dilemma faced by VAWT to either operate at lower tip-speed ratios to maximise their peak aerodynamic performance but experience dynamic stall, or to avoid dynamic stall at the cost of reducing their peak performance. Based on the results, we map turbine operating conditions to one of three regimes: deep stall, light stall, and no stall. The light stall regime offers VAWT the best compromise in the dynamic stall dilemma as it yields positive tangential forces during the upwind and downwind rotation and reduces load transients by 75% compared to the deep stall regime.
Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2022License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.07.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:AIP Publishing Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Julien Deparday; Karen Mulleners;doi: 10.1063/1.5121312
The dynamic stall development on a pitching airfoil at Re = 106 was investigated by time-resolved surface pressure and velocity field measurements. Two stages were identified in the dynamic stall development based on the shear layer evolution. In the first stage, the flow detaches from the trailing edge and the separation point moves gradually upstream. The second stage is characterized by the roll up of the shear layer into a large scale dynamic stall vortex. The two-stage dynamic stall development was independently confirmed by global velocity field and local surface pressure measurements around the leading edge. The leading edge pressure signals were combined into a single leading edge suction parameter. We developed an improved model of the leading edge suction parameter based on thin airfoil theory that links the evolution of the leading edge suction and the shear layer growth during stall development. The shear layer development leads to a change in the effective camber and the effective angle of attack. By taking into account this twofold influence, the model accurately predicts the value and timing of the maximum leading edge suction on a pitching airfoil. The evolution of the experimentally obtained leading edge suction was further analyzed for various sinusoidal motions revealing an increase in the critical value of the leading edge suction parameter with increasing pitch unsteadiness. The characteristic dynamic stall delay decreases with increasing unsteadiness, and the dynamic stall onset is best assessed by critical values of the circulation and the shear layer height which are motion independent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SwitzerlandPublisher:AIP Publishing Funded by:SNSF | Dynamic stall management ...SNSF| Dynamic stall management for improving aerodynamic robustness of H-type wind turbineAuthors: Julien Deparday; Karen Mulleners;doi: 10.1063/1.5121312
The dynamic stall development on a pitching airfoil at Re = 106 was investigated by time-resolved surface pressure and velocity field measurements. Two stages were identified in the dynamic stall development based on the shear layer evolution. In the first stage, the flow detaches from the trailing edge and the separation point moves gradually upstream. The second stage is characterized by the roll up of the shear layer into a large scale dynamic stall vortex. The two-stage dynamic stall development was independently confirmed by global velocity field and local surface pressure measurements around the leading edge. The leading edge pressure signals were combined into a single leading edge suction parameter. We developed an improved model of the leading edge suction parameter based on thin airfoil theory that links the evolution of the leading edge suction and the shear layer growth during stall development. The shear layer development leads to a change in the effective camber and the effective angle of attack. By taking into account this twofold influence, the model accurately predicts the value and timing of the maximum leading edge suction on a pitching airfoil. The evolution of the experimentally obtained leading edge suction was further analyzed for various sinusoidal motions revealing an increase in the critical value of the leading edge suction parameter with increasing pitch unsteadiness. The characteristic dynamic stall delay decreases with increasing unsteadiness, and the dynamic stall onset is best assessed by critical values of the circulation and the shear layer height which are motion independent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 58 citations 58 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.5121312&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, SwitzerlandPublisher:AIP Publishing Authors: Matthew Melius; Raúl Bayoán Cal; Karen Mulleners;doi: 10.1063/1.4942001
To understand the complex flow phenomena over wind turbine blades during stall development, a scaled three-dimensional non-rotating blade model is designed to be dynamically similar to a rotating full-scale NREL 5 MW wind turbine blade. A time-resolved particle image velocimetry (PIV) investigation of flow behavior during the stall cycle examines the processes of stall development and flow reattachment. Proper orthogonal decomposition (POD) and vortex detection techniques are applied to the PIV fields to quantify relevant flow characteristics such as vortex size, separation angle, and separation point throughout a dynamic pitching cycle. The behavior of the POD coefficients provides time scales for the transitional stages which are quantified and compared, revealing that transition from attached flow to full stall is delayed to higher angles of attack and occurs at a higher rate than the transition from full stall to attached flow. The instantaneous flow fields are then reconstructed using the first four POD modes to demonstrate their prominent roles throughout the stall cycle and their ability to capture the general separation behavior over the blade surface.
Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, SwitzerlandPublisher:AIP Publishing Authors: Matthew Melius; Raúl Bayoán Cal; Karen Mulleners;doi: 10.1063/1.4942001
To understand the complex flow phenomena over wind turbine blades during stall development, a scaled three-dimensional non-rotating blade model is designed to be dynamically similar to a rotating full-scale NREL 5 MW wind turbine blade. A time-resolved particle image velocimetry (PIV) investigation of flow behavior during the stall cycle examines the processes of stall development and flow reattachment. Proper orthogonal decomposition (POD) and vortex detection techniques are applied to the PIV fields to quantify relevant flow characteristics such as vortex size, separation angle, and separation point throughout a dynamic pitching cycle. The behavior of the POD coefficients provides time scales for the transitional stages which are quantified and compared, revealing that transition from attached flow to full stall is delayed to higher angles of attack and occurs at a higher rate than the transition from full stall to attached flow. The instantaneous flow fields are then reconstructed using the first four POD modes to demonstrate their prominent roles throughout the stall cycle and their ability to capture the general separation behavior over the blade surface.
Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Physics of Fluids arrow_drop_down Portland State University: PDXScholarArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4942001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu