- home
- Advanced Search
Filters
Year range
-chevron_right GOField of Science
Funder
SDG [Beta]
Country
Source
Research community
- Energy Research
- Energy Research
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 02 Mar 2021 France, Germany, Switzerland, FrancePublisher:Copernicus GmbH Funded by:SNSF | Robust models for assessi..., EC | GHG EUROPE, SNSF | Buffer-Capacity-based Liv...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,EC| GHG EUROPE ,SNSF| Buffer-Capacity-based Livelihood Resilience to Stressors - an Early Warning Tool and its Application in Makueni County, KenyaL. Merbold; L. Merbold; L. Merbold; C. Decock; C. Decock; W. Eugster; K. Fuchs; B. Wolf; N. Buchmann; L. Hörtnagl;Abstract. A 5-year greenhouse gas (GHG) exchange study of the three major gas species (CO2, CH4 and N2O) from an intensively managed permanent grassland in Switzerland is presented. Measurements comprise 2 years (2010 and 2011) of manual static chamber measurements of CH4 and N2O, 5 years of continuous eddy covariance (EC) measurements (CO2–H2O – 2010–2014), and 3 years (2012–2014) of EC measurement of CH4 and N2O. Intensive grassland management included both regular and sporadic management activities. Regular management practices encompassed mowing (three to five cuts per year) with subsequent organic fertilizer amendments and occasional grazing, whereas sporadic management activities comprised grazing or similar activities. The primary objective of our measurements was to compare pre-plowing to post-plowing GHG exchange and to identify potential memory effects of such a substantial disturbance on GHG exchange and carbon (C) and nitrogen (N) gains and losses. In order to include measurements carried out with different observation techniques, we tested two different measurement techniques jointly in 2013, namely the manual static chamber approach and the eddy covariance technique for N2O, to quantify the GHG exchange from the observed grassland site. Our results showed that there were no memory effects on N2O and CH4 emissions after plowing, whereas the CO2 uptake of the site considerably increased when compared to pre-restoration years. In detail, we observed large losses of CO2 and N2O during the year of restoration. In contrast, the grassland acted as a carbon sink under usual management, i.e., the time periods 2010–2011 and 2013–2014. Enhanced emissions and emission peaks of N2O (defined as exceeding background emissions 0.21 ± 0.55 nmol m−2 s−1 (SE = 0.02) for at least 2 sequential days and the 7 d moving average exceeding background emissions) were observed for almost 7 continuous months after restoration as well as following organic fertilizer applications during all years. Net ecosystem exchange of CO2 (NEECO2) showed a common pattern of increased uptake of CO2 in spring and reduced uptake in late fall. NEECO2 dropped to zero and became positive after each harvest event. Methane (CH4) exchange fluctuated around zero during all years. Overall, CH4 exchange was of negligible importance for both the GHG budget and the carbon budget of the site. Our results stress the inclusion of grassland restoration events when providing cumulative sums of C sequestration potential and/or global warming potential (GWP). Consequently, this study further highlights the need for continuous long-term GHG exchange observations as well as for the implementation of our findings into biogeochemical process models to track potential GHG mitigation objectives as well as to predict future GHG emission scenarios reliably.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 Switzerland, France, Germany, France, FrancePublisher:Wiley Funded by:SNSF | Farm-scale Methane Fluxes...SNSF| Farm-scale Methane Fluxes (FasMeF)Albin Hammerle; Matti Barthel; Haiyan Lu; Lutz Merbold; Lutz Merbold; Werner Eugster; Nina Buchmann; Thomas Ladreiter-Knauss; Matthias Zeeman; Klaus Butterbach-Bahl; Eugenio Díaz-Pinés; Eugenio Díaz-Pinés; Lukas Hörtnagl; Ralf Kiese; Susanne Burri; Michael Bahn; Katja Klumpp;AbstractCentral European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.
Hyper Article en Lig... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/91680Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/91680Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Italy, Netherlands, Denmark, United States, Italy, United States, Germany, United StatesPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSERC, NWO | Long term observation of ..., NSF | CAREER: Contrasting envir... +6 projectsNSERC ,NWO| Long term observation of soil carbon and methane fluxes in Siberian tundra. ,NSF| CAREER: Contrasting environmental controls on regional CO2 and CH4 biogeochemistry-Research and education for placing global change in a regional, local context ,AKA| Towards comprehensive understanding of surface layer exchange processes of biogenic volatile organic compounds ,AKA| ICOS - Integrated Carbon Observation System ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| ICE-ARC ,RSF| The development of ecosystem spatial-temporal thermodynamics theory and methods of thermodynamic variables measurement ,NSF| Measurement and Analysis of Methane Fluxes in a Northern Peatland EcosystemAna Meijide; Arjan Hensen; Elmar Veenendaal; Magnus Lund; Magnus Lund; A. J. Dolman; Thomas Friborg; Derrick Y.F. Lai; Tuomas Laurila; Barbara Marcolla; Janne Rinne; Janne Rinne; Pertti J. Martikainen; Lawrence B. Flanagan; Alessandro Cescatti; Christian Bernhofer; Annalea Lohila; Andrej Varlagin; Torben R. Christensen; Torben R. Christensen; Dennis D. Baldocchi; Marcin Jackowicz-Korczynski; Narasinha J. Shurpali; Nigel T. Roulet; Thomas Grünwald; Walter C. Oechel; Juha-Pekka Tuovinen; Ute Skiba; Chiara A. R. Corradi; Gerard Kiely; Shashi B. Verma; Mika Aurela; A.P. Schrier-Uijl; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; A.M.R. Petrescu; Matteo Sottocornola; Jacobus van Huissteden; Carsten Grüning; Torsten Sachs; Mikhail Mastepanov; Mikhail Mastepanov; Lutz Merbold; Elyn Humphreys; Ankur R. Desai; Jaclyn Hatala Matthes; Timo Vesala; Donatella Zona; Donatella Zona; Mikkel P. Tamstorf;pmid: 25831506
pmc: PMC4403212
Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 Finland, Germany, United Kingdom, France, Switzerland, FrancePublisher:Walter de Gruyter GmbH Hanna Silvennoinen; Matthias Peichl; Sara Maraňón Jiménez; Ralf Kiese; Patrick M. Crill; Ute Skiba; Manuel Acosta; Bert Gielen; Annalea Lohila; B. Longdoz; Mats Nilsson; Patrik Vestin; Marian Pavelka; Christian Brümmer; Alexander Graf; Roland Fuß; Anders Lindroth; Nuria Altimir; Lutz Merbold; Lutz Merbold; Penélope Serrano Ortiz; Jukka Pumpanen; Werner L. Kutsch; Mari Pihlatie; Eva Darenova; Dalibor Janouš; Per Weslien; Leonardo Montagnani; Leif Klemedtsson;handle: 10568/99050
Abstract Chamber measurements of trace gas fluxes between the land surface and the atmosphere have been conducted for almost a century. Different chamber techniques, including static and dynamic, have been used with varying degrees of success in estimating greenhouse gases (CO2, CH4, N2O) fluxes. However, all of these have certain disadvantages which have either prevented them from providing an adequate estimate of greenhouse gas exchange or restricted them to be used under limited conditions. Generally, chamber methods are relatively low in cost and simple to operate. In combination with the appropriate sample allocations, chamber methods are adaptable for a wide variety of studies from local to global spatial scales, and they are particularly well suited for in situ and laboratory-based studies. Consequently, chamber measurements will play an important role in the portfolio of the Pan-European long-term research infrastructure Integrated Carbon Observation System. The respective working group of the Integrated Carbon Observation System Ecosystem Monitoring Station Assembly has decided to ascertain standards and quality checks for automated and manual chamber systems instead of defining one or several standard systems provided by commercial manufacturers in order to define minimum requirements for chamber measurements. The defined requirements and recommendations related to chamber measurements are described here.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99050Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0045Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 9 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99050Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0045Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Germany, Switzerland, France, United Kingdom, France, Germany, France, France, AustraliaPublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Mark A. Liebig; Pete Smith; Robert M. Rees; Russell McAuliffe; Jean-François Soussana; Nina Buchmann; Nuala Fitton; Gianni Bellocchi; Katja Klumpp; Lutz Merbold; Lutz Merbold; Raphaël Martin; Lorenzo Brilli; Cairistiona F. E. Topp; Mark Lieffering; Sylvie Recous; Fiona Ehrhardt; Val Snow; Paul C. D. Newton; Christopher D. Dorich; Peter Grace; Kathrin Fuchs; Kathrin Fuchs; Richard T. Conant; Marco Bindi;AbstractA potential strategy for mitigating nitrous oxide (N2O) emissions from permanent grasslands is the partial substitution of fertilizer nitrogen (Nfert) with symbiotically fixed nitrogen (Nsymb) from legumes. The input of Nsymb reduces the energy costs of producing fertilizer and provides a supply of nitrogen (N) for plants that is more synchronous to plant demand than occasional fertilizer applications. Legumes have been promoted as a potential N2O mitigation strategy for grasslands, but evidence to support their efficacy is limited, partly due to the difficulty in conducting experiments across the large range of potential combinations of legume proportions and fertilizer N inputs. These experimental constraints can be overcome by biogeochemical models that can vary legume‐fertilizer combinations and subsequently aid the design of targeted experiments. Using two variants each of two biogeochemical models (APSIM and DayCent), we tested the N2O mitigation potential and productivity of full factorial combinations of legume proportions and fertilizer rates for five temperate grassland sites across the globe. Both models showed that replacing fertilizer with legumes reduced N2O emissions without reducing productivity across a broad range of legume‐fertilizer combinations. Although the models were consistent with the relative changes of N2O emissions compared to the baseline scenario (200 kg N ha−1 yr−1; no legumes), they predicted different levels of absolute N2O emissions and thus also of absolute N2O emission reductions; both were greater in DayCent than in APSIM. We recommend confirming these results with experimental studies assessing the effect of clover proportions in the range 30–50% and ≤150 kg N ha−1 yr−1 input as these were identified as best‐bet climate smart agricultural practices.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, France, United Kingdom, South AfricaPublisher:Elsevier BV Phyllis W. Ndung'u; Peter Kirui; Taro Takahashi; Lindeque du Toit; Lutz Merbold; J. P. Goopy;pmid: 34934787
pmc: PMC8661481
Cet ensemble de données décrit la performance des bovins dans les systèmes d'élevage de petits exploitants du comté de Bomet dans l'ouest du Kenya. Des informations sur le poids vif, la production et la qualité du lait, la dynamique du troupeau et d'autres paramètres de production ont été recueillies lors de visites sur le terrain. Les animaux ont été pesés sur des balances ; le rendement en lait a été enregistré à l'aide d'un récipient de collecte et de transport de lait Mazzican ® fourni à chaque ferme et le lait a été analysé pour la teneur en matière grasse du beurre (%). Le rendement de la biomasse des pâturages a été déterminé, et les échantillons d'aliments prélevés pour chaque zone agro-écologique et la composition des nutriments ont été déterminés pour l'azote (N) en utilisant la méthode de Kjeldahl et l'énergie brute (GE) en utilisant un calorimètre à bombe. La distance parcourue pendant le pâturage a été déterminée à l'aide de colliers GPS montés sur plusieurs animaux pendant trois jours consécutifs par zone. Les facteurs d'émission (FE) de méthane entérique (CH4) ont été estimés pour cinq classes d'animaux afin de développer des FE spécifiques au site conformément au protocole du Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC). Cet ensemble de données peut être utilisé, entre autres, pour l'évaluation du cycle de vie à l'échelle animale (ACV) afin d'évaluer l'efficacité de diverses options d'atténuation des gaz à effet de serre (GES). Este conjunto de datos describe el rendimiento del ganado en los sistemas de ganadería a pequeña escala del condado de Bomet, en el oeste de Kenia. Se recopiló información sobre el peso vivo, la producción y calidad de la leche, la dinámica del rebaño y otros parámetros de producción de las visitas de campo. Los animales se pesaron en básculas; el rendimiento de la leche se registró utilizando un recipiente de recolección y transporte de leche Mazzican ® proporcionado a cada granja y la leche se analizó para determinar el contenido de grasa de mantequilla (%). Se determinó el rendimiento de biomasa de pastos y se determinaron las muestras de alimento recolectadas para cada zona agroecológica y la composición de nutrientes para nitrógeno (N) utilizando el método de Kjeldahl y energía bruta (GE) utilizando un calorímetro de bomba. La distancia recorrida durante el pastoreo se determinó utilizando collares GPS instalados en varios animales durante tres días consecutivos por área. Se estimaron los factores de emisión (EF) de metano entérico (CH4) para cinco clases de animales para desarrollar EF específicas del sitio según el protocolo del Panel Intergubernamental sobre el Cambio Climático (IPCC). Este conjunto de datos tiene el potencial de ser utilizado, entre otros fines, para la evaluación del ciclo de vida (ACV) a escala animal para evaluar la eficacia de varias opciones de mitigación de gases de efecto invernadero (GEI). This dataset describes the performance of cattle in smallholder livestock systems of Bomet county in western Kenya. Information on live weight, milk production and quality, herd dynamics, and other production parameters were collected from field visits. Animals were weighed on scales; milk yield was recorded using a Mazzican® milk collection and transport vessel provided to each farm and milk was analyzed for butterfat content (%). Pasture biomass yield was determined, and feed samples collected for each agro-ecological zone and nutrient composition was determined for nitrogen (N) using the Kjeldahl method and gross energy (GE) using a bomb calorimeter. Distance covered while grazing was determined using GPS collars fitted to several animals for three consecutive days per area. Enteric methane (CH4) emissions factors (EF) were estimated for five animal classes to develop site-specific EFs as per the Intergovernmental panel on climate change (IPCC) protocol. This dataset has the potential to be used, amongst other purposes, for animal-scale life cycle assessment (LCA) to evaluate the efficacy of various greenhouse gas (GHG) mitigation options. تصف مجموعة البيانات هذه أداء الماشية في أنظمة تربية الماشية لأصحاب الحيازات الصغيرة في مقاطعة بوميت في غرب كينيا. تم جمع معلومات عن الوزن الحي وإنتاج الحليب وجودته وديناميكيات القطيع ومعايير الإنتاج الأخرى من الزيارات الميدانية. تم وزن الحيوانات على المقاييس ؛ تم تسجيل إنتاج الحليب باستخدام وعاء جمع ونقل الحليب Mazzican ® المقدم لكل مزرعة وتم تحليل الحليب لمحتوى الزبدة (٪). تم تحديد محصول الكتلة الحيوية للمراعي، وتم تحديد عينات الأعلاف التي تم جمعها لكل منطقة زراعية إيكولوجية وتكوين المغذيات للنيتروجين (N) باستخدام طريقة كيلدال والطاقة الإجمالية (GE) باستخدام مسعر القنبلة. تم تحديد المسافة المغطاة أثناء الرعي باستخدام أطواق GPS المجهزة لعدة حيوانات لمدة ثلاثة أيام متتالية لكل منطقة. تم تقدير عوامل انبعاثات الميثان المعوي (CH4) لخمس فئات حيوانية لتطوير عوامل الانبعاثات المعوية الخاصة بالموقع وفقًا لبروتوكول الفريق الحكومي الدولي المعني بتغير المناخ (IPCC). يمكن استخدام مجموعة البيانات هذه، من بين أغراض أخرى، لتقييم دورة حياة الحيوان (LCA) لتقييم فعالية مختلف خيارات التخفيف من غازات الدفيئة (GHG).
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/117246Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2021.107673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/117246Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2021.107673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Felix Beulig; Mathias Göckede; Iulia Ilie; Min Jung Kwon; Sergey A. Zimov; Joel E. Kostka; Lutz Merbold; Olaf Kolle; Marcus Wildner; Miguel D. Mahecha; Martin Heimann; Kirsten Küsel; Nikita Zimov; Edward A. G. Schuur; Ines Hilke;doi: 10.1111/gcb.13558
pmid: 27901306
AbstractAs surface temperatures are expected to rise in the future, ice‐rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade‐long drying manipulation on an Arctic floodplain influences CH4‐associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage‐induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0–15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long‐term drainage considerably reduced CH4 fluxes through modified ecosystem properties.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 Switzerland, France, France, United States, DenmarkPublisher:Walter de Gruyter GmbH Carrara, Arnaud; Kolari, Pasi; de Beeck, Maarten Op; Arriga, Nicola; Berveiller, Daniel; Dengel, Sigrid; Ibrom, Andreas; Merbold, Lutz; Rebmann, Corinna; Sabbatini, Simone; Serrano-Ortíz, Penelope; Biraud, Sébastien C;handle: 10568/99057
Abstract Solar radiation is a key driver of energy and carbon fluxes in natural ecosystems. Radiation measurements are essential for interpreting ecosystem scale greenhouse gases and energy fluxes as well as many other observations performed at ecosystem stations of the Integrated Carbon Observation System (ICOS). We describe and explain the relevance of the radiation variables that are monitored continuously at ICOS ecosystem stations and define recommendations to perform these measurements with consistent and comparable accuracy. The measurement methodology and instruments are described including detailed technical specifications. Guidelines for instrumental set up as well as for operation, maintenance and data collection are defined considering both ICOS scientific objectives and practical operational constraints. For measurements of short-wave (solar) and long wave (infrared) radiation components, requirements for the ICOS network are based on available well-defined state-of-the art standards (World Meteorological Organization, International Organization for Standardization). For photosynthetically active radiation measurements, some basic instrumental requirements are based on the performance of commercially available sensors. Since site specific conditions and practical constraints at individual ICOS ecosystem stations may hamper the applicability of standard requirements, we recommend that ICOS develops mid-term coordinated actions to assess the effective level of uncertainties in radiation measurements at the network scale.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99057Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99057Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Oxford University Press (OUP) Publicly fundedFunded by:NSF | Collaborative Research: E..., NSERC, NSF | LTREB: Effects of Warming... +4 projectsNSF| Collaborative Research: EPSCoR RII Track 2 Oklahoma and Kansas: A cyberCommons for Ecological Forecasting ,NSERC ,NSF| LTREB: Effects of Warming and Clipping on Coupling of Carbon and Water Cycles in a Tallgrass Prairie ,EC| GHG EUROPE ,NSF| RCN: Forecasts Of Resource and Environmental Changes: data Assimilation Science and Technology (FORECAST) ,NSF| Data-Model Fusion at AmeriFlux Sites: Towards Predictive Understanding of Seasonal and Interannual Variability in Net Ecosystem Exchange ,NSF| Development of a Data Assimilation Capability Towards Ecological Forecasting in a Data-Rich EraBing Song; Matthias Peichl; Andrej Varlagin; Leonardo Montagnani; Lutz Merbold; Janusz Olejnik; Mats Nilsson; Antonio Raschi; Asko Noormets; Yiqi Luo; Magnus Lund; Georg Wohlfahrt; Gerard Kiely; Beverly E. Law; Guirui Yu; Vincenzo Magliulo; Jiquan Chen; Ruisen Luo; Shuli Niu; Alessandro Cescatti;doi: 10.1093/jpe/rtu014
Aims Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy (Ea), which characterizes the apparent temperature sensitivity of and its interannual variability (IAV) as well as their controlling factors. Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature, temperature range, precipitation, global radiation, potential radiation, gross primary productivity and Re by averaging the daily values over the years in each site. Furthermore, we analyzed the sites with >8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to characterize IAV. Important Findings The results showed a widely global variation of Ea, with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas, and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen forests. Globally, spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes. IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude, but increased with radiation and corresponding mean annual temperature. The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of R-e, which could help to improve our predictive understanding of R-e in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, Germany, United Kingdom, France, FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | The Global Methane Budget, EC | SEACRIFOGUKRI| The Global Methane Budget ,EC| SEACRIFOGAecia Nickless; Bjoern Fiedler; Antonio Bombelli; Antonio Bombelli; Elisa Grieco; Elisa Grieco; Emmanuel Salmon; Ville Kasurinen; Alex Vermeulen; Alex Vermeulen; Mylene Ndisi; Johannes Beck; Lutz Merbold; Matthew Saunders; Ana López-Ballesteros; Sonja Leitner; Ingunn Skjelvan; Joerg Helmschrot; Manuel Acosta; Arne Körtzinger; Robert J. Scholes; Dong-Gill Kim; Wim Hugo; Werner L. Kutsch;AbstractGlobal population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructure—as being setup in other regions—is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcing’s in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 M€ over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership.
OceanRep arrow_drop_down OceanRepArticle . 2021 . Peer-reviewedFull-Text: https://oceanrep.geomar.de/id/eprint/54330/1/Merbold2021_Article_OpportunitiesForAnAfricanGreen.pdfData sources: OceanRepCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115544Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-021-01823-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2021 . Peer-reviewedFull-Text: https://oceanrep.geomar.de/id/eprint/54330/1/Merbold2021_Article_OpportunitiesForAnAfricanGreen.pdfData sources: OceanRepCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115544Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-021-01823-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2021Embargo end date: 02 Mar 2021 France, Germany, Switzerland, FrancePublisher:Copernicus GmbH Funded by:SNSF | Robust models for assessi..., EC | GHG EUROPE, SNSF | Buffer-Capacity-based Liv...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,EC| GHG EUROPE ,SNSF| Buffer-Capacity-based Livelihood Resilience to Stressors - an Early Warning Tool and its Application in Makueni County, KenyaL. Merbold; L. Merbold; L. Merbold; C. Decock; C. Decock; W. Eugster; K. Fuchs; B. Wolf; N. Buchmann; L. Hörtnagl;Abstract. A 5-year greenhouse gas (GHG) exchange study of the three major gas species (CO2, CH4 and N2O) from an intensively managed permanent grassland in Switzerland is presented. Measurements comprise 2 years (2010 and 2011) of manual static chamber measurements of CH4 and N2O, 5 years of continuous eddy covariance (EC) measurements (CO2–H2O – 2010–2014), and 3 years (2012–2014) of EC measurement of CH4 and N2O. Intensive grassland management included both regular and sporadic management activities. Regular management practices encompassed mowing (three to five cuts per year) with subsequent organic fertilizer amendments and occasional grazing, whereas sporadic management activities comprised grazing or similar activities. The primary objective of our measurements was to compare pre-plowing to post-plowing GHG exchange and to identify potential memory effects of such a substantial disturbance on GHG exchange and carbon (C) and nitrogen (N) gains and losses. In order to include measurements carried out with different observation techniques, we tested two different measurement techniques jointly in 2013, namely the manual static chamber approach and the eddy covariance technique for N2O, to quantify the GHG exchange from the observed grassland site. Our results showed that there were no memory effects on N2O and CH4 emissions after plowing, whereas the CO2 uptake of the site considerably increased when compared to pre-restoration years. In detail, we observed large losses of CO2 and N2O during the year of restoration. In contrast, the grassland acted as a carbon sink under usual management, i.e., the time periods 2010–2011 and 2013–2014. Enhanced emissions and emission peaks of N2O (defined as exceeding background emissions 0.21 ± 0.55 nmol m−2 s−1 (SE = 0.02) for at least 2 sequential days and the 7 d moving average exceeding background emissions) were observed for almost 7 continuous months after restoration as well as following organic fertilizer applications during all years. Net ecosystem exchange of CO2 (NEECO2) showed a common pattern of increased uptake of CO2 in spring and reduced uptake in late fall. NEECO2 dropped to zero and became positive after each harvest event. Methane (CH4) exchange fluctuated around zero during all years. Overall, CH4 exchange was of negligible importance for both the GHG budget and the carbon budget of the site. Our results stress the inclusion of grassland restoration events when providing cumulative sums of C sequestration potential and/or global warming potential (GWP). Consequently, this study further highlights the need for continuous long-term GHG exchange observations as well as for the implementation of our findings into biogeochemical process models to track potential GHG mitigation objectives as well as to predict future GHG emission scenarios reliably.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129339Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bg-18-1481-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 Switzerland, France, Germany, France, FrancePublisher:Wiley Funded by:SNSF | Farm-scale Methane Fluxes...SNSF| Farm-scale Methane Fluxes (FasMeF)Albin Hammerle; Matti Barthel; Haiyan Lu; Lutz Merbold; Lutz Merbold; Werner Eugster; Nina Buchmann; Thomas Ladreiter-Knauss; Matthias Zeeman; Klaus Butterbach-Bahl; Eugenio Díaz-Pinés; Eugenio Díaz-Pinés; Lukas Hörtnagl; Ralf Kiese; Susanne Burri; Michael Bahn; Katja Klumpp;AbstractCentral European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site‐specific management strategies strongly affect the biosphere–atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long‐term N2O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2, N2O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (−1,783 to −91 g CO2 m−2 year−1), but a N2O source (18–638 g CO2‐eq. m−2 year−1), and either a CH4 sink or source (−9 to 488 g CO2‐eq. m−2 year−1). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between −2,761 and −58 g CO2‐eq. m−2 year−1, with N2O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2O and CH4 fluxes was generally low and varied considerably within years. However, after site‐specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity (“sweet spots”) and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2O and CH4 emissions. The N2O‐N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%–8.6%). Although grassland management led to increased N2O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.
Hyper Article en Lig... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/91680Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 67 citations 67 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018Full-Text: https://hdl.handle.net/10568/91680Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2018Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2018License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Italy, Netherlands, Denmark, United States, Italy, United States, Germany, United StatesPublisher:Proceedings of the National Academy of Sciences Publicly fundedFunded by:NSERC, NWO | Long term observation of ..., NSF | CAREER: Contrasting envir... +6 projectsNSERC ,NWO| Long term observation of soil carbon and methane fluxes in Siberian tundra. ,NSF| CAREER: Contrasting environmental controls on regional CO2 and CH4 biogeochemistry-Research and education for placing global change in a regional, local context ,AKA| Towards comprehensive understanding of surface layer exchange processes of biogenic volatile organic compounds ,AKA| ICOS - Integrated Carbon Observation System ,NSF| Methane loss from Arctic: towards an annual budget of CH4 emissions from tundra ecosystems across a latitudinal gradient ,EC| ICE-ARC ,RSF| The development of ecosystem spatial-temporal thermodynamics theory and methods of thermodynamic variables measurement ,NSF| Measurement and Analysis of Methane Fluxes in a Northern Peatland EcosystemAna Meijide; Arjan Hensen; Elmar Veenendaal; Magnus Lund; Magnus Lund; A. J. Dolman; Thomas Friborg; Derrick Y.F. Lai; Tuomas Laurila; Barbara Marcolla; Janne Rinne; Janne Rinne; Pertti J. Martikainen; Lawrence B. Flanagan; Alessandro Cescatti; Christian Bernhofer; Annalea Lohila; Andrej Varlagin; Torben R. Christensen; Torben R. Christensen; Dennis D. Baldocchi; Marcin Jackowicz-Korczynski; Narasinha J. Shurpali; Nigel T. Roulet; Thomas Grünwald; Walter C. Oechel; Juha-Pekka Tuovinen; Ute Skiba; Chiara A. R. Corradi; Gerard Kiely; Shashi B. Verma; Mika Aurela; A.P. Schrier-Uijl; Frans-Jan W. Parmentier; Frans-Jan W. Parmentier; A.M.R. Petrescu; Matteo Sottocornola; Jacobus van Huissteden; Carsten Grüning; Torsten Sachs; Mikhail Mastepanov; Mikhail Mastepanov; Lutz Merbold; Elyn Humphreys; Ankur R. Desai; Jaclyn Hatala Matthes; Timo Vesala; Donatella Zona; Donatella Zona; Mikkel P. Tamstorf;pmid: 25831506
pmc: PMC4403212
Significance Wetlands are unique ecosystems because they are in general sinks for carbon dioxide and sources of methane. Their climate footprint therefore depends on the relative sign and magnitude of the land–atmosphere exchange of these two major greenhouse gases. This work presents a synthesis of simultaneous measurements of carbon dioxide and methane fluxes to assess the radiative forcing of natural wetlands converted to agricultural or forested land. The net climate impact of wetlands is strongly dependent on whether they are natural or managed. Here we show that the conversion of natural wetlands produces a significant increase of the atmospheric radiative forcing. The findings suggest that management plans for these complex ecosystems should carefully account for the potential biogeochemical effects on climate.
Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 181 citations 181 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Fondazione Edmund Ma... arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2015Full-Text: http://hdl.handle.net/10449/25239Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2015Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2015 . Peer-reviewedData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1416267112&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 Finland, Germany, United Kingdom, France, Switzerland, FrancePublisher:Walter de Gruyter GmbH Hanna Silvennoinen; Matthias Peichl; Sara Maraňón Jiménez; Ralf Kiese; Patrick M. Crill; Ute Skiba; Manuel Acosta; Bert Gielen; Annalea Lohila; B. Longdoz; Mats Nilsson; Patrik Vestin; Marian Pavelka; Christian Brümmer; Alexander Graf; Roland Fuß; Anders Lindroth; Nuria Altimir; Lutz Merbold; Lutz Merbold; Penélope Serrano Ortiz; Jukka Pumpanen; Werner L. Kutsch; Mari Pihlatie; Eva Darenova; Dalibor Janouš; Per Weslien; Leonardo Montagnani; Leif Klemedtsson;handle: 10568/99050
Abstract Chamber measurements of trace gas fluxes between the land surface and the atmosphere have been conducted for almost a century. Different chamber techniques, including static and dynamic, have been used with varying degrees of success in estimating greenhouse gases (CO2, CH4, N2O) fluxes. However, all of these have certain disadvantages which have either prevented them from providing an adequate estimate of greenhouse gas exchange or restricted them to be used under limited conditions. Generally, chamber methods are relatively low in cost and simple to operate. In combination with the appropriate sample allocations, chamber methods are adaptable for a wide variety of studies from local to global spatial scales, and they are particularly well suited for in situ and laboratory-based studies. Consequently, chamber measurements will play an important role in the portfolio of the Pan-European long-term research infrastructure Integrated Carbon Observation System. The respective working group of the Integrated Carbon Observation System Ecosystem Monitoring Station Assembly has decided to ascertain standards and quality checks for automated and manual chamber systems instead of defining one or several standard systems provided by commercial manufacturers in order to define minimum requirements for chamber measurements. The defined requirements and recommendations related to chamber measurements are described here.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99050Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0045Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 7visibility views 7 download downloads 9 Powered bymore_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99050Data sources: Bielefeld Academic Search Engine (BASE)UEF eRepository (University of Eastern Finland)Article . 2019License: CC BY NC NDFull-Text: http://dx.doi.org/10.1515/intag-2017-0045Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Germany, Switzerland, France, United Kingdom, France, Germany, France, France, AustraliaPublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi...SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures)Mark A. Liebig; Pete Smith; Robert M. Rees; Russell McAuliffe; Jean-François Soussana; Nina Buchmann; Nuala Fitton; Gianni Bellocchi; Katja Klumpp; Lutz Merbold; Lutz Merbold; Raphaël Martin; Lorenzo Brilli; Cairistiona F. E. Topp; Mark Lieffering; Sylvie Recous; Fiona Ehrhardt; Val Snow; Paul C. D. Newton; Christopher D. Dorich; Peter Grace; Kathrin Fuchs; Kathrin Fuchs; Richard T. Conant; Marco Bindi;AbstractA potential strategy for mitigating nitrous oxide (N2O) emissions from permanent grasslands is the partial substitution of fertilizer nitrogen (Nfert) with symbiotically fixed nitrogen (Nsymb) from legumes. The input of Nsymb reduces the energy costs of producing fertilizer and provides a supply of nitrogen (N) for plants that is more synchronous to plant demand than occasional fertilizer applications. Legumes have been promoted as a potential N2O mitigation strategy for grasslands, but evidence to support their efficacy is limited, partly due to the difficulty in conducting experiments across the large range of potential combinations of legume proportions and fertilizer N inputs. These experimental constraints can be overcome by biogeochemical models that can vary legume‐fertilizer combinations and subsequently aid the design of targeted experiments. Using two variants each of two biogeochemical models (APSIM and DayCent), we tested the N2O mitigation potential and productivity of full factorial combinations of legume proportions and fertilizer rates for five temperate grassland sites across the globe. Both models showed that replacing fertilizer with legumes reduced N2O emissions without reducing productivity across a broad range of legume‐fertilizer combinations. Although the models were consistent with the relative changes of N2O emissions compared to the baseline scenario (200 kg N ha−1 yr−1; no legumes), they predicted different levels of absolute N2O emissions and thus also of absolute N2O emission reductions; both were greater in DayCent than in APSIM. We recommend confirming these results with experimental studies assessing the effect of clover proportions in the range 30–50% and ≤150 kg N ha−1 yr−1 input as these were identified as best‐bet climate smart agricultural practices.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/16350Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/129558Data sources: Bielefeld Academic Search Engine (BASE)Université de Reims Champagne-Ardenne: Archives Ouvertes (HAL)Article . 2020Full-Text: https://hal.science/hal-03082769Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2020gb006561&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 France, France, United Kingdom, South AfricaPublisher:Elsevier BV Phyllis W. Ndung'u; Peter Kirui; Taro Takahashi; Lindeque du Toit; Lutz Merbold; J. P. Goopy;pmid: 34934787
pmc: PMC8661481
Cet ensemble de données décrit la performance des bovins dans les systèmes d'élevage de petits exploitants du comté de Bomet dans l'ouest du Kenya. Des informations sur le poids vif, la production et la qualité du lait, la dynamique du troupeau et d'autres paramètres de production ont été recueillies lors de visites sur le terrain. Les animaux ont été pesés sur des balances ; le rendement en lait a été enregistré à l'aide d'un récipient de collecte et de transport de lait Mazzican ® fourni à chaque ferme et le lait a été analysé pour la teneur en matière grasse du beurre (%). Le rendement de la biomasse des pâturages a été déterminé, et les échantillons d'aliments prélevés pour chaque zone agro-écologique et la composition des nutriments ont été déterminés pour l'azote (N) en utilisant la méthode de Kjeldahl et l'énergie brute (GE) en utilisant un calorimètre à bombe. La distance parcourue pendant le pâturage a été déterminée à l'aide de colliers GPS montés sur plusieurs animaux pendant trois jours consécutifs par zone. Les facteurs d'émission (FE) de méthane entérique (CH4) ont été estimés pour cinq classes d'animaux afin de développer des FE spécifiques au site conformément au protocole du Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC). Cet ensemble de données peut être utilisé, entre autres, pour l'évaluation du cycle de vie à l'échelle animale (ACV) afin d'évaluer l'efficacité de diverses options d'atténuation des gaz à effet de serre (GES). Este conjunto de datos describe el rendimiento del ganado en los sistemas de ganadería a pequeña escala del condado de Bomet, en el oeste de Kenia. Se recopiló información sobre el peso vivo, la producción y calidad de la leche, la dinámica del rebaño y otros parámetros de producción de las visitas de campo. Los animales se pesaron en básculas; el rendimiento de la leche se registró utilizando un recipiente de recolección y transporte de leche Mazzican ® proporcionado a cada granja y la leche se analizó para determinar el contenido de grasa de mantequilla (%). Se determinó el rendimiento de biomasa de pastos y se determinaron las muestras de alimento recolectadas para cada zona agroecológica y la composición de nutrientes para nitrógeno (N) utilizando el método de Kjeldahl y energía bruta (GE) utilizando un calorímetro de bomba. La distancia recorrida durante el pastoreo se determinó utilizando collares GPS instalados en varios animales durante tres días consecutivos por área. Se estimaron los factores de emisión (EF) de metano entérico (CH4) para cinco clases de animales para desarrollar EF específicas del sitio según el protocolo del Panel Intergubernamental sobre el Cambio Climático (IPCC). Este conjunto de datos tiene el potencial de ser utilizado, entre otros fines, para la evaluación del ciclo de vida (ACV) a escala animal para evaluar la eficacia de varias opciones de mitigación de gases de efecto invernadero (GEI). This dataset describes the performance of cattle in smallholder livestock systems of Bomet county in western Kenya. Information on live weight, milk production and quality, herd dynamics, and other production parameters were collected from field visits. Animals were weighed on scales; milk yield was recorded using a Mazzican® milk collection and transport vessel provided to each farm and milk was analyzed for butterfat content (%). Pasture biomass yield was determined, and feed samples collected for each agro-ecological zone and nutrient composition was determined for nitrogen (N) using the Kjeldahl method and gross energy (GE) using a bomb calorimeter. Distance covered while grazing was determined using GPS collars fitted to several animals for three consecutive days per area. Enteric methane (CH4) emissions factors (EF) were estimated for five animal classes to develop site-specific EFs as per the Intergovernmental panel on climate change (IPCC) protocol. This dataset has the potential to be used, amongst other purposes, for animal-scale life cycle assessment (LCA) to evaluate the efficacy of various greenhouse gas (GHG) mitigation options. تصف مجموعة البيانات هذه أداء الماشية في أنظمة تربية الماشية لأصحاب الحيازات الصغيرة في مقاطعة بوميت في غرب كينيا. تم جمع معلومات عن الوزن الحي وإنتاج الحليب وجودته وديناميكيات القطيع ومعايير الإنتاج الأخرى من الزيارات الميدانية. تم وزن الحيوانات على المقاييس ؛ تم تسجيل إنتاج الحليب باستخدام وعاء جمع ونقل الحليب Mazzican ® المقدم لكل مزرعة وتم تحليل الحليب لمحتوى الزبدة (٪). تم تحديد محصول الكتلة الحيوية للمراعي، وتم تحديد عينات الأعلاف التي تم جمعها لكل منطقة زراعية إيكولوجية وتكوين المغذيات للنيتروجين (N) باستخدام طريقة كيلدال والطاقة الإجمالية (GE) باستخدام مسعر القنبلة. تم تحديد المسافة المغطاة أثناء الرعي باستخدام أطواق GPS المجهزة لعدة حيوانات لمدة ثلاثة أيام متتالية لكل منطقة. تم تقدير عوامل انبعاثات الميثان المعوي (CH4) لخمس فئات حيوانية لتطوير عوامل الانبعاثات المعوية الخاصة بالموقع وفقًا لبروتوكول الفريق الحكومي الدولي المعني بتغير المناخ (IPCC). يمكن استخدام مجموعة البيانات هذه، من بين أغراض أخرى، لتقييم دورة حياة الحيوان (LCA) لتقييم فعالية مختلف خيارات التخفيف من غازات الدفيئة (GHG).
UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/117246Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2021.107673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert UP Research Data Rep... arrow_drop_down UP Research Data RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/117246Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.dib.2021.107673&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Felix Beulig; Mathias Göckede; Iulia Ilie; Min Jung Kwon; Sergey A. Zimov; Joel E. Kostka; Lutz Merbold; Olaf Kolle; Marcus Wildner; Miguel D. Mahecha; Martin Heimann; Kirsten Küsel; Nikita Zimov; Edward A. G. Schuur; Ines Hilke;doi: 10.1111/gcb.13558
pmid: 27901306
AbstractAs surface temperatures are expected to rise in the future, ice‐rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade‐long drying manipulation on an Arctic floodplain influences CH4‐associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage‐induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0–15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long‐term drainage considerably reduced CH4 fluxes through modified ecosystem properties.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13558&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 01 Jan 2018 Switzerland, France, France, United States, DenmarkPublisher:Walter de Gruyter GmbH Carrara, Arnaud; Kolari, Pasi; de Beeck, Maarten Op; Arriga, Nicola; Berveiller, Daniel; Dengel, Sigrid; Ibrom, Andreas; Merbold, Lutz; Rebmann, Corinna; Sabbatini, Simone; Serrano-Ortíz, Penelope; Biraud, Sébastien C;handle: 10568/99057
Abstract Solar radiation is a key driver of energy and carbon fluxes in natural ecosystems. Radiation measurements are essential for interpreting ecosystem scale greenhouse gases and energy fluxes as well as many other observations performed at ecosystem stations of the Integrated Carbon Observation System (ICOS). We describe and explain the relevance of the radiation variables that are monitored continuously at ICOS ecosystem stations and define recommendations to perform these measurements with consistent and comparable accuracy. The measurement methodology and instruments are described including detailed technical specifications. Guidelines for instrumental set up as well as for operation, maintenance and data collection are defined considering both ICOS scientific objectives and practical operational constraints. For measurements of short-wave (solar) and long wave (infrared) radiation components, requirements for the ICOS network are based on available well-defined state-of-the art standards (World Meteorological Organization, International Organization for Standardization). For photosynthetically active radiation measurements, some basic instrumental requirements are based on the performance of commercially available sensors. Since site specific conditions and practical constraints at individual ICOS ecosystem stations may hamper the applicability of standard requirements, we recommend that ICOS develops mid-term coordinated actions to assess the effective level of uncertainties in radiation measurements at the network scale.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99057Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2019License: CC BY NC NDFull-Text: https://hdl.handle.net/10568/99057Data sources: Bielefeld Academic Search Engine (BASE)Online Research Database In TechnologyArticle . 2018Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1515/intag-2017-0049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Oxford University Press (OUP) Publicly fundedFunded by:NSF | Collaborative Research: E..., NSERC, NSF | LTREB: Effects of Warming... +4 projectsNSF| Collaborative Research: EPSCoR RII Track 2 Oklahoma and Kansas: A cyberCommons for Ecological Forecasting ,NSERC ,NSF| LTREB: Effects of Warming and Clipping on Coupling of Carbon and Water Cycles in a Tallgrass Prairie ,EC| GHG EUROPE ,NSF| RCN: Forecasts Of Resource and Environmental Changes: data Assimilation Science and Technology (FORECAST) ,NSF| Data-Model Fusion at AmeriFlux Sites: Towards Predictive Understanding of Seasonal and Interannual Variability in Net Ecosystem Exchange ,NSF| Development of a Data Assimilation Capability Towards Ecological Forecasting in a Data-Rich EraBing Song; Matthias Peichl; Andrej Varlagin; Leonardo Montagnani; Lutz Merbold; Janusz Olejnik; Mats Nilsson; Antonio Raschi; Asko Noormets; Yiqi Luo; Magnus Lund; Georg Wohlfahrt; Gerard Kiely; Beverly E. Law; Guirui Yu; Vincenzo Magliulo; Jiquan Chen; Ruisen Luo; Shuli Niu; Alessandro Cescatti;doi: 10.1093/jpe/rtu014
Aims Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and examined the global variation of the apparent activation energy (Ea), which characterizes the apparent temperature sensitivity of and its interannual variability (IAV) as well as their controlling factors. Methods We used carbon fluxes and meteorological data across FLUXNET sites to calculate mean annual temperature, temperature range, precipitation, global radiation, potential radiation, gross primary productivity and Re by averaging the daily values over the years in each site. Furthermore, we analyzed the sites with >8 years data to examine the IAV of Ea and calculated the standard deviation of Ea across years at each site to characterize IAV. Important Findings The results showed a widely global variation of Ea, with significantly lower values in the tropical and subtropical areas than in temperate and boreal areas, and significantly higher values in grasslands and wetlands than that in deciduous broadleaf forests and evergreen forests. Globally, spatial variations of Ea were explained by changes in temperature and an index of water availability with differing contribution of each explaining variable among climate zones and biomes. IAV and the corresponding coefficient of variation of Ea decreased with increasing latitude, but increased with radiation and corresponding mean annual temperature. The revealed patterns in the spatial and temporal variations of Ea and its controlling factors indicate divergent temperature sensitivity of R-e, which could help to improve our predictive understanding of R-e in response to climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/jpe/rtu014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, Germany, United Kingdom, France, FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | The Global Methane Budget, EC | SEACRIFOGUKRI| The Global Methane Budget ,EC| SEACRIFOGAecia Nickless; Bjoern Fiedler; Antonio Bombelli; Antonio Bombelli; Elisa Grieco; Elisa Grieco; Emmanuel Salmon; Ville Kasurinen; Alex Vermeulen; Alex Vermeulen; Mylene Ndisi; Johannes Beck; Lutz Merbold; Matthew Saunders; Ana López-Ballesteros; Sonja Leitner; Ingunn Skjelvan; Joerg Helmschrot; Manuel Acosta; Arne Körtzinger; Robert J. Scholes; Dong-Gill Kim; Wim Hugo; Werner L. Kutsch;AbstractGlobal population projections foresee the biggest increase to occur in Africa with most of the available uncultivated land to ensure food security remaining on the continent. Simultaneously, greenhouse gas emissions are expected to rise due to ongoing land use change, industrialisation, and transport amongst other reasons with Africa becoming a major emitter of greenhouse gases globally. However, distinct knowledge on greenhouse gas emissions sources and sinks as well as their variability remains largely unknown caused by its vast size and diversity and an according lack of observations across the continent. Thus, an environmental research infrastructure—as being setup in other regions—is more needed than ever. Here, we present the results of a design study that developed a blueprint for establishing such an environmental research infrastructure in Africa. The blueprint comprises an inventory of already existing observations, the spatial disaggregation of locations that will enable to reduce the uncertainty in climate forcing’s in Africa and globally as well as an overall estimated cost for such an endeavour of about 550 M€ over the next 30 years. We further highlight the importance of the development of an e-infrastructure, the necessity for capacity development and the inclusion of all stakeholders to ensure African ownership.
OceanRep arrow_drop_down OceanRepArticle . 2021 . Peer-reviewedFull-Text: https://oceanrep.geomar.de/id/eprint/54330/1/Merbold2021_Article_OpportunitiesForAnAfricanGreen.pdfData sources: OceanRepCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115544Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-021-01823-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down OceanRepArticle . 2021 . Peer-reviewedFull-Text: https://oceanrep.geomar.de/id/eprint/54330/1/Merbold2021_Article_OpportunitiesForAnAfricanGreen.pdfData sources: OceanRepCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/115544Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAUniversity of Bristol: Bristol ResearchArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10113-021-01823-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu