- home
- Advanced Search
- Energy Research
- Carbon Energy
- Energy Research
- Carbon Energy
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Genfu Zhao; Zhiyuan Mei; Lingyan Duan; Qi An; Yongxin Yang; Conghui Zhang; Xiaoping Tan; Hong Guo;doi: 10.1002/cey2.248
AbstractA solid‐state electrolyte (SSE), which is a solid ionic conductor and electron‐insulating material, is known to play a crucial role in adapting a lithium metal anode to a high‐capacity cathode in a solid‐state battery. Among the various SSEs, the single Li‐ion conductor has advantages in terms of enhancing the ion conductivity, eliminating interfacial side reactions, and broadening the electrochemical window. Covalent organic frameworks (COFs) are optimal platforms for achieving single Li‐ion conduction behavior because of well‐ordered one‐dimensional channels and precise chemical modification features. Herein, we study in depth three types of Li‐carboxylate COFs (denoted LiOOC‐COFn, n = 1, 2, and 3) as single Li‐ion conducting SSEs. Benefiting from well‐ordered directional ion channels, the single Li‐ion conductor LiOOC‐COF3 shows an exceptional ion conductivity of 1.36 × 10−5 S cm−1 at room temperature and a high transference number of 0.91. Moreover, it shows excellent electrochemical performance with long‐term cycling, high‐capacity output, and no dendrites in the quasi‐solid‐state organic battery, with the organic small molecule cyclohexanehexone (C6O6) as the cathode and the Li metal as the anode, and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Genfu Zhao; Zhiyuan Mei; Lingyan Duan; Qi An; Yongxin Yang; Conghui Zhang; Xiaoping Tan; Hong Guo;doi: 10.1002/cey2.248
AbstractA solid‐state electrolyte (SSE), which is a solid ionic conductor and electron‐insulating material, is known to play a crucial role in adapting a lithium metal anode to a high‐capacity cathode in a solid‐state battery. Among the various SSEs, the single Li‐ion conductor has advantages in terms of enhancing the ion conductivity, eliminating interfacial side reactions, and broadening the electrochemical window. Covalent organic frameworks (COFs) are optimal platforms for achieving single Li‐ion conduction behavior because of well‐ordered one‐dimensional channels and precise chemical modification features. Herein, we study in depth three types of Li‐carboxylate COFs (denoted LiOOC‐COFn, n = 1, 2, and 3) as single Li‐ion conducting SSEs. Benefiting from well‐ordered directional ion channels, the single Li‐ion conductor LiOOC‐COF3 shows an exceptional ion conductivity of 1.36 × 10−5 S cm−1 at room temperature and a high transference number of 0.91. Moreover, it shows excellent electrochemical performance with long‐term cycling, high‐capacity output, and no dendrites in the quasi‐solid‐state organic battery, with the organic small molecule cyclohexanehexone (C6O6) as the cathode and the Li metal as the anode, and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Zhao Sun; Kun Lei; Louise R. Smith; Nicholas F. Dummer; Richard J. Lewis; Haifeng Qi; Kieran J. Aggett; Stuart H. Taylor; Zhiqiang Sun; Graham J. Hutchings;doi: 10.1002/cey2.70011
ABSTRACTAdvanced oxygen carrier plays a pivotal role in various chemical looping processes, such as CO2 splitting. However, oxygen carriers have been restricted by deactivation and inferior oxygen transferability at low temperatures. Herein, we design an Fe–Ov–Ce–triggered phase‐reversible CeO2−x·Fe·CaO ↔ CeO2·Ca2Fe2O5 oxygen carrier with strong electron‐donating ability, which activates CO2 at low temperatures and promotes oxygen transformation. Results reveal that the maximum CO2 conversion and CO yield obtained with 50 mol% CeO2−x·Fe·CaO are, respectively, 426% and 53.6 times higher than those of Fe·CaO at 700°C. This unique multiphase material also retains exceptional redox durability, with no obvious deactivation after 100 splitting cycles. The addition of Ce promotes the formation of the Fe–Ov–Ce structure, which acts as an activator, triggers CO2 splitting, and lowers the energy barrier of C═O dissociation. The metallic Fe plays a role in consuming O2−lattice transformed from Fe–Ov–Ce, whereas CaO acts as a structure promoter that enables phase‐reversible Fe0 ↔ Fe3+ looping.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Zhao Sun; Kun Lei; Louise R. Smith; Nicholas F. Dummer; Richard J. Lewis; Haifeng Qi; Kieran J. Aggett; Stuart H. Taylor; Zhiqiang Sun; Graham J. Hutchings;doi: 10.1002/cey2.70011
ABSTRACTAdvanced oxygen carrier plays a pivotal role in various chemical looping processes, such as CO2 splitting. However, oxygen carriers have been restricted by deactivation and inferior oxygen transferability at low temperatures. Herein, we design an Fe–Ov–Ce–triggered phase‐reversible CeO2−x·Fe·CaO ↔ CeO2·Ca2Fe2O5 oxygen carrier with strong electron‐donating ability, which activates CO2 at low temperatures and promotes oxygen transformation. Results reveal that the maximum CO2 conversion and CO yield obtained with 50 mol% CeO2−x·Fe·CaO are, respectively, 426% and 53.6 times higher than those of Fe·CaO at 700°C. This unique multiphase material also retains exceptional redox durability, with no obvious deactivation after 100 splitting cycles. The addition of Ce promotes the formation of the Fe–Ov–Ce structure, which acts as an activator, triggers CO2 splitting, and lowers the energy barrier of C═O dissociation. The metallic Fe plays a role in consuming O2−lattice transformed from Fe–Ov–Ce, whereas CaO acts as a structure promoter that enables phase‐reversible Fe0 ↔ Fe3+ looping.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Anbang Lu; Fei Wang; Zhendong Liu; Yuchen Wang; Yue Gu; Shuang Wang; Chong Ye; Quanbing Liu; Chengzhi Zhang; Jun Tan;doi: 10.1002/cey2.600
AbstractThe typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Anbang Lu; Fei Wang; Zhendong Liu; Yuchen Wang; Yue Gu; Shuang Wang; Chong Ye; Quanbing Liu; Chengzhi Zhang; Jun Tan;doi: 10.1002/cey2.600
AbstractThe typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:John Wiley & Sons Inc Funded by:EC | EROSEC| EROSAuthors: José P. B. Silva, Katarzyna Gwozdz3, Luís S. Marques, Mario Pereira, Maria J. M. Gomes, Judith L. MacManus‐Driscoll, Robert L. Z. Hoye;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:John Wiley & Sons Inc Funded by:EC | EROSEC| EROSAuthors: José P. B. Silva, Katarzyna Gwozdz3, Luís S. Marques, Mario Pereira, Maria J. M. Gomes, Judith L. MacManus‐Driscoll, Robert L. Z. Hoye;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Shiqiang Zhou; Mengrui Li; Peike Wang; Lukuan Cheng; Lina Chen; Yan Huang; Boxuan Cao; Suzhu Yu; Qingju Liu; Jun Wei;doi: 10.1002/cey2.462
AbstractLithium metal batteries with inorganic solid‐state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high‐energy content and safety. Nonetheless, inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application. Herein, we report a liquid metal‐coated lithium metal (LM@Li) anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte. The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2 mA cm−2 and a significantly higher critical current density of 9.8 mA cm−2 at 25°C. In addition, a full battery assembled with a high‐capacity composite LiNbO3@LiNi0.7Co0.2Mn0.1O2 (LNO@NCM721) cathode shows stable cycling performance. Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid‐state batteries can be reinforced by using LM interlayers for interfacial modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Shiqiang Zhou; Mengrui Li; Peike Wang; Lukuan Cheng; Lina Chen; Yan Huang; Boxuan Cao; Suzhu Yu; Qingju Liu; Jun Wei;doi: 10.1002/cey2.462
AbstractLithium metal batteries with inorganic solid‐state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high‐energy content and safety. Nonetheless, inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application. Herein, we report a liquid metal‐coated lithium metal (LM@Li) anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte. The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2 mA cm−2 and a significantly higher critical current density of 9.8 mA cm−2 at 25°C. In addition, a full battery assembled with a high‐capacity composite LiNbO3@LiNi0.7Co0.2Mn0.1O2 (LNO@NCM721) cathode shows stable cycling performance. Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid‐state batteries can be reinforced by using LM interlayers for interfacial modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jingwen Lin; Xu Wang; Zhenyun Zhao; Dongliang Chen; Rumin Liu; Zhizhen Ye; Bin Lu; Yang Hou; Jianguo Lu;doi: 10.1002/cey2.555
AbstractThe path to searching for sustainable energy has never stopped since the depletion of fossil fuels can lead to serious environmental pollution and energy shortages. Using water electrolysis to produce hydrogen has been proven to be a prioritized approach for green resource production. It is highly crucial to explore inexpensive and high‐performance electrocatalysts for accelerating hydrogen evolution reaction (HER) and apply them to industrial cases on a large scale. Here, we summarize the different mechanisms of HER in different pH settings and review recent advances in non‐noble‐metal‐based electrocatalysts. Then, based on the previous efforts, we discuss several universal strategies for designing pH‐independent catalysts and show directions for the future design of pH‐universal catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jingwen Lin; Xu Wang; Zhenyun Zhao; Dongliang Chen; Rumin Liu; Zhizhen Ye; Bin Lu; Yang Hou; Jianguo Lu;doi: 10.1002/cey2.555
AbstractThe path to searching for sustainable energy has never stopped since the depletion of fossil fuels can lead to serious environmental pollution and energy shortages. Using water electrolysis to produce hydrogen has been proven to be a prioritized approach for green resource production. It is highly crucial to explore inexpensive and high‐performance electrocatalysts for accelerating hydrogen evolution reaction (HER) and apply them to industrial cases on a large scale. Here, we summarize the different mechanisms of HER in different pH settings and review recent advances in non‐noble‐metal‐based electrocatalysts. Then, based on the previous efforts, we discuss several universal strategies for designing pH‐independent catalysts and show directions for the future design of pH‐universal catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Fan Liu; Jietong He; Xiaoyu Liu; Yuke Chen; Zhen Liu; Duo Chen; Hong Liu; Weijia Zhou;doi: 10.1002/cey2.103
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Fan Liu; Jietong He; Xiaoyu Liu; Yuke Chen; Zhen Liu; Duo Chen; Hong Liu; Weijia Zhou;doi: 10.1002/cey2.103
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.451
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.451
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.280
AbstractPhotocatalytic water splitting is beneficial for the effective mitigation of global energy and environmental crises. Owing to multi‐exciton generation, impressive light harvesting, and excellent photochemical properties, the quantum dot (QD)‐based catalysts reveal a considerable potential in photocatalytic hydrogen (H2) production compared with bulk competitors. In this review, we summarize the recent advances in QDs for photocatalytic H2 production by enumerating different synthetic and characterization strategies for QDs. Various QDs‐based photocatalysts are introduced and summarized in categories, and the role of different QDs in varied systems, as well as the mechanism and key factors that enhance the photocatalytic H2 generation performance, is discussed. Finally, conclusions and future perspectives in the exploration of highly efficient QDs‐based photocatalysts for innovative applications are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.280
AbstractPhotocatalytic water splitting is beneficial for the effective mitigation of global energy and environmental crises. Owing to multi‐exciton generation, impressive light harvesting, and excellent photochemical properties, the quantum dot (QD)‐based catalysts reveal a considerable potential in photocatalytic hydrogen (H2) production compared with bulk competitors. In this review, we summarize the recent advances in QDs for photocatalytic H2 production by enumerating different synthetic and characterization strategies for QDs. Various QDs‐based photocatalysts are introduced and summarized in categories, and the role of different QDs in varied systems, as well as the mechanism and key factors that enhance the photocatalytic H2 generation performance, is discussed. Finally, conclusions and future perspectives in the exploration of highly efficient QDs‐based photocatalysts for innovative applications are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Leijun Ye; Weiheng Chen; Zhong‐Jie Jiang; Zhongqing Jiang;doi: 10.1002/cey2.645
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Leijun Ye; Weiheng Chen; Zhong‐Jie Jiang; Zhongqing Jiang;doi: 10.1002/cey2.645
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Genfu Zhao; Zhiyuan Mei; Lingyan Duan; Qi An; Yongxin Yang; Conghui Zhang; Xiaoping Tan; Hong Guo;doi: 10.1002/cey2.248
AbstractA solid‐state electrolyte (SSE), which is a solid ionic conductor and electron‐insulating material, is known to play a crucial role in adapting a lithium metal anode to a high‐capacity cathode in a solid‐state battery. Among the various SSEs, the single Li‐ion conductor has advantages in terms of enhancing the ion conductivity, eliminating interfacial side reactions, and broadening the electrochemical window. Covalent organic frameworks (COFs) are optimal platforms for achieving single Li‐ion conduction behavior because of well‐ordered one‐dimensional channels and precise chemical modification features. Herein, we study in depth three types of Li‐carboxylate COFs (denoted LiOOC‐COFn, n = 1, 2, and 3) as single Li‐ion conducting SSEs. Benefiting from well‐ordered directional ion channels, the single Li‐ion conductor LiOOC‐COF3 shows an exceptional ion conductivity of 1.36 × 10−5 S cm−1 at room temperature and a high transference number of 0.91. Moreover, it shows excellent electrochemical performance with long‐term cycling, high‐capacity output, and no dendrites in the quasi‐solid‐state organic battery, with the organic small molecule cyclohexanehexone (C6O6) as the cathode and the Li metal as the anode, and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Wiley Genfu Zhao; Zhiyuan Mei; Lingyan Duan; Qi An; Yongxin Yang; Conghui Zhang; Xiaoping Tan; Hong Guo;doi: 10.1002/cey2.248
AbstractA solid‐state electrolyte (SSE), which is a solid ionic conductor and electron‐insulating material, is known to play a crucial role in adapting a lithium metal anode to a high‐capacity cathode in a solid‐state battery. Among the various SSEs, the single Li‐ion conductor has advantages in terms of enhancing the ion conductivity, eliminating interfacial side reactions, and broadening the electrochemical window. Covalent organic frameworks (COFs) are optimal platforms for achieving single Li‐ion conduction behavior because of well‐ordered one‐dimensional channels and precise chemical modification features. Herein, we study in depth three types of Li‐carboxylate COFs (denoted LiOOC‐COFn, n = 1, 2, and 3) as single Li‐ion conducting SSEs. Benefiting from well‐ordered directional ion channels, the single Li‐ion conductor LiOOC‐COF3 shows an exceptional ion conductivity of 1.36 × 10−5 S cm−1 at room temperature and a high transference number of 0.91. Moreover, it shows excellent electrochemical performance with long‐term cycling, high‐capacity output, and no dendrites in the quasi‐solid‐state organic battery, with the organic small molecule cyclohexanehexone (C6O6) as the cathode and the Li metal as the anode, and enables effectively avoiding dissolution of the organic electrode by the liquid electrolyte.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 48 citations 48 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.248&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Zhao Sun; Kun Lei; Louise R. Smith; Nicholas F. Dummer; Richard J. Lewis; Haifeng Qi; Kieran J. Aggett; Stuart H. Taylor; Zhiqiang Sun; Graham J. Hutchings;doi: 10.1002/cey2.70011
ABSTRACTAdvanced oxygen carrier plays a pivotal role in various chemical looping processes, such as CO2 splitting. However, oxygen carriers have been restricted by deactivation and inferior oxygen transferability at low temperatures. Herein, we design an Fe–Ov–Ce–triggered phase‐reversible CeO2−x·Fe·CaO ↔ CeO2·Ca2Fe2O5 oxygen carrier with strong electron‐donating ability, which activates CO2 at low temperatures and promotes oxygen transformation. Results reveal that the maximum CO2 conversion and CO yield obtained with 50 mol% CeO2−x·Fe·CaO are, respectively, 426% and 53.6 times higher than those of Fe·CaO at 700°C. This unique multiphase material also retains exceptional redox durability, with no obvious deactivation after 100 splitting cycles. The addition of Ce promotes the formation of the Fe–Ov–Ce structure, which acts as an activator, triggers CO2 splitting, and lowers the energy barrier of C═O dissociation. The metallic Fe plays a role in consuming O2−lattice transformed from Fe–Ov–Ce, whereas CaO acts as a structure promoter that enables phase‐reversible Fe0 ↔ Fe3+ looping.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Zhao Sun; Kun Lei; Louise R. Smith; Nicholas F. Dummer; Richard J. Lewis; Haifeng Qi; Kieran J. Aggett; Stuart H. Taylor; Zhiqiang Sun; Graham J. Hutchings;doi: 10.1002/cey2.70011
ABSTRACTAdvanced oxygen carrier plays a pivotal role in various chemical looping processes, such as CO2 splitting. However, oxygen carriers have been restricted by deactivation and inferior oxygen transferability at low temperatures. Herein, we design an Fe–Ov–Ce–triggered phase‐reversible CeO2−x·Fe·CaO ↔ CeO2·Ca2Fe2O5 oxygen carrier with strong electron‐donating ability, which activates CO2 at low temperatures and promotes oxygen transformation. Results reveal that the maximum CO2 conversion and CO yield obtained with 50 mol% CeO2−x·Fe·CaO are, respectively, 426% and 53.6 times higher than those of Fe·CaO at 700°C. This unique multiphase material also retains exceptional redox durability, with no obvious deactivation after 100 splitting cycles. The addition of Ce promotes the formation of the Fe–Ov–Ce structure, which acts as an activator, triggers CO2 splitting, and lowers the energy barrier of C═O dissociation. The metallic Fe plays a role in consuming O2−lattice transformed from Fe–Ov–Ce, whereas CaO acts as a structure promoter that enables phase‐reversible Fe0 ↔ Fe3+ looping.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.70011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Anbang Lu; Fei Wang; Zhendong Liu; Yuchen Wang; Yue Gu; Shuang Wang; Chong Ye; Quanbing Liu; Chengzhi Zhang; Jun Tan;doi: 10.1002/cey2.600
AbstractThe typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Anbang Lu; Fei Wang; Zhendong Liu; Yuchen Wang; Yue Gu; Shuang Wang; Chong Ye; Quanbing Liu; Chengzhi Zhang; Jun Tan;doi: 10.1002/cey2.600
AbstractThe typical metal chloride‐graphite intercalation compounds (MC‐GICs) inherit intercalation capacity, high charge conductivity, and high tap density from graphite, and these are considered as one of the promising alternatives of graphite anode in rechargeable metal‐ion batteries (MIBs). Notably, the special interlayer decoupling effects and the introduction of extra conversion capacity by metal chloride could greatly break the capacity limitation of graphite anodes and achieve higher energy density in MIBs. The optimization of both graphite host and metal chloride species with specific structures endows MC‐GICs with design feasibility for different application requirements of different MIBs, such as several times the actual capacity compared to graphite anodes, rapid migration of large carriers, and other properties. Herein, a brief review has been provided with the latest understanding of conductivity characteristics and energy storage mechanisms of MC‐GICs and their interesting performance features of full potential application in rechargeable MIBs. Based on the existing research of MC‐GICs, necessary improvements and prospects in the near future have been put forward.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.600&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:John Wiley & Sons Inc Funded by:EC | EROSEC| EROSAuthors: José P. B. Silva, Katarzyna Gwozdz3, Luís S. Marques, Mario Pereira, Maria J. M. Gomes, Judith L. MacManus‐Driscoll, Robert L. Z. Hoye;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:John Wiley & Sons Inc Funded by:EC | EROSEC| EROSAuthors: José P. B. Silva, Katarzyna Gwozdz3, Luís S. Marques, Mario Pereira, Maria J. M. Gomes, Judith L. MacManus‐Driscoll, Robert L. Z. Hoye;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::e27a34e19846cb40d6ebfd977563c085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Shiqiang Zhou; Mengrui Li; Peike Wang; Lukuan Cheng; Lina Chen; Yan Huang; Boxuan Cao; Suzhu Yu; Qingju Liu; Jun Wei;doi: 10.1002/cey2.462
AbstractLithium metal batteries with inorganic solid‐state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high‐energy content and safety. Nonetheless, inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application. Herein, we report a liquid metal‐coated lithium metal (LM@Li) anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte. The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2 mA cm−2 and a significantly higher critical current density of 9.8 mA cm−2 at 25°C. In addition, a full battery assembled with a high‐capacity composite LiNbO3@LiNi0.7Co0.2Mn0.1O2 (LNO@NCM721) cathode shows stable cycling performance. Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid‐state batteries can be reinforced by using LM interlayers for interfacial modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Shiqiang Zhou; Mengrui Li; Peike Wang; Lukuan Cheng; Lina Chen; Yan Huang; Boxuan Cao; Suzhu Yu; Qingju Liu; Jun Wei;doi: 10.1002/cey2.462
AbstractLithium metal batteries with inorganic solid‐state electrolytes have emerged as strong and attractive candidates for electrochemical energy storage devices because of their high‐energy content and safety. Nonetheless, inherent challenges of deleterious lithium dendrite growth and poor interfacial stability hinder their commercial application. Herein, we report a liquid metal‐coated lithium metal (LM@Li) anode strategy to improve the contact between lithium metal and a Li6PS5Cl inorganic electrolyte. The LM@Li symmetric cell shows over 1000 h of stable lithium plating/stripping cycles at 2 mA cm−2 and a significantly higher critical current density of 9.8 mA cm−2 at 25°C. In addition, a full battery assembled with a high‐capacity composite LiNbO3@LiNi0.7Co0.2Mn0.1O2 (LNO@NCM721) cathode shows stable cycling performance. Experimental and computational results have demonstrated that dendrite growth tolerance and physical contact in solid‐state batteries can be reinforced by using LM interlayers for interfacial modification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.462&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jingwen Lin; Xu Wang; Zhenyun Zhao; Dongliang Chen; Rumin Liu; Zhizhen Ye; Bin Lu; Yang Hou; Jianguo Lu;doi: 10.1002/cey2.555
AbstractThe path to searching for sustainable energy has never stopped since the depletion of fossil fuels can lead to serious environmental pollution and energy shortages. Using water electrolysis to produce hydrogen has been proven to be a prioritized approach for green resource production. It is highly crucial to explore inexpensive and high‐performance electrocatalysts for accelerating hydrogen evolution reaction (HER) and apply them to industrial cases on a large scale. Here, we summarize the different mechanisms of HER in different pH settings and review recent advances in non‐noble‐metal‐based electrocatalysts. Then, based on the previous efforts, we discuss several universal strategies for designing pH‐independent catalysts and show directions for the future design of pH‐universal catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Jingwen Lin; Xu Wang; Zhenyun Zhao; Dongliang Chen; Rumin Liu; Zhizhen Ye; Bin Lu; Yang Hou; Jianguo Lu;doi: 10.1002/cey2.555
AbstractThe path to searching for sustainable energy has never stopped since the depletion of fossil fuels can lead to serious environmental pollution and energy shortages. Using water electrolysis to produce hydrogen has been proven to be a prioritized approach for green resource production. It is highly crucial to explore inexpensive and high‐performance electrocatalysts for accelerating hydrogen evolution reaction (HER) and apply them to industrial cases on a large scale. Here, we summarize the different mechanisms of HER in different pH settings and review recent advances in non‐noble‐metal‐based electrocatalysts. Then, based on the previous efforts, we discuss several universal strategies for designing pH‐independent catalysts and show directions for the future design of pH‐universal catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.555&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Fan Liu; Jietong He; Xiaoyu Liu; Yuke Chen; Zhen Liu; Duo Chen; Hong Liu; Weijia Zhou;doi: 10.1002/cey2.103
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Wiley Fan Liu; Jietong He; Xiaoyu Liu; Yuke Chen; Zhen Liu; Duo Chen; Hong Liu; Weijia Zhou;doi: 10.1002/cey2.103
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.451
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.451
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.280
AbstractPhotocatalytic water splitting is beneficial for the effective mitigation of global energy and environmental crises. Owing to multi‐exciton generation, impressive light harvesting, and excellent photochemical properties, the quantum dot (QD)‐based catalysts reveal a considerable potential in photocatalytic hydrogen (H2) production compared with bulk competitors. In this review, we summarize the recent advances in QDs for photocatalytic H2 production by enumerating different synthetic and characterization strategies for QDs. Various QDs‐based photocatalysts are introduced and summarized in categories, and the role of different QDs in varied systems, as well as the mechanism and key factors that enhance the photocatalytic H2 generation performance, is discussed. Finally, conclusions and future perspectives in the exploration of highly efficient QDs‐based photocatalysts for innovative applications are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Haiwei Su; Weikang Wang; Run Shi; Hua Tang; Lijuan Sun; Lele Wang; Qinqin Liu; Tierui Zhang;doi: 10.1002/cey2.280
AbstractPhotocatalytic water splitting is beneficial for the effective mitigation of global energy and environmental crises. Owing to multi‐exciton generation, impressive light harvesting, and excellent photochemical properties, the quantum dot (QD)‐based catalysts reveal a considerable potential in photocatalytic hydrogen (H2) production compared with bulk competitors. In this review, we summarize the recent advances in QDs for photocatalytic H2 production by enumerating different synthetic and characterization strategies for QDs. Various QDs‐based photocatalysts are introduced and summarized in categories, and the role of different QDs in varied systems, as well as the mechanism and key factors that enhance the photocatalytic H2 generation performance, is discussed. Finally, conclusions and future perspectives in the exploration of highly efficient QDs‐based photocatalysts for innovative applications are highlighted.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 101 citations 101 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.280&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Leijun Ye; Weiheng Chen; Zhong‐Jie Jiang; Zhongqing Jiang;doi: 10.1002/cey2.645
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Wiley Authors: Leijun Ye; Weiheng Chen; Zhong‐Jie Jiang; Zhongqing Jiang;doi: 10.1002/cey2.645
Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Carbon Energy arrow_drop_down Carbon EnergyArticle . 2024 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cey2.645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu