- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 13. Climate action
- Catalysts
- Energy Research
- 7. Clean energy
- 13. Climate action
- Catalysts
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Kou, Xuesen; Jin, Jing; Wang, Yongzhen; Li, Yanhui; Hou, Fengxiao;The reburning process in a furnace, a key way to reduce NOx emissions, is a heterogeneous reaction during coal combustion, in which the heterogeneous adsorption is dominant. Zhundong coal with a high content of alkali metal can enhance the reburning process. In this paper, the influence of sodium and a defect on NO heterogeneous adsorption was studied by the density functional theory, and the thermodynamic characteristic was also analyzed. The results indicate that the binding energy for NO adsorption on the pristine graphene surface (graphene-NO), Na-decorated pristine graphene surface (graphene-Na-NO), defect graphene surface (gsv-NO) and Na-decorated defect graphene (gsv-Na-NO) is −5.86, −137.12, −48.94 and −74.85 kJ/mol, respectively, and that the heterogeneous adsorption is an exothermic reaction. Furthermore, except for covalent bonds of C and N, C and O for gsv-NO, other interactions are a closed-shell one, based on the analysis of AIM, ELF and IGM. The area of electron localization for NO is graphene-Na-NO > gsv-Na-NO > gsv-NO > graphene-NO. The dispersion interaction is the main interaction force between NO and the pristine graphene surface. The δg index for the atom pairs about N–C and O–C on the pristine graphene surface is also the smallest. The density of spikes at graphene-Na-NO is bigger than that at gsv-Na-NO. Moreover, the thermodynamics characteristic showed that the reaction equilibrium constant of graphene-NO is less than those on the other surfaces under the same temperature. Thus, NO on the pristine graphene surface is the most difficult to adsorb, but the presence of sodium and a defect structure can promote its adsorption.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Kou, Xuesen; Jin, Jing; Wang, Yongzhen; Li, Yanhui; Hou, Fengxiao;The reburning process in a furnace, a key way to reduce NOx emissions, is a heterogeneous reaction during coal combustion, in which the heterogeneous adsorption is dominant. Zhundong coal with a high content of alkali metal can enhance the reburning process. In this paper, the influence of sodium and a defect on NO heterogeneous adsorption was studied by the density functional theory, and the thermodynamic characteristic was also analyzed. The results indicate that the binding energy for NO adsorption on the pristine graphene surface (graphene-NO), Na-decorated pristine graphene surface (graphene-Na-NO), defect graphene surface (gsv-NO) and Na-decorated defect graphene (gsv-Na-NO) is −5.86, −137.12, −48.94 and −74.85 kJ/mol, respectively, and that the heterogeneous adsorption is an exothermic reaction. Furthermore, except for covalent bonds of C and N, C and O for gsv-NO, other interactions are a closed-shell one, based on the analysis of AIM, ELF and IGM. The area of electron localization for NO is graphene-Na-NO > gsv-Na-NO > gsv-NO > graphene-NO. The dispersion interaction is the main interaction force between NO and the pristine graphene surface. The δg index for the atom pairs about N–C and O–C on the pristine graphene surface is also the smallest. The density of spikes at graphene-Na-NO is bigger than that at gsv-Na-NO. Moreover, the thermodynamics characteristic showed that the reaction equilibrium constant of graphene-NO is less than those on the other surfaces under the same temperature. Thus, NO on the pristine graphene surface is the most difficult to adsorb, but the presence of sodium and a defect structure can promote its adsorption.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Wilson Wei Sheng Ho; Hoon Kiat Ng; Suyin Gan;Heterogeneous catalyzed transesterification has been proposed as a promising technology to mitigate the limitations of homogeneous transesterification such as wastewater generation, low free fatty acids, low water tolerance, and inability to recycle the catalyst. This work aims to evaluate a refined palm biodiesel synthesis process through heterogeneous catalyzed transesterification. Three major process variables were studied over a reaction duration of 3–6 h, including the reaction temperature (45–65 °C), percentage of catalyst loading (4–6 wt.%), and methanol to oil molar ratio (6:1–12:1). The highest biodiesel yield of 88.58% was recorded under the conditions of temperature 55 °C, catalyst loading 4 wt.% and methanol to oil molar ratio 9:1 at 5 h. A pseudo-first order reaction mechanism was applied in the kinetic analysis of the fatty acid methyl esters (FAME) concentrations. In addition, the activation energy and pre-exponential factors, as determined through the kinetic analysis, were 31.2 kJ/mol and 680.21 min−1, respectively. The key fuel properties of the produced palm biodiesel were determined to be acceptable according to the ASTM D 6751 and EN 14214 standards. The developed catalyst could feasibly be reused for the palm biodiesel synthesis up to the third cycle with lower reaction performance in the fourth cycle.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Wilson Wei Sheng Ho; Hoon Kiat Ng; Suyin Gan;Heterogeneous catalyzed transesterification has been proposed as a promising technology to mitigate the limitations of homogeneous transesterification such as wastewater generation, low free fatty acids, low water tolerance, and inability to recycle the catalyst. This work aims to evaluate a refined palm biodiesel synthesis process through heterogeneous catalyzed transesterification. Three major process variables were studied over a reaction duration of 3–6 h, including the reaction temperature (45–65 °C), percentage of catalyst loading (4–6 wt.%), and methanol to oil molar ratio (6:1–12:1). The highest biodiesel yield of 88.58% was recorded under the conditions of temperature 55 °C, catalyst loading 4 wt.% and methanol to oil molar ratio 9:1 at 5 h. A pseudo-first order reaction mechanism was applied in the kinetic analysis of the fatty acid methyl esters (FAME) concentrations. In addition, the activation energy and pre-exponential factors, as determined through the kinetic analysis, were 31.2 kJ/mol and 680.21 min−1, respectively. The key fuel properties of the produced palm biodiesel were determined to be acceptable according to the ASTM D 6751 and EN 14214 standards. The developed catalyst could feasibly be reused for the palm biodiesel synthesis up to the third cycle with lower reaction performance in the fourth cycle.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Fei Yu; Jin Hu; Yongwu Lu;doi: 10.3390/catal2020303
Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2), which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT) synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas) by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 166 citations 166 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Fei Yu; Jin Hu; Yongwu Lu;doi: 10.3390/catal2020303
Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2), which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT) synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas) by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 166 citations 166 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Moon, Sanggil; Chae, Ho-Jeong; Park, Min Bum;doi: 10.3390/catal9020186
Bioethanol dehydration was carried out in a bench scale reactor-loaded H-ZSM-5 molded catalyst, which increased by tens of times more than at lab scale (up to 60 and 24 times based on the amount of catalyst and ethanol flow rate, respectively). From the results of the lab scale reaction, we confirmed the optimum Si/Al ratio (14) of H-ZSM-5, reaction temperature (~250 °C), and weight hourly space velocity (WHSV) (<5 h−1) indicating high ethanol conversion and ethylene selectivity. Five types of cylindrical shaped molded catalysts were prepared by changing the type and/or amount of organic solid binder, inorganic solid binder, inorganic liquid binder, and H-ZSM-5 basis catalyst. Among them, the catalyst exhibiting the highest compression strength and good ethanol dehydration performance was selected. The bench scale reaction with varying reaction temperature of 245–260 °C and 1.2– 2.0 h−1 WHSV according to reaction time showed that the conversion and ethylene selectivity were more than 90% after 400 h on stream. It was also confirmed that even after the successive catalyst regeneration and the reaction for another 400 h, both the ethanol conversion and ethylene selectivity were still maintained at about 90%.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Moon, Sanggil; Chae, Ho-Jeong; Park, Min Bum;doi: 10.3390/catal9020186
Bioethanol dehydration was carried out in a bench scale reactor-loaded H-ZSM-5 molded catalyst, which increased by tens of times more than at lab scale (up to 60 and 24 times based on the amount of catalyst and ethanol flow rate, respectively). From the results of the lab scale reaction, we confirmed the optimum Si/Al ratio (14) of H-ZSM-5, reaction temperature (~250 °C), and weight hourly space velocity (WHSV) (<5 h−1) indicating high ethanol conversion and ethylene selectivity. Five types of cylindrical shaped molded catalysts were prepared by changing the type and/or amount of organic solid binder, inorganic solid binder, inorganic liquid binder, and H-ZSM-5 basis catalyst. Among them, the catalyst exhibiting the highest compression strength and good ethanol dehydration performance was selected. The bench scale reaction with varying reaction temperature of 245–260 °C and 1.2– 2.0 h−1 WHSV according to reaction time showed that the conversion and ethylene selectivity were more than 90% after 400 h on stream. It was also confirmed that even after the successive catalyst regeneration and the reaction for another 400 h, both the ethanol conversion and ethylene selectivity were still maintained at about 90%.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Adrian Chun Minh Loy; Shanthi Priya Samudrala; Sankar Bhattacharya;This study presented an optimisation study of two-stage vapour-phase catalytic glycerol reforming (VPCGR) using response surface methodology (RSM) with a central composite experimental design (CCD) approach. Characterisation through Brunauer–Emmett–Teller analysis (BET), small-angle X-ray scattering (SAXS), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX), atomic force microscopy (AFM) and particle X-ray diffraction (PXRD) were carried out to understand the physiochemical activity of the honeycomb morphology CuO/CeO2 catalyst. Notably, in this study, we achieved the desired result of glycerol conversion (94%) and H2 production (81 vol.%) under the reaction condition of Cu species loading (10 wt.%), reaction temperature (823 K), WHSV (2 h−1) and glycerol concentration (15 wt.%). From the RSM analysis, an optimum predicted model for VPCGR was obtained and further integrated into Microsoft Excel and Aspen Plus to perform an energy analysis of the VPCGR plant at a scale of 100 kg h−1 of glycerol feed. As a whole, this study aimed to provide an overview of the technical operation and energy aspect for a sustainable frontier in glycerol reforming.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Adrian Chun Minh Loy; Shanthi Priya Samudrala; Sankar Bhattacharya;This study presented an optimisation study of two-stage vapour-phase catalytic glycerol reforming (VPCGR) using response surface methodology (RSM) with a central composite experimental design (CCD) approach. Characterisation through Brunauer–Emmett–Teller analysis (BET), small-angle X-ray scattering (SAXS), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX), atomic force microscopy (AFM) and particle X-ray diffraction (PXRD) were carried out to understand the physiochemical activity of the honeycomb morphology CuO/CeO2 catalyst. Notably, in this study, we achieved the desired result of glycerol conversion (94%) and H2 production (81 vol.%) under the reaction condition of Cu species loading (10 wt.%), reaction temperature (823 K), WHSV (2 h−1) and glycerol concentration (15 wt.%). From the RSM analysis, an optimum predicted model for VPCGR was obtained and further integrated into Microsoft Excel and Aspen Plus to perform an energy analysis of the VPCGR plant at a scale of 100 kg h−1 of glycerol feed. As a whole, this study aimed to provide an overview of the technical operation and energy aspect for a sustainable frontier in glycerol reforming.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Eun Yeol Lee; Keon Hee Kim; Ok Kyung Lee;doi: 10.3390/catal8020068
The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic), carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Eun Yeol Lee; Keon Hee Kim; Ok Kyung Lee;doi: 10.3390/catal8020068
The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic), carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Claudia Carlucci;Biodiesel was produced via transesterification reaction catalyzed by acids, bases, enzymes or supercritical fluids. The catalysis was homogeneous or heterogeneous and the process could be carried out in batch or using a continuous flow process. Microreactors allowed us to obtain better control of the experimental variables, such as temperature, pressure and flow rate, carrying out the reactions in safe conditions, avoiding exothermic and dangerous processes. The synthetic methodologies in continuous flow, combined with other technologies as microwave irradiation or ultrasounds, led to complete automation of the process with an increase in efficiency, also applicable on an industrial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Claudia Carlucci;Biodiesel was produced via transesterification reaction catalyzed by acids, bases, enzymes or supercritical fluids. The catalysis was homogeneous or heterogeneous and the process could be carried out in batch or using a continuous flow process. Microreactors allowed us to obtain better control of the experimental variables, such as temperature, pressure and flow rate, carrying out the reactions in safe conditions, avoiding exothermic and dangerous processes. The synthetic methodologies in continuous flow, combined with other technologies as microwave irradiation or ultrasounds, led to complete automation of the process with an increase in efficiency, also applicable on an industrial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; +5 AuthorsJimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; Prabhakarn Arunachalam; Rohana Adnan; Farook Adam; Mohammed D. Wasmiah; Hamad A. Al-Lohedan;The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for researchers in academia and society. The present review article is dedicating to cover the overall role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity studies have discussed with respect to process conditions and their effects on conversion and product selectivity for the reaction of cycloaddition of CO2 with styrene oxide. The reaction temperature and the partial pressure of CO2 have found to play a key role in cyclic carbonate formation. The role of other influential parameter (solvent effect) is also discussed for the conversion of cyclic/aromatic oxides to polycarbonate production. Our own research work that deals with ionic liquid-based halide-modified mesoporous catalyst (MCM-41 type) derived from rice husk waste has also been discussed. Finally, the role of carbon dioxide activation and ring-opening mechanisms involved in the cyclic carbonate product formation from CO2 have been discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; +5 AuthorsJimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; Prabhakarn Arunachalam; Rohana Adnan; Farook Adam; Mohammed D. Wasmiah; Hamad A. Al-Lohedan;The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for researchers in academia and society. The present review article is dedicating to cover the overall role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity studies have discussed with respect to process conditions and their effects on conversion and product selectivity for the reaction of cycloaddition of CO2 with styrene oxide. The reaction temperature and the partial pressure of CO2 have found to play a key role in cyclic carbonate formation. The role of other influential parameter (solvent effect) is also discussed for the conversion of cyclic/aromatic oxides to polycarbonate production. Our own research work that deals with ionic liquid-based halide-modified mesoporous catalyst (MCM-41 type) derived from rice husk waste has also been discussed. Finally, the role of carbon dioxide activation and ring-opening mechanisms involved in the cyclic carbonate product formation from CO2 have been discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xiaojiang Wu; Xinwei Guo; Zixiang Li; Zhongxiao Zhang; Hao Bai; Junjie Fan; Zhixiang Zhu;To explore methods of reducing NOx emission from pulverized coal boilers, the effects of injecting ammonia solution and pyrolysis gas into the furnace on NOx emission were experimentally investigated on a 75 t/h pulverized coal boiler. Results show that the deep air staging with 30% separated over fire air (SOFA) creates a high temperature and strong reducing atmosphere in the reducing zone, providing the prerequisites for NOx reduction by ammonia solution and pyrolysis gas. Compared with deep air staging itself, NOx emission can be reduced by 16.7% when ammonia solution is injected from the reducing zone with a normalized stoichiometric ratio of 2.0. However, NOx reduction efficiency is largely affected by its injection position. Similarly, NOx emission is decreased by 28.2% through injecting pyrolysis gas with its calorific value of 10% into the furnace, while a further increase of pyrolysis gas input will not increase NOx reduction efficiency. When ammonia solution and pyrolysis gas are simultaneously injected into the furnace under deep air staging conditions, the overall NOx reduction efficiency reaches 92.0% and NOx emission is decreased to 39.1 mg/m3. Considering the increasingly strict NOx emission standard, these findings can provide theoretical and practical guides to the future NOx reduction in pulverized coal boilers.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xiaojiang Wu; Xinwei Guo; Zixiang Li; Zhongxiao Zhang; Hao Bai; Junjie Fan; Zhixiang Zhu;To explore methods of reducing NOx emission from pulverized coal boilers, the effects of injecting ammonia solution and pyrolysis gas into the furnace on NOx emission were experimentally investigated on a 75 t/h pulverized coal boiler. Results show that the deep air staging with 30% separated over fire air (SOFA) creates a high temperature and strong reducing atmosphere in the reducing zone, providing the prerequisites for NOx reduction by ammonia solution and pyrolysis gas. Compared with deep air staging itself, NOx emission can be reduced by 16.7% when ammonia solution is injected from the reducing zone with a normalized stoichiometric ratio of 2.0. However, NOx reduction efficiency is largely affected by its injection position. Similarly, NOx emission is decreased by 28.2% through injecting pyrolysis gas with its calorific value of 10% into the furnace, while a further increase of pyrolysis gas input will not increase NOx reduction efficiency. When ammonia solution and pyrolysis gas are simultaneously injected into the furnace under deep air staging conditions, the overall NOx reduction efficiency reaches 92.0% and NOx emission is decreased to 39.1 mg/m3. Considering the increasingly strict NOx emission standard, these findings can provide theoretical and practical guides to the future NOx reduction in pulverized coal boilers.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Sofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; +2 AuthorsSofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; Saravanan Pandiaraj; Vimala Raghavan;The present work reports the synthesis of biomass derived activated carbon and its electrochemical behaviour in different electrolytes. Ricinus communis shell (RCS) was used as a raw material in this study for the synthesis of activated carbon (AC) following a high-temperature activation procedure using potassium hydroxide as the activating agent. The physical and structural characterization of the prepared Ricinus communis shell-derived activated carbon (RCS-AC) was carried by Brunauer-Emmett-Teller analysis, X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, Raman Spectroscopy and Scanning Electron Microscopy. The synthesized AC was electrochemically characterized using various techniques such as Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) tests, and Electrochemical impedance spectroscopy (EIS) measurements in different aqueous electrolytes (KOH, H2SO4, and Na2SO4). The results show that the double layer properties of the RCS-AC material in different electrolytes are distinct. In specific, the working electrode tested in 3 M KOH showed excellent electrochemical performance. It demonstrated a specific capacitance of 137 F g−1 (at 1 A g−1 in 3 M KOH) and exhibited high energy and power densities of 18.2 W hkg−1 and 663.4 W kg−1, respectively. The observed capacitance in 3 M KOH remains stable with 97.2% even after 5000 continuous charge and discharge cycles, indicating long-term stability. The study confirmed that the synthesized RCS-derived activated carbon (RCS-AC) exhibits good stability and physicochemical characteristics, making them commercially promising and appropriate for energy storage applications.
Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Sofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; +2 AuthorsSofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; Saravanan Pandiaraj; Vimala Raghavan;The present work reports the synthesis of biomass derived activated carbon and its electrochemical behaviour in different electrolytes. Ricinus communis shell (RCS) was used as a raw material in this study for the synthesis of activated carbon (AC) following a high-temperature activation procedure using potassium hydroxide as the activating agent. The physical and structural characterization of the prepared Ricinus communis shell-derived activated carbon (RCS-AC) was carried by Brunauer-Emmett-Teller analysis, X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, Raman Spectroscopy and Scanning Electron Microscopy. The synthesized AC was electrochemically characterized using various techniques such as Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) tests, and Electrochemical impedance spectroscopy (EIS) measurements in different aqueous electrolytes (KOH, H2SO4, and Na2SO4). The results show that the double layer properties of the RCS-AC material in different electrolytes are distinct. In specific, the working electrode tested in 3 M KOH showed excellent electrochemical performance. It demonstrated a specific capacitance of 137 F g−1 (at 1 A g−1 in 3 M KOH) and exhibited high energy and power densities of 18.2 W hkg−1 and 663.4 W kg−1, respectively. The observed capacitance in 3 M KOH remains stable with 97.2% even after 5000 continuous charge and discharge cycles, indicating long-term stability. The study confirmed that the synthesized RCS-derived activated carbon (RCS-AC) exhibits good stability and physicochemical characteristics, making them commercially promising and appropriate for energy storage applications.
Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Kou, Xuesen; Jin, Jing; Wang, Yongzhen; Li, Yanhui; Hou, Fengxiao;The reburning process in a furnace, a key way to reduce NOx emissions, is a heterogeneous reaction during coal combustion, in which the heterogeneous adsorption is dominant. Zhundong coal with a high content of alkali metal can enhance the reburning process. In this paper, the influence of sodium and a defect on NO heterogeneous adsorption was studied by the density functional theory, and the thermodynamic characteristic was also analyzed. The results indicate that the binding energy for NO adsorption on the pristine graphene surface (graphene-NO), Na-decorated pristine graphene surface (graphene-Na-NO), defect graphene surface (gsv-NO) and Na-decorated defect graphene (gsv-Na-NO) is −5.86, −137.12, −48.94 and −74.85 kJ/mol, respectively, and that the heterogeneous adsorption is an exothermic reaction. Furthermore, except for covalent bonds of C and N, C and O for gsv-NO, other interactions are a closed-shell one, based on the analysis of AIM, ELF and IGM. The area of electron localization for NO is graphene-Na-NO > gsv-Na-NO > gsv-NO > graphene-NO. The dispersion interaction is the main interaction force between NO and the pristine graphene surface. The δg index for the atom pairs about N–C and O–C on the pristine graphene surface is also the smallest. The density of spikes at graphene-Na-NO is bigger than that at gsv-Na-NO. Moreover, the thermodynamics characteristic showed that the reaction equilibrium constant of graphene-NO is less than those on the other surfaces under the same temperature. Thus, NO on the pristine graphene surface is the most difficult to adsorb, but the presence of sodium and a defect structure can promote its adsorption.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Kou, Xuesen; Jin, Jing; Wang, Yongzhen; Li, Yanhui; Hou, Fengxiao;The reburning process in a furnace, a key way to reduce NOx emissions, is a heterogeneous reaction during coal combustion, in which the heterogeneous adsorption is dominant. Zhundong coal with a high content of alkali metal can enhance the reburning process. In this paper, the influence of sodium and a defect on NO heterogeneous adsorption was studied by the density functional theory, and the thermodynamic characteristic was also analyzed. The results indicate that the binding energy for NO adsorption on the pristine graphene surface (graphene-NO), Na-decorated pristine graphene surface (graphene-Na-NO), defect graphene surface (gsv-NO) and Na-decorated defect graphene (gsv-Na-NO) is −5.86, −137.12, −48.94 and −74.85 kJ/mol, respectively, and that the heterogeneous adsorption is an exothermic reaction. Furthermore, except for covalent bonds of C and N, C and O for gsv-NO, other interactions are a closed-shell one, based on the analysis of AIM, ELF and IGM. The area of electron localization for NO is graphene-Na-NO > gsv-Na-NO > gsv-NO > graphene-NO. The dispersion interaction is the main interaction force between NO and the pristine graphene surface. The δg index for the atom pairs about N–C and O–C on the pristine graphene surface is also the smallest. The density of spikes at graphene-Na-NO is bigger than that at gsv-Na-NO. Moreover, the thermodynamics characteristic showed that the reaction equilibrium constant of graphene-NO is less than those on the other surfaces under the same temperature. Thus, NO on the pristine graphene surface is the most difficult to adsorb, but the presence of sodium and a defect structure can promote its adsorption.
Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4344/11/9/1046/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11091046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Wilson Wei Sheng Ho; Hoon Kiat Ng; Suyin Gan;Heterogeneous catalyzed transesterification has been proposed as a promising technology to mitigate the limitations of homogeneous transesterification such as wastewater generation, low free fatty acids, low water tolerance, and inability to recycle the catalyst. This work aims to evaluate a refined palm biodiesel synthesis process through heterogeneous catalyzed transesterification. Three major process variables were studied over a reaction duration of 3–6 h, including the reaction temperature (45–65 °C), percentage of catalyst loading (4–6 wt.%), and methanol to oil molar ratio (6:1–12:1). The highest biodiesel yield of 88.58% was recorded under the conditions of temperature 55 °C, catalyst loading 4 wt.% and methanol to oil molar ratio 9:1 at 5 h. A pseudo-first order reaction mechanism was applied in the kinetic analysis of the fatty acid methyl esters (FAME) concentrations. In addition, the activation energy and pre-exponential factors, as determined through the kinetic analysis, were 31.2 kJ/mol and 680.21 min−1, respectively. The key fuel properties of the produced palm biodiesel were determined to be acceptable according to the ASTM D 6751 and EN 14214 standards. The developed catalyst could feasibly be reused for the palm biodiesel synthesis up to the third cycle with lower reaction performance in the fourth cycle.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Wilson Wei Sheng Ho; Hoon Kiat Ng; Suyin Gan;Heterogeneous catalyzed transesterification has been proposed as a promising technology to mitigate the limitations of homogeneous transesterification such as wastewater generation, low free fatty acids, low water tolerance, and inability to recycle the catalyst. This work aims to evaluate a refined palm biodiesel synthesis process through heterogeneous catalyzed transesterification. Three major process variables were studied over a reaction duration of 3–6 h, including the reaction temperature (45–65 °C), percentage of catalyst loading (4–6 wt.%), and methanol to oil molar ratio (6:1–12:1). The highest biodiesel yield of 88.58% was recorded under the conditions of temperature 55 °C, catalyst loading 4 wt.% and methanol to oil molar ratio 9:1 at 5 h. A pseudo-first order reaction mechanism was applied in the kinetic analysis of the fatty acid methyl esters (FAME) concentrations. In addition, the activation energy and pre-exponential factors, as determined through the kinetic analysis, were 31.2 kJ/mol and 680.21 min−1, respectively. The key fuel properties of the produced palm biodiesel were determined to be acceptable according to the ASTM D 6751 and EN 14214 standards. The developed catalyst could feasibly be reused for the palm biodiesel synthesis up to the third cycle with lower reaction performance in the fourth cycle.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/7/706/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070706&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Fei Yu; Jin Hu; Yongwu Lu;doi: 10.3390/catal2020303
Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2), which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT) synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas) by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 166 citations 166 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:MDPI AG Authors: Fei Yu; Jin Hu; Yongwu Lu;doi: 10.3390/catal2020303
Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2), which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT) synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas) by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 166 citations 166 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal2020303&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Moon, Sanggil; Chae, Ho-Jeong; Park, Min Bum;doi: 10.3390/catal9020186
Bioethanol dehydration was carried out in a bench scale reactor-loaded H-ZSM-5 molded catalyst, which increased by tens of times more than at lab scale (up to 60 and 24 times based on the amount of catalyst and ethanol flow rate, respectively). From the results of the lab scale reaction, we confirmed the optimum Si/Al ratio (14) of H-ZSM-5, reaction temperature (~250 °C), and weight hourly space velocity (WHSV) (<5 h−1) indicating high ethanol conversion and ethylene selectivity. Five types of cylindrical shaped molded catalysts were prepared by changing the type and/or amount of organic solid binder, inorganic solid binder, inorganic liquid binder, and H-ZSM-5 basis catalyst. Among them, the catalyst exhibiting the highest compression strength and good ethanol dehydration performance was selected. The bench scale reaction with varying reaction temperature of 245–260 °C and 1.2– 2.0 h−1 WHSV according to reaction time showed that the conversion and ethylene selectivity were more than 90% after 400 h on stream. It was also confirmed that even after the successive catalyst regeneration and the reaction for another 400 h, both the ethanol conversion and ethylene selectivity were still maintained at about 90%.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Moon, Sanggil; Chae, Ho-Jeong; Park, Min Bum;doi: 10.3390/catal9020186
Bioethanol dehydration was carried out in a bench scale reactor-loaded H-ZSM-5 molded catalyst, which increased by tens of times more than at lab scale (up to 60 and 24 times based on the amount of catalyst and ethanol flow rate, respectively). From the results of the lab scale reaction, we confirmed the optimum Si/Al ratio (14) of H-ZSM-5, reaction temperature (~250 °C), and weight hourly space velocity (WHSV) (<5 h−1) indicating high ethanol conversion and ethylene selectivity. Five types of cylindrical shaped molded catalysts were prepared by changing the type and/or amount of organic solid binder, inorganic solid binder, inorganic liquid binder, and H-ZSM-5 basis catalyst. Among them, the catalyst exhibiting the highest compression strength and good ethanol dehydration performance was selected. The bench scale reaction with varying reaction temperature of 245–260 °C and 1.2– 2.0 h−1 WHSV according to reaction time showed that the conversion and ethylene selectivity were more than 90% after 400 h on stream. It was also confirmed that even after the successive catalyst regeneration and the reaction for another 400 h, both the ethanol conversion and ethylene selectivity were still maintained at about 90%.
Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2073-4344/9/2/186/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal9020186&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Adrian Chun Minh Loy; Shanthi Priya Samudrala; Sankar Bhattacharya;This study presented an optimisation study of two-stage vapour-phase catalytic glycerol reforming (VPCGR) using response surface methodology (RSM) with a central composite experimental design (CCD) approach. Characterisation through Brunauer–Emmett–Teller analysis (BET), small-angle X-ray scattering (SAXS), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX), atomic force microscopy (AFM) and particle X-ray diffraction (PXRD) were carried out to understand the physiochemical activity of the honeycomb morphology CuO/CeO2 catalyst. Notably, in this study, we achieved the desired result of glycerol conversion (94%) and H2 production (81 vol.%) under the reaction condition of Cu species loading (10 wt.%), reaction temperature (823 K), WHSV (2 h−1) and glycerol concentration (15 wt.%). From the RSM analysis, an optimum predicted model for VPCGR was obtained and further integrated into Microsoft Excel and Aspen Plus to perform an energy analysis of the VPCGR plant at a scale of 100 kg h−1 of glycerol feed. As a whole, this study aimed to provide an overview of the technical operation and energy aspect for a sustainable frontier in glycerol reforming.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Adrian Chun Minh Loy; Shanthi Priya Samudrala; Sankar Bhattacharya;This study presented an optimisation study of two-stage vapour-phase catalytic glycerol reforming (VPCGR) using response surface methodology (RSM) with a central composite experimental design (CCD) approach. Characterisation through Brunauer–Emmett–Teller analysis (BET), small-angle X-ray scattering (SAXS), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX), atomic force microscopy (AFM) and particle X-ray diffraction (PXRD) were carried out to understand the physiochemical activity of the honeycomb morphology CuO/CeO2 catalyst. Notably, in this study, we achieved the desired result of glycerol conversion (94%) and H2 production (81 vol.%) under the reaction condition of Cu species loading (10 wt.%), reaction temperature (823 K), WHSV (2 h−1) and glycerol concentration (15 wt.%). From the RSM analysis, an optimum predicted model for VPCGR was obtained and further integrated into Microsoft Excel and Aspen Plus to perform an energy analysis of the VPCGR plant at a scale of 100 kg h−1 of glycerol feed. As a whole, this study aimed to provide an overview of the technical operation and energy aspect for a sustainable frontier in glycerol reforming.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/9/941/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12090941&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Eun Yeol Lee; Keon Hee Kim; Ok Kyung Lee;doi: 10.3390/catal8020068
The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic), carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Authors: Eun Yeol Lee; Keon Hee Kim; Ok Kyung Lee;doi: 10.3390/catal8020068
The cost of biodiesel production relies on feedstock cost. Edible oil is unfavorable as a biodiesel feedstock because of its expensive price. Thus, non-edible crop oil, waste oil, and microalgae oil have been considered as alternative resources. Non-edible crop oil and waste cooking oil are more suitable for enzymatic transesterification because they include a large amount of free fatty acids. Recently, enzymes have been integrated with nanomaterials as immobilization carriers. Nanomaterials can increase biocatalytic efficiency. The development of a nano-immobilized enzyme is one of the key factors for cost-effective biodiesel production. This paper presents the technology development of nanomaterials, including nanoparticles (magnetic and non-magnetic), carbon nanotubes, and nanofibers, and their application to the nano-immobilization of biocatalysts. The current status of biodiesel production using a variety of nano-immobilized lipase is also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal8020068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Claudia Carlucci;Biodiesel was produced via transesterification reaction catalyzed by acids, bases, enzymes or supercritical fluids. The catalysis was homogeneous or heterogeneous and the process could be carried out in batch or using a continuous flow process. Microreactors allowed us to obtain better control of the experimental variables, such as temperature, pressure and flow rate, carrying out the reactions in safe conditions, avoiding exothermic and dangerous processes. The synthetic methodologies in continuous flow, combined with other technologies as microwave irradiation or ultrasounds, led to complete automation of the process with an increase in efficiency, also applicable on an industrial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Claudia Carlucci;Biodiesel was produced via transesterification reaction catalyzed by acids, bases, enzymes or supercritical fluids. The catalysis was homogeneous or heterogeneous and the process could be carried out in batch or using a continuous flow process. Microreactors allowed us to obtain better control of the experimental variables, such as temperature, pressure and flow rate, carrying out the reactions in safe conditions, avoiding exothermic and dangerous processes. The synthetic methodologies in continuous flow, combined with other technologies as microwave irradiation or ultrasounds, led to complete automation of the process with an increase in efficiency, also applicable on an industrial scale.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12070717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; +5 AuthorsJimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; Prabhakarn Arunachalam; Rohana Adnan; Farook Adam; Mohammed D. Wasmiah; Hamad A. Al-Lohedan;The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for researchers in academia and society. The present review article is dedicating to cover the overall role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity studies have discussed with respect to process conditions and their effects on conversion and product selectivity for the reaction of cycloaddition of CO2 with styrene oxide. The reaction temperature and the partial pressure of CO2 have found to play a key role in cyclic carbonate formation. The role of other influential parameter (solvent effect) is also discussed for the conversion of cyclic/aromatic oxides to polycarbonate production. Our own research work that deals with ionic liquid-based halide-modified mesoporous catalyst (MCM-41 type) derived from rice husk waste has also been discussed. Finally, the role of carbon dioxide activation and ring-opening mechanisms involved in the cyclic carbonate product formation from CO2 have been discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Jimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; +5 AuthorsJimmy Nelson Appaturi; Rajabathar. Jothi Ramalingam; Muthu Kumaran Gnanamani; Govindasami Periyasami; Prabhakarn Arunachalam; Rohana Adnan; Farook Adam; Mohammed D. Wasmiah; Hamad A. Al-Lohedan;The storage, utilization, and control of the greenhouse (CO2) gas is a topic of interest for researchers in academia and society. The present review article is dedicating to cover the overall role of ionic liquid-modified hybrid materials in cycloaddition reactions. Special emphasis is on the synthesis of various cyclic carbonate using ionic liquid-based modified catalysts. Catalytic activity studies have discussed with respect to process conditions and their effects on conversion and product selectivity for the reaction of cycloaddition of CO2 with styrene oxide. The reaction temperature and the partial pressure of CO2 have found to play a key role in cyclic carbonate formation. The role of other influential parameter (solvent effect) is also discussed for the conversion of cyclic/aromatic oxides to polycarbonate production. Our own research work that deals with ionic liquid-based halide-modified mesoporous catalyst (MCM-41 type) derived from rice husk waste has also been discussed. Finally, the role of carbon dioxide activation and ring-opening mechanisms involved in the cyclic carbonate product formation from CO2 have been discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal11010004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xiaojiang Wu; Xinwei Guo; Zixiang Li; Zhongxiao Zhang; Hao Bai; Junjie Fan; Zhixiang Zhu;To explore methods of reducing NOx emission from pulverized coal boilers, the effects of injecting ammonia solution and pyrolysis gas into the furnace on NOx emission were experimentally investigated on a 75 t/h pulverized coal boiler. Results show that the deep air staging with 30% separated over fire air (SOFA) creates a high temperature and strong reducing atmosphere in the reducing zone, providing the prerequisites for NOx reduction by ammonia solution and pyrolysis gas. Compared with deep air staging itself, NOx emission can be reduced by 16.7% when ammonia solution is injected from the reducing zone with a normalized stoichiometric ratio of 2.0. However, NOx reduction efficiency is largely affected by its injection position. Similarly, NOx emission is decreased by 28.2% through injecting pyrolysis gas with its calorific value of 10% into the furnace, while a further increase of pyrolysis gas input will not increase NOx reduction efficiency. When ammonia solution and pyrolysis gas are simultaneously injected into the furnace under deep air staging conditions, the overall NOx reduction efficiency reaches 92.0% and NOx emission is decreased to 39.1 mg/m3. Considering the increasingly strict NOx emission standard, these findings can provide theoretical and practical guides to the future NOx reduction in pulverized coal boilers.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Xiaojiang Wu; Xinwei Guo; Zixiang Li; Zhongxiao Zhang; Hao Bai; Junjie Fan; Zhixiang Zhu;To explore methods of reducing NOx emission from pulverized coal boilers, the effects of injecting ammonia solution and pyrolysis gas into the furnace on NOx emission were experimentally investigated on a 75 t/h pulverized coal boiler. Results show that the deep air staging with 30% separated over fire air (SOFA) creates a high temperature and strong reducing atmosphere in the reducing zone, providing the prerequisites for NOx reduction by ammonia solution and pyrolysis gas. Compared with deep air staging itself, NOx emission can be reduced by 16.7% when ammonia solution is injected from the reducing zone with a normalized stoichiometric ratio of 2.0. However, NOx reduction efficiency is largely affected by its injection position. Similarly, NOx emission is decreased by 28.2% through injecting pyrolysis gas with its calorific value of 10% into the furnace, while a further increase of pyrolysis gas input will not increase NOx reduction efficiency. When ammonia solution and pyrolysis gas are simultaneously injected into the furnace under deep air staging conditions, the overall NOx reduction efficiency reaches 92.0% and NOx emission is decreased to 39.1 mg/m3. Considering the increasingly strict NOx emission standard, these findings can provide theoretical and practical guides to the future NOx reduction in pulverized coal boilers.
Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4344/12/2/141/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal12020141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Sofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; +2 AuthorsSofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; Saravanan Pandiaraj; Vimala Raghavan;The present work reports the synthesis of biomass derived activated carbon and its electrochemical behaviour in different electrolytes. Ricinus communis shell (RCS) was used as a raw material in this study for the synthesis of activated carbon (AC) following a high-temperature activation procedure using potassium hydroxide as the activating agent. The physical and structural characterization of the prepared Ricinus communis shell-derived activated carbon (RCS-AC) was carried by Brunauer-Emmett-Teller analysis, X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, Raman Spectroscopy and Scanning Electron Microscopy. The synthesized AC was electrochemically characterized using various techniques such as Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) tests, and Electrochemical impedance spectroscopy (EIS) measurements in different aqueous electrolytes (KOH, H2SO4, and Na2SO4). The results show that the double layer properties of the RCS-AC material in different electrolytes are distinct. In specific, the working electrode tested in 3 M KOH showed excellent electrochemical performance. It demonstrated a specific capacitance of 137 F g−1 (at 1 A g−1 in 3 M KOH) and exhibited high energy and power densities of 18.2 W hkg−1 and 663.4 W kg−1, respectively. The observed capacitance in 3 M KOH remains stable with 97.2% even after 5000 continuous charge and discharge cycles, indicating long-term stability. The study confirmed that the synthesized RCS-derived activated carbon (RCS-AC) exhibits good stability and physicochemical characteristics, making them commercially promising and appropriate for energy storage applications.
Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Sofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; +2 AuthorsSofia Jeniffer Rajasekaran; Andrews Nirmala Grace; George Jacob; Abdullah Alodhayb; Saravanan Pandiaraj; Vimala Raghavan;The present work reports the synthesis of biomass derived activated carbon and its electrochemical behaviour in different electrolytes. Ricinus communis shell (RCS) was used as a raw material in this study for the synthesis of activated carbon (AC) following a high-temperature activation procedure using potassium hydroxide as the activating agent. The physical and structural characterization of the prepared Ricinus communis shell-derived activated carbon (RCS-AC) was carried by Brunauer-Emmett-Teller analysis, X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, Raman Spectroscopy and Scanning Electron Microscopy. The synthesized AC was electrochemically characterized using various techniques such as Cyclic voltammetry (CV), galvanostatic charge–discharge (GCD) tests, and Electrochemical impedance spectroscopy (EIS) measurements in different aqueous electrolytes (KOH, H2SO4, and Na2SO4). The results show that the double layer properties of the RCS-AC material in different electrolytes are distinct. In specific, the working electrode tested in 3 M KOH showed excellent electrochemical performance. It demonstrated a specific capacitance of 137 F g−1 (at 1 A g−1 in 3 M KOH) and exhibited high energy and power densities of 18.2 W hkg−1 and 663.4 W kg−1, respectively. The observed capacitance in 3 M KOH remains stable with 97.2% even after 5000 continuous charge and discharge cycles, indicating long-term stability. The study confirmed that the synthesized RCS-derived activated carbon (RCS-AC) exhibits good stability and physicochemical characteristics, making them commercially promising and appropriate for energy storage applications.
Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Catalysts arrow_drop_down CatalystsOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/2073-4344/13/2/286/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/catal13020286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu