
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of Porous Honeycomb-Shaped CuO/CeO2 Catalyst in Vapour Phase Glycerol Reforming for Sustainable Hydrogen Production

This study presented an optimisation study of two-stage vapour-phase catalytic glycerol reforming (VPCGR) using response surface methodology (RSM) with a central composite experimental design (CCD) approach. Characterisation through Brunauer–Emmett–Teller analysis (BET), small-angle X-ray scattering (SAXS), scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM-EDX), atomic force microscopy (AFM) and particle X-ray diffraction (PXRD) were carried out to understand the physiochemical activity of the honeycomb morphology CuO/CeO2 catalyst. Notably, in this study, we achieved the desired result of glycerol conversion (94%) and H2 production (81 vol.%) under the reaction condition of Cu species loading (10 wt.%), reaction temperature (823 K), WHSV (2 h−1) and glycerol concentration (15 wt.%). From the RSM analysis, an optimum predicted model for VPCGR was obtained and further integrated into Microsoft Excel and Aspen Plus to perform an energy analysis of the VPCGR plant at a scale of 100 kg h−1 of glycerol feed. As a whole, this study aimed to provide an overview of the technical operation and energy aspect for a sustainable frontier in glycerol reforming.
- Monash University Australia
Cu/CeO<sub>2</sub>, Chemical technology, Cu/CeO<sub>2</sub>; aspen plus; energy analysis; glycerol reforming; heterogeneous catalyst, heterogeneous catalyst, TP1-1185, aspen plus, Chemistry, glycerol reforming, energy analysis, QD1-999
Cu/CeO<sub>2</sub>, Chemical technology, Cu/CeO<sub>2</sub>; aspen plus; energy analysis; glycerol reforming; heterogeneous catalyst, heterogeneous catalyst, TP1-1185, aspen plus, Chemistry, glycerol reforming, energy analysis, QD1-999
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
