- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- 11. Sustainability
- 6. Clean water
- University of North Texas
- Energy Research
- 12. Responsible consumption
- 11. Sustainability
- 6. Clean water
- University of North Texas
description Publicationkeyboard_double_arrow_right Report , Other literature type 1996 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Turn, S.Q.; Ishimura, D.M.; Kinoshita, C.M.; Masutani, S.M.;doi: 10.2172/477724
Shakedown testing of the biomass gasifier facility, located at the Hawaiian Commercial and Sugar Co. factory in Paia on the island of Maui, utilizing sugarcane bagasse, occurred in October 1995. Input and output streams for the process were sampled during three periods of steady-state operation in an air-blown mode. Additional tests were carried out in early December, 1995. Air and a mixture of air and steam were utilized as the fluidizing agent in the December operations, with two sampling periods occurring during air gasification and a single period under air-steam-blown conditions. This summary reports average values for the October test period, the December air-blown tests and the December air-steam tests (see following table). Details of individual tests are presented in the body of this report. During the October sampling periods, the average reactor temperature and pressure were 1545{degrees}F (840{degrees}C) and 43 psi (300 kPa), respectively. Bagasse from the sugar factory entered the dryer at a nominal moisture content of 45% and exited at 26%, wet basis. Wet fuel feed rate to the reactor averaged 1.2 ton hr{sup -1} (1.1 tonne hr{sup -1}). Average gas composition determined over the sample periods was 4% H{sub 2}, 10% CO, 18% CO{sub 2}, 3%more » CH{sub 4}, 1% C{sub 2}`s and higher hydrocarbons, and the balance N{sub 2}. The higher heating value of the gas was 100 Btu ft{sup -3} (3.7 MJ m{sup -3}). Condensable hydrocarbons (C{sub 6} and higher) in the output stream averaged 2.3% of dry fuel feed with benzene (C{sub 6}H{sub 6}) and naphthalene (C{sub 10}H{sub 8}) being the principal constituents. Carbon conversion efficiency, defined as the percentage of fuel carbon converted into gas or liquids, was estimated to be {approximately}96%.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/477724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/477724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2007 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan;doi: 10.2172/916996
The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/916996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/916996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2011 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Benjamin Polly; Mike Gestwick; Marcus Bianchi; Ren Anderson; Scott Horowitz; Craig Christenson; Ron Judkoff;doi: 10.2172/1015501
Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1015501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1015501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal 2011 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.;doi: 10.2172/1023410
This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1023410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1023410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Thesis 1979 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Williams, Ronald Craig;doi: 10.2172/5690053
An analysis of building energy usage and thermal load for the Solar Building during the winter heating seasons of 1974-75 and 1975-76 is reported. The one-story office building is located in Albuquerque, New Mexico. Its mechanical heating and cooling equipment is categorized as a solar-assisted heat pump system consisting of solar collectors, water thermal storage, a water-to-water heat pump and five smaller water-to-air heat pump packaged units. Building energy usage was examined with emphasis on the time of day energy was consumed and the source from which the energy was obtained; i.e., from the electricity for lighting, office equipment and mechanical equipment, and from the heat output of the thermal storage and heat pumps. The rate of electrical energy consumption was found to be very dependent on building use. High rates of electrical energy usage during occupied periods required cooling during parts of even the coldest days. Mechanical equipment heating was found to vary as a function of building usage as well as a function of the indoor-outdoor temperature differential. Energies supplied to and withdrawn from the building were examined and are presented for hourly, daily, and seasonal periods. A comparison of the two heating seasons was made. Energy losses more » and gains from the building to the surroundings were examined for both steady-state and transient load profiles. Envelope conductive heat losses and losses due to infiltration and ventilation were calculated using actual weather data through the use of the Building Environmental Analysis Program (BEAP). The effect of building thermal storage on heating and cooling loads was examined and a set of building balance-point temperatures was established. Comparisons between the building energy consumption and a calculated load were made for hourly, daily, and seasonal periods. « less
https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryThesis . 1979Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1979Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5690053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryThesis . 1979Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1979Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5690053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1995 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Jothimurugesan, K.; Adeyiga, A. A.; Gangwal, S. K.;doi: 10.2172/211355
The objectives of this project are to develop hot-gas cleanup sorbents for relatively lower temperature application, with emphasis on the temperature range from 343-538{degrees}C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt and molybdenum. The specific objective in the successful preparation of H{sub 2}S absorbents will be to generate as high and as stable a surface area as possible, in order to develop suitable sorbent, that are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. A number of formulations will be prepared and screened for testing in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C (650{degrees}F) to 538{degrees}C (1000{degrees}F). Each formulation will be tested for up to 5 cycles of absorption and regeneration. To prevent sulfation, catalyst additives will be investigated, which would promote a lower ignition of the regeneration. Selected superior formulation will be tested for long term (up to least 30 cycles) durability and chemical reactivity in the reactor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/211355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/211355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1991 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Srivastava, V. J.;doi: 10.2172/10105950
The objective of this research is to provide data relevant to the development of an integrated physical, chemical, and microbiological process for the desulfurization of coal, utilizing existing technologies insofar as is possible. Specifically, the effect of increased surface area and porosity achieved by physical, chemical, and microbial treatments of coal on the subsequent microbiological removal of organic sulfur will be evaluated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10105950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10105950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2005 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Woodward, Christine; Beckley, B.; Hagen, K.;doi: 10.2172/850369
The Tribes strategic energy planning effort is divided into three phases: (1) Completing an Energy Resource Assessment; (2) Developing a Long-Term Strategic Energy Plan; and (3) Preparing a Strategic Energy Implementation Plan for the Samish Homelands. The Samish Indian Nation developed a comprehensive Strategic Energy plan to set policy for future development on tribal land that consists of a long-term, integrated, systems approach to providing a framework under which the Samish Community can use resources efficiently, create energy-efficient infrastructures, and protect and enhance quality of life. Development of the Strategic Energy plan will help the Samish Nation create a healthy community that will sustain current and future generations by addressing economic, environmental, and social issues while respecting the Samish Indian Nation culture and traditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/850369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/850369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 1985 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Lai, C.-H.;doi: 10.2172/5709552
Semi-analytical and numerical methods are used to investigate thermal and chemical transport processes in geologic media. The work is divided into two parts: (1) development of semi-analytical models for the analysis of uncoupled isothermal and nonisothermal fluid flow in naturally fractured media, and (2) development of a high resolution numerical code to address coupled nonisothermal chemical transport in geologic media. A semi-analytical model is developed for well test data analysis in naturally fractured reservoirs. A simple approximate analytical solution for pressure buildup and drawdown tests is developed. Methods based on the approximate solution are developed for the evaluation of important reservoir properties. Type curves for nonisothermal fluid flow in naturally fractured media are developed to design injection systems for maximum energy in hydrothermal systems. An accurate finite difference method for the solution of a convection-diffusion type equation is developed. The method is incorporated in a two-dimensional code to investigate free convection in a porous slab and kinetic silica-water reactions in geothermal systems. A multicomponent model considering the variations of pressure, temperature and silica concentration is developed to interpret the evolution of geothermal systems during exploitation.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1985Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5709552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1985Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5709552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1991 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Dieckmann, J.; Mallory; D. (Little (Arthur D.); Inc.; Cambridge; MA (United States));doi: 10.2172/10152952 , 10.2172/6571242
There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concernsmore » need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.« less
https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10152952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10152952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Report , Other literature type 1996 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Turn, S.Q.; Ishimura, D.M.; Kinoshita, C.M.; Masutani, S.M.;doi: 10.2172/477724
Shakedown testing of the biomass gasifier facility, located at the Hawaiian Commercial and Sugar Co. factory in Paia on the island of Maui, utilizing sugarcane bagasse, occurred in October 1995. Input and output streams for the process were sampled during three periods of steady-state operation in an air-blown mode. Additional tests were carried out in early December, 1995. Air and a mixture of air and steam were utilized as the fluidizing agent in the December operations, with two sampling periods occurring during air gasification and a single period under air-steam-blown conditions. This summary reports average values for the October test period, the December air-blown tests and the December air-steam tests (see following table). Details of individual tests are presented in the body of this report. During the October sampling periods, the average reactor temperature and pressure were 1545{degrees}F (840{degrees}C) and 43 psi (300 kPa), respectively. Bagasse from the sugar factory entered the dryer at a nominal moisture content of 45% and exited at 26%, wet basis. Wet fuel feed rate to the reactor averaged 1.2 ton hr{sup -1} (1.1 tonne hr{sup -1}). Average gas composition determined over the sample periods was 4% H{sub 2}, 10% CO, 18% CO{sub 2}, 3%more » CH{sub 4}, 1% C{sub 2}`s and higher hydrocarbons, and the balance N{sub 2}. The higher heating value of the gas was 100 Btu ft{sup -3} (3.7 MJ m{sup -3}). Condensable hydrocarbons (C{sub 6} and higher) in the output stream averaged 2.3% of dry fuel feed with benzene (C{sub 6}H{sub 6}) and naphthalene (C{sub 10}H{sub 8}) being the principal constituents. Carbon conversion efficiency, defined as the percentage of fuel carbon converted into gas or liquids, was estimated to be {approximately}96%.« less
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/477724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/477724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2007 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan;doi: 10.2172/916996
The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/916996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/916996&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2011 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Benjamin Polly; Mike Gestwick; Marcus Bianchi; Ren Anderson; Scott Horowitz; Craig Christenson; Ron Judkoff;doi: 10.2172/1015501
Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1015501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1015501&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal 2011 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.;doi: 10.2172/1023410
This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1023410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1023410&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type , Thesis 1979 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Williams, Ronald Craig;doi: 10.2172/5690053
An analysis of building energy usage and thermal load for the Solar Building during the winter heating seasons of 1974-75 and 1975-76 is reported. The one-story office building is located in Albuquerque, New Mexico. Its mechanical heating and cooling equipment is categorized as a solar-assisted heat pump system consisting of solar collectors, water thermal storage, a water-to-water heat pump and five smaller water-to-air heat pump packaged units. Building energy usage was examined with emphasis on the time of day energy was consumed and the source from which the energy was obtained; i.e., from the electricity for lighting, office equipment and mechanical equipment, and from the heat output of the thermal storage and heat pumps. The rate of electrical energy consumption was found to be very dependent on building use. High rates of electrical energy usage during occupied periods required cooling during parts of even the coldest days. Mechanical equipment heating was found to vary as a function of building usage as well as a function of the indoor-outdoor temperature differential. Energies supplied to and withdrawn from the building were examined and are presented for hourly, daily, and seasonal periods. A comparison of the two heating seasons was made. Energy losses more » and gains from the building to the surroundings were examined for both steady-state and transient load profiles. Envelope conductive heat losses and losses due to infiltration and ventilation were calculated using actual weather data through the use of the Building Environmental Analysis Program (BEAP). The effect of building thermal storage on heating and cooling loads was examined and a set of building balance-point temperatures was established. Comparisons between the building energy consumption and a calculated load were made for hourly, daily, and seasonal periods. « less
https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryThesis . 1979Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1979Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5690053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryThesis . 1979Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1979Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5690053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1995 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Jothimurugesan, K.; Adeyiga, A. A.; Gangwal, S. K.;doi: 10.2172/211355
The objectives of this project are to develop hot-gas cleanup sorbents for relatively lower temperature application, with emphasis on the temperature range from 343-538{degrees}C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt and molybdenum. The specific objective in the successful preparation of H{sub 2}S absorbents will be to generate as high and as stable a surface area as possible, in order to develop suitable sorbent, that are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. A number of formulations will be prepared and screened for testing in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C (650{degrees}F) to 538{degrees}C (1000{degrees}F). Each formulation will be tested for up to 5 cycles of absorption and regeneration. To prevent sulfation, catalyst additives will be investigated, which would promote a lower ignition of the regeneration. Selected superior formulation will be tested for long term (up to least 30 cycles) durability and chemical reactivity in the reactor.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/211355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/211355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1991 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Srivastava, V. J.;doi: 10.2172/10105950
The objective of this research is to provide data relevant to the development of an integrated physical, chemical, and microbiological process for the desulfurization of coal, utilizing existing technologies insofar as is possible. Specifically, the effect of increased surface area and porosity achieved by physical, chemical, and microbial treatments of coal on the subsequent microbiological removal of organic sulfur will be evaluated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10105950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10105950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2005 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Woodward, Christine; Beckley, B.; Hagen, K.;doi: 10.2172/850369
The Tribes strategic energy planning effort is divided into three phases: (1) Completing an Energy Resource Assessment; (2) Developing a Long-Term Strategic Energy Plan; and (3) Preparing a Strategic Energy Implementation Plan for the Samish Homelands. The Samish Indian Nation developed a comprehensive Strategic Energy plan to set policy for future development on tribal land that consists of a long-term, integrated, systems approach to providing a framework under which the Samish Community can use resources efficiently, create energy-efficient infrastructures, and protect and enhance quality of life. Development of the Strategic Energy plan will help the Samish Nation create a healthy community that will sustain current and future generations by addressing economic, environmental, and social issues while respecting the Samish Indian Nation culture and traditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/850369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/850369&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Journal , Article 1985 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Lai, C.-H.;doi: 10.2172/5709552
Semi-analytical and numerical methods are used to investigate thermal and chemical transport processes in geologic media. The work is divided into two parts: (1) development of semi-analytical models for the analysis of uncoupled isothermal and nonisothermal fluid flow in naturally fractured media, and (2) development of a high resolution numerical code to address coupled nonisothermal chemical transport in geologic media. A semi-analytical model is developed for well test data analysis in naturally fractured reservoirs. A simple approximate analytical solution for pressure buildup and drawdown tests is developed. Methods based on the approximate solution are developed for the evaluation of important reservoir properties. Type curves for nonisothermal fluid flow in naturally fractured media are developed to design injection systems for maximum energy in hydrothermal systems. An accurate finite difference method for the solution of a convection-diffusion type equation is developed. The method is incorporated in a two-dimensional code to investigate free convection in a porous slab and kinetic silica-water reactions in geothermal systems. A multicomponent model considering the variations of pressure, temperature and silica concentration is developed to interpret the evolution of geothermal systems during exploitation.
https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1985Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5709552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down eScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 1985Data sources: eScholarship - University of CaliforniaUniversity of North Texas: UNT Digital LibraryReport . 1985Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5709552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1991 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Dieckmann, J.; Mallory; D. (Little (Arthur D.); Inc.; Cambridge; MA (United States));doi: 10.2172/10152952 , 10.2172/6571242
There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concernsmore » need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.« less
https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10152952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert https://digital.libr... arrow_drop_down University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryReport . 1991Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10152952&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu