- home
- Advanced Search
- Energy Research
- 11. Sustainability
- 1. No poverty
- CGIAR
- Energy Research
- 11. Sustainability
- 1. No poverty
- CGIAR
description Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Springer Science and Business Media LLC Authors: Antoine Kalinganire;Kapoury Sanogo;
Kapoury Sanogo; Grace B. Villamor; +3 AuthorsKapoury Sanogo
Kapoury Sanogo in OpenAIREAntoine Kalinganire;Kapoury Sanogo;
Kapoury Sanogo; Grace B. Villamor; Jules Bayala; Joachim Nyemeck Binam; Soro Dodiomon;Kapoury Sanogo
Kapoury Sanogo in OpenAIREhandle: 10568/90399
Agroforestry parklands in the Sahel provide a number of ecosystem services that help farmers cope better with climate change effects and thus reducing their vulnerability. However, parklands are threatened due to the decline in densities of species that are sensitive to drought and that might compromise the delivery of the above mentioned ecosystem services to farmers. Therefore, data were collected by interviewing 400 smallholder farmers to elucidate farmers’ perceptions of climate change in southern Mali and potential consequences on the delivery of ecosystem services from the parklands. Descriptive statistics and multinomial logit model were used to analyse the data collected and identify the indictors as well as the determinants of farmers’ perception of climate change. The findings revealed increases in the frequency of strong wind, dust, drought, high temperatures and number of hot days as the main climate change-related indicators. Furthermore, an early cessation of the rainy season, frequent drought and wind were found to be the factors impeding a better delivery of the ecosystem services from the parklands. Early cessation of rains and frequent drought might affect the water availability which in turn affects the flowering and fruiting phases of the trees. The occurrence of strong wind causes the shedding of the flowers thus reducing the fruit production. Age, educational level, farm size and gender are key factors influencing farmer’s perception of climate change. The strategies adopted by these farmers to cope with climate shocks include use of improved drought-tolerant crop varieties, diversification of crops, off-farm activities and seasonal migration. Based on these findings, we therefore suggest the development of conducive environment that can help create agricultural related off-farm income earning activities that could protect active households from the impacts of climate change and variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10457-016-9933-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10457-016-9933-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Springer Science and Business Media LLC Authors: Antoine Kalinganire;Kapoury Sanogo;
Kapoury Sanogo; Grace B. Villamor; +3 AuthorsKapoury Sanogo
Kapoury Sanogo in OpenAIREAntoine Kalinganire;Kapoury Sanogo;
Kapoury Sanogo; Grace B. Villamor; Jules Bayala; Joachim Nyemeck Binam; Soro Dodiomon;Kapoury Sanogo
Kapoury Sanogo in OpenAIREhandle: 10568/90399
Agroforestry parklands in the Sahel provide a number of ecosystem services that help farmers cope better with climate change effects and thus reducing their vulnerability. However, parklands are threatened due to the decline in densities of species that are sensitive to drought and that might compromise the delivery of the above mentioned ecosystem services to farmers. Therefore, data were collected by interviewing 400 smallholder farmers to elucidate farmers’ perceptions of climate change in southern Mali and potential consequences on the delivery of ecosystem services from the parklands. Descriptive statistics and multinomial logit model were used to analyse the data collected and identify the indictors as well as the determinants of farmers’ perception of climate change. The findings revealed increases in the frequency of strong wind, dust, drought, high temperatures and number of hot days as the main climate change-related indicators. Furthermore, an early cessation of the rainy season, frequent drought and wind were found to be the factors impeding a better delivery of the ecosystem services from the parklands. Early cessation of rains and frequent drought might affect the water availability which in turn affects the flowering and fruiting phases of the trees. The occurrence of strong wind causes the shedding of the flowers thus reducing the fruit production. Age, educational level, farm size and gender are key factors influencing farmer’s perception of climate change. The strategies adopted by these farmers to cope with climate shocks include use of improved drought-tolerant crop varieties, diversification of crops, off-farm activities and seasonal migration. Based on these findings, we therefore suggest the development of conducive environment that can help create agricultural related off-farm income earning activities that could protect active households from the impacts of climate change and variability.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10457-016-9933-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 57 citations 57 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10457-016-9933-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2002 FrancePublisher:Resilience Alliance, Inc. Authors: Gottret, María Verónica; White, D.;handle: 10568/43197
Assessing the impact of integrated natural resource management (INRM) research poses a challenge to scientists. The complexity of INRM interventions requires a more holistic approach to impact assessment, beyond the plot and farm levels and beyond traditional analysis of economic returns. Impact assessment for INRM combines the traditional "what" and "where" factors of economic and environmental priorities with newer "who" and "how" aspects of social actors and institutions. This paper presents an analytical framework and methodology for assessing the impact of INRM. A key feature of the proposed methodology is that it starts with a detailed planning process that develops a well-defined, shared, and holistic strategy to achieve development impact. This methodology, which is known as the "paths of development impact" methodology, includes the mapping of research outputs, intermediate outcomes, and development impacts. A central challenge is to find a balance between the use of generalizable measures that facilitate cross-site comparison and slower participatory process methods that empower local stakeholders. Sufficient funding for impact assessment and distinct stakeholder interests are also challenges. Two hillside sites in Central America and one forest margin site in Peru serve as case studies.
Conservation Ecology arrow_drop_down https://doi.org/10.1079/978085...Part of book or chapter of book . 2003 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-00340-050217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Conservation Ecology arrow_drop_down https://doi.org/10.1079/978085...Part of book or chapter of book . 2003 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-00340-050217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2002 FrancePublisher:Resilience Alliance, Inc. Authors: Gottret, María Verónica; White, D.;handle: 10568/43197
Assessing the impact of integrated natural resource management (INRM) research poses a challenge to scientists. The complexity of INRM interventions requires a more holistic approach to impact assessment, beyond the plot and farm levels and beyond traditional analysis of economic returns. Impact assessment for INRM combines the traditional "what" and "where" factors of economic and environmental priorities with newer "who" and "how" aspects of social actors and institutions. This paper presents an analytical framework and methodology for assessing the impact of INRM. A key feature of the proposed methodology is that it starts with a detailed planning process that develops a well-defined, shared, and holistic strategy to achieve development impact. This methodology, which is known as the "paths of development impact" methodology, includes the mapping of research outputs, intermediate outcomes, and development impacts. A central challenge is to find a balance between the use of generalizable measures that facilitate cross-site comparison and slower participatory process methods that empower local stakeholders. Sufficient funding for impact assessment and distinct stakeholder interests are also challenges. Two hillside sites in Central America and one forest margin site in Peru serve as case studies.
Conservation Ecology arrow_drop_down https://doi.org/10.1079/978085...Part of book or chapter of book . 2003 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-00340-050217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Conservation Ecology arrow_drop_down https://doi.org/10.1079/978085...Part of book or chapter of book . 2003 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-00340-050217&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Switzerland, United Kingdom, France, United KingdomPublisher:Wiley Funded by:EC | OPERAS, UKRI | Multi-level governance, R...EC| OPERAS ,UKRI| Multi-level governance, REDD+ and synergies between climate change mitigation and adaptationAuthors:Bruno Locatelli;
Charlotte Pavageau;Bruno Locatelli
Bruno Locatelli in OpenAIREE. Pramova;
E. Pramova
E. Pramova in OpenAIREMonica Di Gregorio;
Monica Di Gregorio
Monica Di Gregorio in OpenAIREhandle: 10568/94684
Although many activities can jointly contribute to the climate change strategies of adaptation and mitigation, climate policies have generally treated these strategies separately. In recent years, there has been a growing interest shown by practitioners in agriculture, forestry, and landscape management in the links between the two strategies. This review explores the opportunities and trade‐offs when managing landscapes for both climate change mitigation and adaptation; different conceptualizations of the links between adaptation and mitigation are highlighted. Under a first conceptualization of ‘joint outcomes,’ several reviewed studies analyze how activities without climatic objectives deliver joint adaptation and mitigation outcomes. In a second conceptualization of ‘unintended side effects,’ the focus is on how activities aimed at only one climate objective—either adaptation or mitigation—can deliver outcomes for the other objective. A third conceptualization of ‘joint objectives’ highlights that associating both adaptation and mitigation objectives in a climate‐related activity can influence its outcomes because of multiple possible interactions. The review reveals a diversity of reasons for mainstreaming adaptation and mitigation separately or jointly in landscape management. The three broad conceptualizations of the links between adaptation and mitigation suggest different implications for climate policy mainstreaming and integration. WIREs Clim Change 2015, 6:585–598. doi: 10.1002/wcc.357This article is categorized under: Integrated Assessment of Climate Change > Methods of Integrated Assessment of Climate Change The Carbon Economy and Climate Mitigation > Benefits of Mitigation
CORE arrow_drop_down Hyper Article en LigneArticle . 2015Full-Text: http://hal.cirad.fr/cirad-01197454/documentData sources: Hyper Article en LigneCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/94684Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2015Full-Text: https://hal.science/cirad-01197454Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1002/wcc....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Hyper Article en LigneArticle . 2015Full-Text: http://hal.cirad.fr/cirad-01197454/documentData sources: Hyper Article en LigneCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/94684Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2015Full-Text: https://hal.science/cirad-01197454Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1002/wcc....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015Embargo end date: 01 Jan 2015 Switzerland, United Kingdom, France, United KingdomPublisher:Wiley Funded by:EC | OPERAS, UKRI | Multi-level governance, R...EC| OPERAS ,UKRI| Multi-level governance, REDD+ and synergies between climate change mitigation and adaptationAuthors:Bruno Locatelli;
Charlotte Pavageau;Bruno Locatelli
Bruno Locatelli in OpenAIREE. Pramova;
E. Pramova
E. Pramova in OpenAIREMonica Di Gregorio;
Monica Di Gregorio
Monica Di Gregorio in OpenAIREhandle: 10568/94684
Although many activities can jointly contribute to the climate change strategies of adaptation and mitigation, climate policies have generally treated these strategies separately. In recent years, there has been a growing interest shown by practitioners in agriculture, forestry, and landscape management in the links between the two strategies. This review explores the opportunities and trade‐offs when managing landscapes for both climate change mitigation and adaptation; different conceptualizations of the links between adaptation and mitigation are highlighted. Under a first conceptualization of ‘joint outcomes,’ several reviewed studies analyze how activities without climatic objectives deliver joint adaptation and mitigation outcomes. In a second conceptualization of ‘unintended side effects,’ the focus is on how activities aimed at only one climate objective—either adaptation or mitigation—can deliver outcomes for the other objective. A third conceptualization of ‘joint objectives’ highlights that associating both adaptation and mitigation objectives in a climate‐related activity can influence its outcomes because of multiple possible interactions. The review reveals a diversity of reasons for mainstreaming adaptation and mitigation separately or jointly in landscape management. The three broad conceptualizations of the links between adaptation and mitigation suggest different implications for climate policy mainstreaming and integration. WIREs Clim Change 2015, 6:585–598. doi: 10.1002/wcc.357This article is categorized under: Integrated Assessment of Climate Change > Methods of Integrated Assessment of Climate Change The Carbon Economy and Climate Mitigation > Benefits of Mitigation
CORE arrow_drop_down Hyper Article en LigneArticle . 2015Full-Text: http://hal.cirad.fr/cirad-01197454/documentData sources: Hyper Article en LigneCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/94684Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2015Full-Text: https://hal.science/cirad-01197454Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1002/wcc....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 113 citations 113 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Hyper Article en LigneArticle . 2015Full-Text: http://hal.cirad.fr/cirad-01197454/documentData sources: Hyper Article en LigneCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/94684Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2015Full-Text: https://hal.science/cirad-01197454Data sources: Bielefeld Academic Search Engine (BASE)Wiley Interdisciplinary Reviews Climate ChangeArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1002/wcc....Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 FrancePublisher:Elsevier BV Authors:Ivan S. Adolwa;
James Mutegi; Joses Muthamia; Angela Gitonga; +5 AuthorsIvan S. Adolwa
Ivan S. Adolwa in OpenAIREIvan S. Adolwa;
James Mutegi; Joses Muthamia; Angela Gitonga; Samuel Njoroge; Abednego Kiwia; Dismas Manoti; Franklin S. Mairura;Ivan S. Adolwa
Ivan S. Adolwa in OpenAIREEileen B. Nchanji;
Eileen B. Nchanji
Eileen B. Nchanji in OpenAIREPersistent food insecurity in the global south has triggered calls for sustainable development worldwide. Moreover, more than a quarter of the world's population suffers from micronutrient deficiencies or hidden hunger. The population bulge, declining soil fertility and inadequate/inappropriate use of farm inputs in Sub-Saharan Africa place it in a precarious position. Multi-nutrient fertilizer blends have been mooted as a key innovation in closing yield gaps and boosting food and nutrition security. This study assessed the extent of multi-nutrient fertilizer blends utilization and yield response across agroecological zones and their on-farm profitability under Kenyan smallholder farmer conditions. We collected data through a detailed household survey conducted in eight counties in Kenya representative of high, medium, and low productivity zones using a sample of 1094 smallholder farmers. Multi-nutrient fertilizers increased maize yields significantly (P < 0.05), eliciting a 400% yield increase compared to the control and 108% greater maize yield than conventional fertilizers in the high potential zone. Conversely, at 3.7 t/ha conventional fertilizers elicited a significant (P < 0.05) yield response in Irish potatoes in the high potential areas. Multi-nutrient fertilizers increased on-farm profitability of crops, specifically for potato production systems where a benefit: cost ratio (BCR) of more than 2 was observed. Farmers may break even when they use multi-nutrient fertilizers on maize particularly in the low potential areas. Therefore, there is considerable potential for multi-nutrient fertilizers to increase crop productivity while being economically viable across agroecological zones and cropping systems. However, the uptake of multi-nutrient fertilizers among farmers is quite low across the country, except for small pockets where limited interventions have been carried out. This calls for sustained efforts to scale multi-nutrient fertilizers with a focus on clear messaging that stresses the need to apply appropriate rates of various nutrients including the secondary nutrients and micro-nutrients.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/130790Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e15320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/130790Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e15320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2023 FrancePublisher:Elsevier BV Authors:Ivan S. Adolwa;
James Mutegi; Joses Muthamia; Angela Gitonga; +5 AuthorsIvan S. Adolwa
Ivan S. Adolwa in OpenAIREIvan S. Adolwa;
James Mutegi; Joses Muthamia; Angela Gitonga; Samuel Njoroge; Abednego Kiwia; Dismas Manoti; Franklin S. Mairura;Ivan S. Adolwa
Ivan S. Adolwa in OpenAIREEileen B. Nchanji;
Eileen B. Nchanji
Eileen B. Nchanji in OpenAIREPersistent food insecurity in the global south has triggered calls for sustainable development worldwide. Moreover, more than a quarter of the world's population suffers from micronutrient deficiencies or hidden hunger. The population bulge, declining soil fertility and inadequate/inappropriate use of farm inputs in Sub-Saharan Africa place it in a precarious position. Multi-nutrient fertilizer blends have been mooted as a key innovation in closing yield gaps and boosting food and nutrition security. This study assessed the extent of multi-nutrient fertilizer blends utilization and yield response across agroecological zones and their on-farm profitability under Kenyan smallholder farmer conditions. We collected data through a detailed household survey conducted in eight counties in Kenya representative of high, medium, and low productivity zones using a sample of 1094 smallholder farmers. Multi-nutrient fertilizers increased maize yields significantly (P < 0.05), eliciting a 400% yield increase compared to the control and 108% greater maize yield than conventional fertilizers in the high potential zone. Conversely, at 3.7 t/ha conventional fertilizers elicited a significant (P < 0.05) yield response in Irish potatoes in the high potential areas. Multi-nutrient fertilizers increased on-farm profitability of crops, specifically for potato production systems where a benefit: cost ratio (BCR) of more than 2 was observed. Farmers may break even when they use multi-nutrient fertilizers on maize particularly in the low potential areas. Therefore, there is considerable potential for multi-nutrient fertilizers to increase crop productivity while being economically viable across agroecological zones and cropping systems. However, the uptake of multi-nutrient fertilizers among farmers is quite low across the country, except for small pockets where limited interventions have been carried out. This calls for sustained efforts to scale multi-nutrient fertilizers with a focus on clear messaging that stresses the need to apply appropriate rates of various nutrients including the secondary nutrients and micro-nutrients.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/130790Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e15320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/130790Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.heliyon.2023.e15320&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley doi: 10.1002/aepp.13123
handle: 10568/110382
AbstractGroundwater depletion in India is a result of water, energy, and food policies that have given rise to a nexus where growth in agriculture has been supported by unsustainable trends in water and energy use. This nexus emanates from India's policy of providing affordable calories to its large population. This requires that input prices are kept low, leading to perverse incentives that encourage groundwater overexploitation. The paper argues that solutions to India's groundwater problems need to be embedded within the current context of its water‐energy‐food nexus. Examples are provided of changes underway in some water‐energy‐food policies that may halt further groundwater depletion.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/110382Data sources: Bielefeld Academic Search Engine (BASE)Applied Economic Perspectives and PolicyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aepp.13123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/110382Data sources: Bielefeld Academic Search Engine (BASE)Applied Economic Perspectives and PolicyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aepp.13123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley doi: 10.1002/aepp.13123
handle: 10568/110382
AbstractGroundwater depletion in India is a result of water, energy, and food policies that have given rise to a nexus where growth in agriculture has been supported by unsustainable trends in water and energy use. This nexus emanates from India's policy of providing affordable calories to its large population. This requires that input prices are kept low, leading to perverse incentives that encourage groundwater overexploitation. The paper argues that solutions to India's groundwater problems need to be embedded within the current context of its water‐energy‐food nexus. Examples are provided of changes underway in some water‐energy‐food policies that may halt further groundwater depletion.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/110382Data sources: Bielefeld Academic Search Engine (BASE)Applied Economic Perspectives and PolicyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aepp.13123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 47 citations 47 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/10568/110382Data sources: Bielefeld Academic Search Engine (BASE)Applied Economic Perspectives and PolicyArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/aepp.13123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FrancePublisher:IOP Publishing Authors:Arun Khatri‐Chhetri;
Arun Khatri‐Chhetri
Arun Khatri‐Chhetri in OpenAIRETek B. Sapkota;
Bjoern Ole Sander;Tek B. Sapkota
Tek B. Sapkota in OpenAIREJacobo Arango;
+2 AuthorsJacobo Arango
Jacobo Arango in OpenAIREArun Khatri‐Chhetri;
Arun Khatri‐Chhetri
Arun Khatri‐Chhetri in OpenAIRETek B. Sapkota;
Bjoern Ole Sander;Tek B. Sapkota
Tek B. Sapkota in OpenAIREJacobo Arango;
Jacobo Arango
Jacobo Arango in OpenAIREKatherine Nelson;
Katherine Nelson
Katherine Nelson in OpenAIREAndreas Wilkes;
Andreas Wilkes
Andreas Wilkes in OpenAIREhandle: 10568/116077
Abstract More than one-quarter of the world’s greenhouse gas emissions come from agriculture, forestry, and land-use change. As with other sectors of the economy, agriculture should also contribute to meeting countries’ emission reduction targets. Transformation of agriculture to low-carbon food systems requires much larger investments in low emission development options from global climate finance, domestic budgets, and the private sector. Innovative financing mechanisms and instruments that integrate climate finance, agriculture development budgets, and private sector investment can improve and increase farmers’ and other value chain actors’ access to finance while delivering environmental, economic, and social benefits. Investment cases assessed in this study provide rich information to design and implement mitigation options in agriculture through unlocking additional sources of public and private capital, strengthening the links between financial institutions, farmers, and agribusiness, and coordination of actions across multiple stakeholders. These investment cases expand support for existing agricultural best practices, integrate forestry and agricultural actions to avoid land-use change, and support the transition to market-based solutions.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116077Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac3605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116077Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac3605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 FrancePublisher:IOP Publishing Authors:Arun Khatri‐Chhetri;
Arun Khatri‐Chhetri
Arun Khatri‐Chhetri in OpenAIRETek B. Sapkota;
Bjoern Ole Sander;Tek B. Sapkota
Tek B. Sapkota in OpenAIREJacobo Arango;
+2 AuthorsJacobo Arango
Jacobo Arango in OpenAIREArun Khatri‐Chhetri;
Arun Khatri‐Chhetri
Arun Khatri‐Chhetri in OpenAIRETek B. Sapkota;
Bjoern Ole Sander;Tek B. Sapkota
Tek B. Sapkota in OpenAIREJacobo Arango;
Jacobo Arango
Jacobo Arango in OpenAIREKatherine Nelson;
Katherine Nelson
Katherine Nelson in OpenAIREAndreas Wilkes;
Andreas Wilkes
Andreas Wilkes in OpenAIREhandle: 10568/116077
Abstract More than one-quarter of the world’s greenhouse gas emissions come from agriculture, forestry, and land-use change. As with other sectors of the economy, agriculture should also contribute to meeting countries’ emission reduction targets. Transformation of agriculture to low-carbon food systems requires much larger investments in low emission development options from global climate finance, domestic budgets, and the private sector. Innovative financing mechanisms and instruments that integrate climate finance, agriculture development budgets, and private sector investment can improve and increase farmers’ and other value chain actors’ access to finance while delivering environmental, economic, and social benefits. Investment cases assessed in this study provide rich information to design and implement mitigation options in agriculture through unlocking additional sources of public and private capital, strengthening the links between financial institutions, farmers, and agribusiness, and coordination of actions across multiple stakeholders. These investment cases expand support for existing agricultural best practices, integrate forestry and agricultural actions to avoid land-use change, and support the transition to market-based solutions.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116077Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac3605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/116077Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ac3605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, France, United KingdomPublisher:MDPI AG Authors:Shee, Apurba;
Shee, Apurba
Shee, Apurba in OpenAIREAzzarri, Carlo;
Haile, Beliyou;Azzarri, Carlo
Azzarri, Carlo in OpenAIREdoi: 10.3390/su12010216
handle: 10568/113064
Initiatives on the sustainable intensification of agriculture have introduced improved technologies tailored to farmers’ local conditions by trial demonstration with free provision of improved seeds and fertilizers. It is not clear, though, whether smallholder farmers would be willing to pay for these technologies, and what factors determine their informed demand. Using a contingent valuation experiment, combined with information at baseline among 400 households in Northern Tanzania, this study measured farmers’ willingness to pay (WTP) for hybrid maize seed and local inorganic fertilizer. Farmers’ WTP was estimated using a dichotomous contingent valuation with follow-up model. Results showed that the average WTP was 61% higher for hybrid maize seed, and 15% lower for inorganic fertilizer, than their respective average local market prices during the reference period, suggesting that farmers were willing to pay a premium for hybrid maize seed, while they did not seem to be interested in fertilizer purchase at current market price. Moreover, since improved access to extension services was found to positively affect farmers’ WTP, strengthening extension services could be a suitable policy intervention to increase farmers’ demand for improved technologies. On the other hand, farmers’ risk aversion was negatively correlated with WTP for both technologies. This result suggests that encouraging risk reduction options, such as agricultural insurance, could be a useful policy strategy for boosting farmers’ demand for improved agricultural technologies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/216/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113064Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/216/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113064Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 France, France, United KingdomPublisher:MDPI AG Authors:Shee, Apurba;
Shee, Apurba
Shee, Apurba in OpenAIREAzzarri, Carlo;
Haile, Beliyou;Azzarri, Carlo
Azzarri, Carlo in OpenAIREdoi: 10.3390/su12010216
handle: 10568/113064
Initiatives on the sustainable intensification of agriculture have introduced improved technologies tailored to farmers’ local conditions by trial demonstration with free provision of improved seeds and fertilizers. It is not clear, though, whether smallholder farmers would be willing to pay for these technologies, and what factors determine their informed demand. Using a contingent valuation experiment, combined with information at baseline among 400 households in Northern Tanzania, this study measured farmers’ willingness to pay (WTP) for hybrid maize seed and local inorganic fertilizer. Farmers’ WTP was estimated using a dichotomous contingent valuation with follow-up model. Results showed that the average WTP was 61% higher for hybrid maize seed, and 15% lower for inorganic fertilizer, than their respective average local market prices during the reference period, suggesting that farmers were willing to pay a premium for hybrid maize seed, while they did not seem to be interested in fertilizer purchase at current market price. Moreover, since improved access to extension services was found to positively affect farmers’ WTP, strengthening extension services could be a suitable policy intervention to increase farmers’ demand for improved technologies. On the other hand, farmers’ risk aversion was negatively correlated with WTP for both technologies. This result suggests that encouraging risk reduction options, such as agricultural insurance, could be a useful policy strategy for boosting farmers’ demand for improved agricultural technologies.
Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/216/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113064Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/1/216/pdfData sources: Multidisciplinary Digital Publishing InstituteCGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/10568/113064Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12010216&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, France, Netherlands, France, GermanyPublisher:IOP Publishing Authors:Martin Herold;
Martin Herold
Martin Herold in OpenAIREMariana C. Rufino;
Mariana C. Rufino;Mariana C. Rufino
Mariana C. Rufino in OpenAIREPatric Brandt;
+1 AuthorsPatric Brandt
Patric Brandt in OpenAIREMartin Herold;
Martin Herold
Martin Herold in OpenAIREMariana C. Rufino;
Mariana C. Rufino;Mariana C. Rufino
Mariana C. Rufino in OpenAIREPatric Brandt;
Patric Brandt;Patric Brandt
Patric Brandt in OpenAIREhandle: 10568/93147
Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya's entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya's NDC target, reduces emission intensities by 26%–31%, partially achieves the national milk productivity target for 2030 by 38%–41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed intensification and manure management to mitigate GHG emissions and to increase milk yields at sectoral-level and at a high spatial resolution for an SSA country. The scientific evidence is tailored to support actual policy and decision-making processes at the national level, such as 'Nationally Appropriate Mitigation Actions'. Linking feed intensification and manure management strategies with spatially-explicit estimates of mitigation and food production to national targets may help the sector to access climate financing while contributing to food security.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93147Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaac84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93147Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaac84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United Kingdom, France, Netherlands, France, GermanyPublisher:IOP Publishing Authors:Martin Herold;
Martin Herold
Martin Herold in OpenAIREMariana C. Rufino;
Mariana C. Rufino;Mariana C. Rufino
Mariana C. Rufino in OpenAIREPatric Brandt;
+1 AuthorsPatric Brandt
Patric Brandt in OpenAIREMartin Herold;
Martin Herold
Martin Herold in OpenAIREMariana C. Rufino;
Mariana C. Rufino;Mariana C. Rufino
Mariana C. Rufino in OpenAIREPatric Brandt;
Patric Brandt;Patric Brandt
Patric Brandt in OpenAIREhandle: 10568/93147
Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya's entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya's NDC target, reduces emission intensities by 26%–31%, partially achieves the national milk productivity target for 2030 by 38%–41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed intensification and manure management to mitigate GHG emissions and to increase milk yields at sectoral-level and at a high spatial resolution for an SSA country. The scientific evidence is tailored to support actual policy and decision-making processes at the national level, such as 'Nationally Appropriate Mitigation Actions'. Linking feed intensification and manure management strategies with spatially-explicit estimates of mitigation and food production to national targets may help the sector to access climate financing while contributing to food security.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93147Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaac84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2018License: CC BYFull-Text: https://hdl.handle.net/10568/93147Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2018Data sources: DANS (Data Archiving and Networked Services)GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aaac84&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 France, Belgium, FrancePublisher:Resilience Alliance, Inc. Authors:Achten, W.M.J.;
Achten, W.M.J.
Achten, W.M.J. in OpenAIREVerchot, Louis V.;
Verchot, Louis V.
Verchot, Louis V. in OpenAIREBiofuels are receiving growing negative attention. Direct and/or indirect land-use changes that result from their cultivation can cause emissions due to carbon losses in soils and biomass and could negate any eventual greenhouse gas (GHG) reduction benefit. This paper evaluates the implications of land-use change emission on the climate-change mitigation potential of different biofuel production systems in 12 case studies in six countries. We calculated carbon debts created by conversion of different land-use types, ranging from annual cropland to primary forest. We evaluated case studies using three different biofuel crops: oil palm, Jatropha, and soybean. The time needed for each biofuel production system to pay back its carbon debt was calculated based on a life-cycle assessment of the GHG reduction potentials of the system. Carbon debts range from 39 to 1743.7 Mg C02 ha-1. The oil palm case studies created the largest carbon debts (472.8-1743.7 t C02 ha-1) because most of the area expansion came at the expense of dense tropical forest. The highest debt was associated with plantation on peatland. For all cases evaluated, only soybean in Guarantã do Norte and Alta Floresta, Brazil needed less than one human generation (30 years) to repay the initial carbon debt. Highest repayment times were found for Jatropha (76-310 years) and oil palm (59-220 years) case studies. Oil palm established in peatlands had the greatest repayment times (206-220 years). High repayment times for Jatropha resulted from the combined effects of land-cover change and low CO2 emission reduction rate. These outcomes raise serious questions about the sustainability of biofuel production. The carbon implications of conversion of (semi-)natural systems with medium to high biomass indicate that, in order to generate climate benefits, cultivation of biofuel feedstocks should be restricted to areas that already have low carbon content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-04403-160414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-04403-160414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 France, Belgium, FrancePublisher:Resilience Alliance, Inc. Authors:Achten, W.M.J.;
Achten, W.M.J.
Achten, W.M.J. in OpenAIREVerchot, Louis V.;
Verchot, Louis V.
Verchot, Louis V. in OpenAIREBiofuels are receiving growing negative attention. Direct and/or indirect land-use changes that result from their cultivation can cause emissions due to carbon losses in soils and biomass and could negate any eventual greenhouse gas (GHG) reduction benefit. This paper evaluates the implications of land-use change emission on the climate-change mitigation potential of different biofuel production systems in 12 case studies in six countries. We calculated carbon debts created by conversion of different land-use types, ranging from annual cropland to primary forest. We evaluated case studies using three different biofuel crops: oil palm, Jatropha, and soybean. The time needed for each biofuel production system to pay back its carbon debt was calculated based on a life-cycle assessment of the GHG reduction potentials of the system. Carbon debts range from 39 to 1743.7 Mg C02 ha-1. The oil palm case studies created the largest carbon debts (472.8-1743.7 t C02 ha-1) because most of the area expansion came at the expense of dense tropical forest. The highest debt was associated with plantation on peatland. For all cases evaluated, only soybean in Guarantã do Norte and Alta Floresta, Brazil needed less than one human generation (30 years) to repay the initial carbon debt. Highest repayment times were found for Jatropha (76-310 years) and oil palm (59-220 years) case studies. Oil palm established in peatlands had the greatest repayment times (206-220 years). High repayment times for Jatropha resulted from the combined effects of land-cover change and low CO2 emission reduction rate. These outcomes raise serious questions about the sustainability of biofuel production. The carbon implications of conversion of (semi-)natural systems with medium to high biomass indicate that, in order to generate climate benefits, cultivation of biofuel feedstocks should be restricted to areas that already have low carbon content.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-04403-160414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-04403-160414&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Frontiers Media SA Funded by:UKRI | Picsima SnugsUKRI| Picsima SnugsAuthors:Mudombi-Rusinamhodzi, G.;
Rusinamhodzi, L.;Mudombi-Rusinamhodzi, G.
Mudombi-Rusinamhodzi, G. in OpenAIREhandle: 10568/125127
The recent discourse on food sovereignty places much emphasis on democracy in determining localized food systems, and whether the food is culturally appropriate while leaning heavily on sustainable agricultural practices such as organic agriculture, ecological intensification, agroecology, nature-based solutions, and regenerative agriculture. Sustainable agricultural practices are intended to ensure that the land is managed without the use of synthetic fertilizers and pesticides, while going further by focusing on improvements on soil and land health. However, what are the practicalities of food activism and relying entirely on nature while yields are still very low in much of sub-Saharan Africa (SSA)? We attempt to answer this question in four main sections: (a) we start by defining the concept of food sovereignty and the associated practices, (b) we highlight some of the main socio-ecological conditions that are common in SSA, and (c) we present evidence of some of the limitations of food sovereignty due to the diversity in ecological, political, cultural, and socio-economic contexts that characterize SSA; finally, (d) we focus on food preferences, marketing and certification aspects. We conclude that agroecology alone cannot solve the multiple objectives of increasing crop productivity and replenishing soil nutrients especially on small farms and relying on natural rainfall. There is an urgent need to combine superior crop varieties and judicious use of external inputs in tandem with the manipulation of the agroecological processes to increase the efficiency of input use and achieve higher food productivity, resilience to climate change, and preservation of the natural resource base in specific locations.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125127Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fagro.2022.957011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125127Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fagro.2022.957011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Frontiers Media SA Funded by:UKRI | Picsima SnugsUKRI| Picsima SnugsAuthors:Mudombi-Rusinamhodzi, G.;
Rusinamhodzi, L.;Mudombi-Rusinamhodzi, G.
Mudombi-Rusinamhodzi, G. in OpenAIREhandle: 10568/125127
The recent discourse on food sovereignty places much emphasis on democracy in determining localized food systems, and whether the food is culturally appropriate while leaning heavily on sustainable agricultural practices such as organic agriculture, ecological intensification, agroecology, nature-based solutions, and regenerative agriculture. Sustainable agricultural practices are intended to ensure that the land is managed without the use of synthetic fertilizers and pesticides, while going further by focusing on improvements on soil and land health. However, what are the practicalities of food activism and relying entirely on nature while yields are still very low in much of sub-Saharan Africa (SSA)? We attempt to answer this question in four main sections: (a) we start by defining the concept of food sovereignty and the associated practices, (b) we highlight some of the main socio-ecological conditions that are common in SSA, and (c) we present evidence of some of the limitations of food sovereignty due to the diversity in ecological, political, cultural, and socio-economic contexts that characterize SSA; finally, (d) we focus on food preferences, marketing and certification aspects. We conclude that agroecology alone cannot solve the multiple objectives of increasing crop productivity and replenishing soil nutrients especially on small farms and relying on natural rainfall. There is an urgent need to combine superior crop varieties and judicious use of external inputs in tandem with the manipulation of the agroecological processes to increase the efficiency of input use and achieve higher food productivity, resilience to climate change, and preservation of the natural resource base in specific locations.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125127Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fagro.2022.957011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/10568/125127Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fagro.2022.957011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu