- home
- Advanced Search
- Energy Research
- 2021-2025
- 11. Sustainability
- 6. Clean water
- 9. Industry and infrastructure
- Energy Research
- 2021-2025
- 11. Sustainability
- 6. Clean water
- 9. Industry and infrastructure
description Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Authors:Marroccoli M.;
Ibris N.; Telesca A.;Marroccoli M.
Marroccoli M. in OpenAIRETregambi C.;
+5 AuthorsTregambi C.
Tregambi C. in OpenAIREMarroccoli M.;
Ibris N.; Telesca A.;Marroccoli M.
Marroccoli M. in OpenAIRETregambi C.;
Solimene R.;Tregambi C.
Tregambi C. in OpenAIREDi Lauro F.;
Di Lauro F.
Di Lauro F. in OpenAIRERuiz de Ballesteros O.;
Ruiz de Ballesteros O.
Ruiz de Ballesteros O. in OpenAIRESalatino P.;
Salatino P.
Salatino P. in OpenAIREMontagnaro F.;
Montagnaro F.
Montagnaro F. in OpenAIREhandle: 11588/867638 , 20.500.14243/416346 , 11563/153088
Dolomite-based binders are characterised by interesting technical and environmental features. For their synthesis, sources of both CaO and MgO are required. The idea developed in this work is to couple the synthesis of dolomite-based binders, starting from a natural dolomite, through the concept of concentrated solar energy (needed to drive the endothermal dolomite calcination process) in fluidised bed reactors. To this end, a fluidised bed system, where the concentrated solar radiation is mimicked by the use of Xe-lamps (short-arc), has been set up and operated. Natural dolomite (sieved in the 420-590 ?m size range) was calcined at a nominal temperature of 850 °C, and bed temperature profiles during solar-driven calcination were investigated. Then, four binders were prepared by mixing slaked dolomite (obtained from the hydration of solar calcined dolomite) with either blast furnace slag or coal fly ash as supplementary cementitious materials. The binders were hydrated for curing times ranging from 7 to 56 days. X-ray fluorescence, X-ray diffraction and combined differential thermal and thermogravimetric analyses were employed as characterisation techniques both to analyse the chemical composition of starting materials and to investigate the evolution of the hydration in the four systems.
IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Università degli Studi della Basilicata: CINECA IRISArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021 QatarPublisher:Elsevier BV Authors: Sleiti, Ahmad K.; Al-Khawaja, Hamza; Al-Khawaja, Hassan; Al-Ali, Mohammed;handle: 10576/56212
Abstract Drinking water resources have always been limited in the gulf region of the Middle East and other desert regions around the world. In attempt to provide viable supplement, a device that harvests clean drinking water from air is designed, built and tested. The operation of the device is based on harvesting water naturally from air using adsorption materials. The prototype of this device consists of sorbent (silica gel is used in this study) exposed to radiant flux, water sorbent unit, condenser and reflector. Experimental studies of production of fresh water from air in controlled indoor environment have been carried out using the prototype. Several experimental tests were conducted under the conditions of 22 °C ambient temperature, a range of relative humidity (RH) from 30 to 60%, a range of silica gel thickness from 25 to 35 mm, surface area to volume ratio from 0.29 to 0.4 and radiant heat flux range from 509 to 556 W/m2. The prototype was able to produce up to 159 g of water per 1 kg of silica gel in a 12 h cycle when exposed to 556 W/m2 radiant flux. In terms of per one day (24 h), the harvester can produce 800 mL of water with an overall efficiency of 50% for 25 mm silica layer thickness. Increasing the relative humidity speeds up the adsorption cycle and increases the water capture, release and collection rates. The system can be improved by adding multiple layers of sorbent stacked on top of each other and by using sorbents with improved adsorption and desorption properties.
Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2020.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Separation and Purif... arrow_drop_down Separation and Purification TechnologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seppur.2020.117921&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NorwayPublisher:IWA Publishing Authors:R. G. Skaland;
R. G. Skaland
R. G. Skaland in OpenAIREB. G. Herrador;
B. G. Herrador
B. G. Herrador in OpenAIREH. Hisdal;
H. Hisdal
H. Hisdal in OpenAIREH. O. Hygen;
+5 AuthorsH. O. Hygen
H. O. Hygen in OpenAIRER. G. Skaland;
R. G. Skaland
R. G. Skaland in OpenAIREB. G. Herrador;
B. G. Herrador
B. G. Herrador in OpenAIREH. Hisdal;
H. Hisdal
H. Hisdal in OpenAIREH. O. Hygen;
S. Hyllestad; V. Lund;H. O. Hygen
H. O. Hygen in OpenAIRER. White;
R. White
R. White in OpenAIREW. K. Wong;
K. Nygård;W. K. Wong
W. K. Wong in OpenAIREAbstract Climate change will lead to higher temperatures, increased precipitation and runoff, as well as more intense and frequent extreme weather events in Norway. More extreme rainfall and increased runoff are historically associated with higher concentrations of indicator bacteria, colour and turbidity in raw water of Norwegian waterworks. Regional information about the risk for drinking water deterioration by the end of the century is essential for evaluating potential treatment capacity upgrades at the waterworks. We combined locally downscaled future climate scenarios with historical associations between weather/runoff and water quality from a wide spread of waterworks in Norway. With continued climate change, we estimate higher concentrations of water quality indicators of raw water by the end of the century. The water quality is estimated to deteriorate mainly due to the projected increase in rainfall, and mainly in the Western and Northern parts of Norway. While large waterworks seem to be able to adapt to future conditions, the degradation of raw water quality may cause future challenges for the treatment processes at smaller waterworks. Combining these results with further studies of treatment effects and microbial risk assessments is needed to ensure sufficient treatment capacities of the raw water in the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wh.2022.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2166/wh.2022.264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 SpainPublisher:MDPI AG Authors:Dorado-Guerra, Diana Yaritza;
Dorado-Guerra, Diana Yaritza
Dorado-Guerra, Diana Yaritza in OpenAIREParedes Arquiola, Javier;
Paredes Arquiola, Javier
Paredes Arquiola, Javier in OpenAIREPérez-Martín, Miguel Ángel;
Tafur Hermann, Harold;Pérez-Martín, Miguel Ángel
Pérez-Martín, Miguel Ángel in OpenAIREdoi: 10.3390/su132212835
handle: 10251/179421
High nutrient discharge from groundwater (GW) into surface water (SW) have multiple undesirable effects on river water quality. With the aim to estimate the impact of anthropic pressures and river–aquifer interactions on nitrate status in SW, this study integrates two hydrological simulation and water quality models. PATRICAL models SW–GW interactions and RREA models streamflow changes due to human activity. The models were applied to the Júcar River Basin District (RBD), where 33% of the aquifers have a concentration above 50 mg NO3−/L. As a result, there is a direct linear correlation between the nitrate concentration in rivers and aquifers (Júcar r2 = 0.9, and Turia r2 = 0.8), since in these Mediterranean basins, the main amount of river flows comes from groundwater discharge. The concentration of nitrates in rivers and GW tends to increase downstream of the district, where artificial surfaces and agriculture are concentrated. The total NO3− load to Júcar RBD rivers was estimated at 10,202 tN/year (239 kg/km2/year), from which 99% is generated by diffuse pollution, and 3378 tN/year (79 kg/km2/year) is discharged into the Mediterranean Sea. Changes in nitrate concentration in the RBD rivers are strongly related to the source of irrigation water, river–aquifer interactions, and flow regulation. The models used in this paper allow the identification of pollution sources, the forecasting of nitrate concentration in surface and groundwater, and the evaluation of the efficiency of measures to prevent water degradation, among other applications.
Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 54visibility views 54 download downloads 118 Powered bymore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2021License: CC BYData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132212835&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Publisher:ETA-Florence Renewable Energies Authors: Rasch, F.A.; Ebaid, R.; Najjar, M.;This research investigates the positive role developers and private investors play in preservation and restoration of historical buildings and important sites to national identity in Malta. The research also investigates the positive experience of energy conservation and its contribution to the environment. The role of foreign investors through direct investments, made a significant contribution to the restoration, preservation, and improvements to the tourism sector of the Maltese economy. Findings shows that this is the golden age in construction technology, whereby firms are experimenting with varying technologies, that includes 3D printing, VR, and other digitalized technologies that uses data to make better informed decisions regarding restoration and preservation of heritage buildings, as is the case with Sadeen Group, which showed that innovative practices were facilitated by the education arm of Sadeen, and affection of turning historical ruins into educational institution can make a significant difference to the local community. Proceedings of the 30th European Biomass Conference and Exhibition, 9-12 May 2022, Online, pp. 351-355
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/30theubce2022-2av.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/30theubce2022-2av.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors:Saydaliev, Hayot Berk;
Saydaliev, Hayot Berk
Saydaliev, Hayot Berk in OpenAIRELan, Jing;
Anser, Muhammad Khalid;Lan, Jing
Lan, Jing in OpenAIREAli, Sajid;
+1 AuthorsAli, Sajid
Ali, Sajid in OpenAIRESaydaliev, Hayot Berk;
Saydaliev, Hayot Berk
Saydaliev, Hayot Berk in OpenAIRELan, Jing;
Anser, Muhammad Khalid;Lan, Jing
Lan, Jing in OpenAIREAli, Sajid;
Liu, Zhen;Ali, Sajid
Ali, Sajid in OpenAIRERenewable energy has become more popular since it is cost-effective and more efficient than conventional energy sources. Biomass-based renewable energy is primarily used in emerging economies to ensure environmental sustainability. This study examines the asymmetric correlation between biomass energy consumption and CO2 emissions in the top-10 biomass energy consumer countries (Brazil, Canada, Thailand, China, Italy, India, Germany, USA, UK, and Japan). A new approach "Quantile-onQuantile (QQ)" is employed by utilizing the data from 1991 to 2018. Biomass energy consumption, with the exception of Thailand, significantly mitigates CO2 emissions at various quantiles in selected countries. As a robustness check, we used the quantile regression test, whose findings are consistent with the outcomes from the quantile-on-quantile method. However, the degree of asymmetry in the biomass energy-CO2 nexus varies by country, necessitating extra attention and government vigilance when developing biomass energy and environmental policies.
Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Suleyman Demirel University Research RepositoryArticle . 2022Data sources: Suleyman Demirel University Research RepositorySuleyman Demirel University: DSpace RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.03.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors:Eliudi S. Eliakimu;
Eliudi S. Eliakimu
Eliudi S. Eliakimu in OpenAIRELinda Mans;
Linda Mans
Linda Mans in OpenAIRESustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Hao-Han Tsao;
Yih-Guang Leu; Li-Fen Chou; Chao-Yang Tsao;Hao-Han Tsao
Hao-Han Tsao in OpenAIREdoi: 10.3390/en14123461
Reservoirs in Taiwan often provide hydroelectric power, irrigation water, municipal water, and flood control for the whole year. Taiwan has the climatic characteristics of concentrated rainy seasons, instantaneous heavy rains due to typhoons and rainy seasons. In addition, steep rivers in mountainous areas flow fast and furiously. Under such circumstances, reservoirs have to face sudden heavy rainfall and surges in water levels within a short period of time, which often causes the water level to continue to rise to the full level even though hydroelectric units are operating at full capacity, and as reservoirs can only drain the flood water, this results in the waste of hydropower resources. In recent years, the impact of climate change has caused extreme weather events to occur more frequently, increasing the need for flood control, and the reservoir operation has faced severe challenges in order to fulfil its multipurpose requirements. Therefore, in order to avoid the waste of hydropower resources and improve the effectiveness of the reservoir operation, this paper proposes a real-time 48-h ahead water level forecasting system, based on fuzzy neural networks with multi-stage architecture. The proposed multi-stage architecture provides reservoir inflow estimation, 48-h ahead reservoir inflow forecasting, and 48-h ahead water level forecasting. The proposed method has been implemented at the Techi hydropower plant in Taiwan. Experimental results show that the proposed method can effectively increase energy efficiency and allow the reservoir water resources to be fully utilized. In addition, the proposed method can improve the effectiveness of the hydropower plant, especially when rain is heavy.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3461/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3461/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123461&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG doi: 10.3390/su14052565
handle: 11583/2959272
The assessment of the ‘quality’ of built heritage is a complex transdisciplinary issue, which both public administrations and real estate developers need to carefully consider when making any interventions. Recent international climate regulations underline that currently around 75% of buildings in the EU are not energy efficient. In Italy, those inefficient buildings are more than 50 years old and, if subjected to retrofit interventions, risk being totally transformed and losing their historical value in favor of a more contemporary use. This work aimed to study the residential heritage of the second half of the 20th century in the real estate market and to understand if, how, and in what measure the building and architectonical qualities are recognized and monetized by buyers. The city of Turin was chosen as a study area, and residential building qualities were analyzed using two quality indicators to perform a GWR on market POIs. The results highlighted that housing historical qualities are not homogeneously recognized by the real estate market, in favor of green ones. This work can help both public and private bodies to identify which ‘invisible’ quality residential buildings are immediately exploitable for enhancement strategies, with more respectful retrofitting interventions and a modern protection policy.
Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2565/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2071-1050/14/5/2565/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2022License: CC BYData sources: Publications Open Repository TOrinoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Hannes Koch;
Hannes Koch
Hannes Koch in OpenAIREStefan Lechner;
Sebastian Erdmann;Stefan Lechner
Stefan Lechner in OpenAIREMartin Hofmann;
Martin Hofmann
Martin Hofmann in OpenAIREdoi: 10.3390/en15196991
In recent years, prices for photovoltaics have fallen steadily and the demand for sustainable energy has increased. Consequentially, the assessment of roof surfaces in terms of their suitability for PV (Photovoltaic) installations has continuously gained in importance. Several types of assessment approaches have been established, ranging from sampling to complete census or aerial image analysis methodologies. Assessments of rooftop photovoltaic potential are multi-stage processes. The sub-task of examining the photovoltaic potential of individual rooftops is crucial for exact case study results. However, this step is often time-consuming and requires lots of computational effort especially when some form of intelligent classification algorithm needs to be trained. This often leads to the use of sampled rooftop utilization factors when investigating large-scale areas of interest, as data-driven approaches usually are not well-scalable. In this paper, a novel neighbourhood-based filtering approach is introduced that can analyse large amounts of irradiation data in a vectorised manner. It is tested in an application to the city of Giessen, Germany, and its surrounding area. The results show that it outperforms state-of-the-art image filtering techniques. The algorithm is able to process high-resolution data covering 1 km2 within roughly 2.5 s. It successfully classifies rooftop segments which are feasible for PV installations while omitting small, obstructed or insufficiently exposed segments. Apart from minor shortcomings, the approach presented in this work is capable of generating per-rooftop PV potential assessments at low computational cost and is well scalable to large scale areas.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu