- home
- Advanced Search
- Energy Research
- Closed Access
- Open Source
- Embargo
- Australian Research Council (ARC)
- Energy Research
- Closed Access
- Open Source
- Embargo
- Australian Research Council (ARC)
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190102501Authors: Mohsen Eskandari; Andrey V. Savkin; John Fletcher;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3242469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3242469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100323Hasintha Wijesekara; Nanthi S. Bolan; Ramesh Thangavel; Balaji Seshadri; Aravind Surapaneni; Christopher Saint; Chris Hetherington; Peter Matthews; Meththika Vithanage;A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha-1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ13C and δ15N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ13C, and enriched δ15N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Training Centres - Grant ID: IC170100032Sanghoon Kook; Anthony Chun Yin Yuen; Hengrui Liu; Cheng Wang; Guan Heng Yeoh; Guan Heng Yeoh; Qian Chen; Ivan Miguel De Cachinho Cordeiro; Qing Nian Chan;Abstract With recent developments in the design and manufacturing process of water-based fire suppression systems , more advanced technologies such as water mist systems have expanded in their building application. In this article, the critical fire suppression mechanisms of water mist systems and conventional fire sprinklers are investigated and compared, with emphasis on the influence of water droplet sizes on the fire suppression mechanisms. Applying computational fluid dynamics (CFD), a fully ventilated fire compartment room has been considered where a methane pool fire was placed at the centre. The considered fire suppression systems were placed directly upon the fire. Thermocouple and gas probes were applied in the computational domain to identify different stages of the fire suppression process, as well as to evaluate the suppression performance. The velocity field was analyzed to examine the penetration effect of suppression systems. Relative humidity and oxygen concentration data obtained by gas analyzers were also studied to further understand the droplet/fire interaction behavior. It was found that latent cooling, volumetric displacement, and dilution of oxygen and fuel were the main suppression mechanisms for water mist systems, as smaller droplets evaporate more efficiently compared to larger ones. On the other hand, for sprinklers, heat extraction by water droplets from the fire was found to be the main suppression mechanism, and the evaporation effect is not as significant as in water mist systems. According to in-depth parametric studies of water droplet sizes, recommendations for the optimal running conditions have been provided for both systems.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran..., ARC | Australian Laureate Fello...ARC| Discovery Projects - Grant ID: DP130103261 ,ARC| Australian Laureate Fellowships - Grant ID: FL160100101Authors: Barry W. Brook; Sanghyun Hong; Tom M. L. Wigley; Tom M. L. Wigley;Abstract We evaluated three Integrated Assessment Models (IAMs: IGSM, MERGE, MiniCAM) by: (i) comparing their global Primary Energy year-2000 initializations and projections for 2010 and 2015 to historical data; (ii) mapping their CO2 emissions projections against observations; and (iii) examining model-output diagnostics. The IAMs underestimated historical primary energy consumption and initial/projected CO2 emissions in both reference and stabilization scenarios (particularly for combustion fuels) but overestimated usage of non-biomass renewables, causing underestimates of future CO2 emissions that, for the stabilization scenarios, are wildly optimistic. Mitigation technology breakdowns in the policy scenarios vary enormously across IAMs, suggesting that confidence in their projections might be misplaced, or that options for mitigation have greater scope than is supposed. Most increases in carbon-free technologies in the stabilization scenarios are already captured in the reference cases. Energy-conversion efficiencies in electricity generation improve over time, but, (except for gas-powered generation in IGSM), efficiencies in the policy scenarios are less than in the reference. Electrification results diverge widely: IGSM has little change over the 21st century, while MiniCAM and MERGE have major electrification increases in their policy scenarios. We suggest: 1) comprehensive model output suitable for secondary analysis should be more readily available; 2) directly comparable reference and policy-driven mitigation scenarios are essential for assessing mitigation measures; 3) model validation using historical, source-specific energy data is crucial for assessing model credibility; 4) separation of mitigation contributions into no-policy and policy-driven amounts is needed to assess the effectiveness of mitigation policies; and 5) detailed inter-model comparisons can provide important insights into model credibility.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200101293Jianwei Tian; Jishan Liu; Derek Elsworth; Yee-Kwong Leong; Wai Li;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT110100174Authors: Schlegel, RW; Oliver, ECJ; Wernberg, T; Smit, AJ;Abstract A changing global climate places shallow water ecosystems at more risk than those in the open ocean as their temperatures may change more rapidly and dramatically. To this end, it is necessary to identify the occurrence of extreme ocean temperature events – marine heatwaves (MHWs) and marine cold-spells (MCSs) – in the nearshore ( 1 4 ° NOAA Optimally Interpolated sea surface temperatures. Regional drivers due to nearshore influences (local-scale) and the forcing of two offshore ocean currents (broad-scale) on MHWs and MCSs were taken into account when the events detected in these two datasets were used to infer the links between offshore and nearshore temperatures in time and space. We show that MHWs and MCSs occur at least once a year on average but that proportions of co-occurrence of events between the broad- and local scales are low (0.20–0.50), with MHWs having greater proportions of co-occurrence than MCSs. The low rates of co-occurrence between the nearshore and offshore datasets show that drivers other than mesoscale ocean temperatures play a role in the occurrence of at least half of nearshore events. Significant differences in the duration and intensity of events between different coastal sections may be attributed to the effects of the interaction of oceanographic processes offshore, as well as with local features of the coast. The decadal trends in the occurrence of MHWs and MCSs in the offshore dataset show that generally MHWs are increasing there while MCSs are decreasing. This study represents an important first step in the analysis of the dynamics of events in nearshore environments, and their relationship with broad-scale influences.
Progress In Oceanogr... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2017.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 85 citations 85 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress In Oceanogr... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2017.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160103071Bergstrom, E; Ordonez, A; Ho, M; Hurd, C; Fry, B; Diaz-Pulido, G;Dissolved inorganic carbon (DIC) assimilation is essential to the reef-building capacity of crustose coralline algae (CCA). Little is known, however, about the DIC uptake strategies and their potential plasticity under ongoing ocean acidification (OA) and warming. The persistence of CCA lineages throughout historical oscillations of pCO2 and temperature suggests that evolutionary history may play a role in selecting for adaptive traits. We evaluated the effects of pCO2 and temperature on the plasticity of DIC uptake strategies and associated energetic consequences in reef-building CCA from different evolutionary lineages. We simulated past, present, moderate (IPCC RCP 6.0) and high pCO2 (RCP 8.5) and present and high (RCP 8.5) temperature conditions and quantified stable carbon isotope fractionation (13ε), organic carbon content, growth and photochemical efficiency. All investigated CCA species possess CO2-concentrating mechanisms (CCMs) and assimilate CO2 via diffusion to varying degrees. Under OA and warming, CCA either increased or maintained CCM capacity, which was associated with overall neutral effects on metabolic performance. More basal taxa, Sporolithales and Hapalidiales, had greater capacity for diffusive CO2 use than Corallinales. We suggest that CCMs are an adaptation that supports a robust carbon physiology and are likely responsible for the endurance of CCA in historically changing oceans.
Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180101788Authors: Shu Zhang; Chun-Zhu Li; Muhammad Asif Akhtar; Muhammad Asif Akhtar;Abstract This study aims to gain insight into the mechanism and kinetics during the gasification of biochar in steam, which was formed in situ in a fluidised-bed reactor using mallee wood in two particle size ranges of 0.80–1.0 mm and 2.0–3.3 mm. The overall biochar gasification rate and the formation rates of key product components were calculated by continuously monitoring the product gas stream with a quadrupole mass spectrometer. The kinetic compensation effects reveal that CO and CO2 are both formed from the heterogeneous reactions between the biochar surface and H2O. CO2 is formed either by the surface (biochar)-catalysed water-gas-shift reaction or directly from the carbon active sites involving the same intermediate for the formation of CO, as revealed by the apparent activation energies and apparent pre-exponential factors for CO and CO2 formation. The changes in the particle size of biomass substrate do not affect the extent of the kinetic compensation effects of biochar consumption and formation of CO, CO2 and H2 in the kinetics-controlled and mixed regimes. The similar extent of the kinetic compensation effects of H2 formation and biochar consumption for both particle sizes indicates that the formation of H2 also mainly involve the carbon active sites on the biochar surface instead of the gas-phase water-gas-shift reaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.115839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.115839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ..., ARC | Industrial Transformation...ARC| Linkage Projects - Grant ID: LP160100819 ,ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Aibing Yu; Aibing Yu; Zheng Qi; Tingsheng Qiu; Shibo Kuang;Abstract Non-Newtonian fluid flows through packed beds are common in many industries. Our understanding of this flow system is very limited, and the correlations for describing the fluid-particle interaction are not fully established. To overcome these problems, this paper presents a comprehensive study of this system on a sub-particle scale, with a special reference to the interaction between fluid rheology and bed properties. This is done by conducting about five hundred Lattice Boltzmann simulations under different conditions. The fluid rheology is represented by the power-law model to consider the shear-thinning, shear thickening and Newtonian behaviors of fluids. The simulation condition covers a wide range of bed porosity, particle size distribution and Reynolds number (Re). The results show that the effect of fluid rheology on the fluid behavior is strong. This effect varies significantly with bed porosity which is a function of particle size distribution. The interplay between fluid rheology and bed properties is however not strong in determining the distributions of particle-fluid interaction force. Based on the simulation data, a new drag correlation is established and validated against the experimental data in the literature. This correlation is more accurate and consistent than those reported in the past. It can estimate the mean drag forces on individual particles of different sizes, and is recommended to be used generally in the modeling of particle-fluid flows either for Newtonian fluids or for non-Newtonian fluids obeying the power-law model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Royal Society of Chemistry (RSC) Funded by:ARC | Discovery Projects - Gran..., ARC | Future Fellowships - Gran..., ARC | Discovery Projects - Gran... +1 projectsARC| Discovery Projects - Grant ID: DP170101467 ,ARC| Future Fellowships - Grant ID: FT170100224 ,ARC| Discovery Projects - Grant ID: DP160103107 ,ARC| Future Fellowships - Grant ID: FT180100585Chuan Zhao; Si Zhou; Si Zhou; Yi Du; Yi Du; Jincheng Zhuang; Yibing Li; Xianjue Chen; Xin Bo; Rosalie K. Hocking;doi: 10.1039/d0ee01609h
handle: 1959.3/458462
The catalytic active sites of NiFe and NiFeCr (oxy)hydroxides are revealed byoperandospectroscopic techonologies for alkaline water oxidation.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2020 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefSwinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0ee01609h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Institute of Electrical and Electronics Engineers (IEEE) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP190102501Authors: Mohsen Eskandari; Andrey V. Savkin; John Fletcher;IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3242469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2023 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2023.3242469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100323Hasintha Wijesekara; Nanthi S. Bolan; Ramesh Thangavel; Balaji Seshadri; Aravind Surapaneni; Christopher Saint; Chris Hetherington; Peter Matthews; Meththika Vithanage;A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha-1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ13C and δ15N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ13C, and enriched δ15N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:ARC | Industrial Transformation...ARC| Industrial Transformation Training Centres - Grant ID: IC170100032Sanghoon Kook; Anthony Chun Yin Yuen; Hengrui Liu; Cheng Wang; Guan Heng Yeoh; Guan Heng Yeoh; Qian Chen; Ivan Miguel De Cachinho Cordeiro; Qing Nian Chan;Abstract With recent developments in the design and manufacturing process of water-based fire suppression systems , more advanced technologies such as water mist systems have expanded in their building application. In this article, the critical fire suppression mechanisms of water mist systems and conventional fire sprinklers are investigated and compared, with emphasis on the influence of water droplet sizes on the fire suppression mechanisms. Applying computational fluid dynamics (CFD), a fully ventilated fire compartment room has been considered where a methane pool fire was placed at the centre. The considered fire suppression systems were placed directly upon the fire. Thermocouple and gas probes were applied in the computational domain to identify different stages of the fire suppression process, as well as to evaluate the suppression performance. The velocity field was analyzed to examine the penetration effect of suppression systems. Relative humidity and oxygen concentration data obtained by gas analyzers were also studied to further understand the droplet/fire interaction behavior. It was found that latent cooling, volumetric displacement, and dilution of oxygen and fuel were the main suppression mechanisms for water mist systems, as smaller droplets evaporate more efficiently compared to larger ones. On the other hand, for sprinklers, heat extraction by water droplets from the fire was found to be the main suppression mechanism, and the evaporation effect is not as significant as in water mist systems. According to in-depth parametric studies of water droplet sizes, recommendations for the optimal running conditions have been provided for both systems.
Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Building ... arrow_drop_down Journal of Building EngineeringArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jobe.2019.100999&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran..., ARC | Australian Laureate Fello...ARC| Discovery Projects - Grant ID: DP130103261 ,ARC| Australian Laureate Fellowships - Grant ID: FL160100101Authors: Barry W. Brook; Sanghyun Hong; Tom M. L. Wigley; Tom M. L. Wigley;Abstract We evaluated three Integrated Assessment Models (IAMs: IGSM, MERGE, MiniCAM) by: (i) comparing their global Primary Energy year-2000 initializations and projections for 2010 and 2015 to historical data; (ii) mapping their CO2 emissions projections against observations; and (iii) examining model-output diagnostics. The IAMs underestimated historical primary energy consumption and initial/projected CO2 emissions in both reference and stabilization scenarios (particularly for combustion fuels) but overestimated usage of non-biomass renewables, causing underestimates of future CO2 emissions that, for the stabilization scenarios, are wildly optimistic. Mitigation technology breakdowns in the policy scenarios vary enormously across IAMs, suggesting that confidence in their projections might be misplaced, or that options for mitigation have greater scope than is supposed. Most increases in carbon-free technologies in the stabilization scenarios are already captured in the reference cases. Energy-conversion efficiencies in electricity generation improve over time, but, (except for gas-powered generation in IGSM), efficiencies in the policy scenarios are less than in the reference. Electrification results diverge widely: IGSM has little change over the 21st century, while MiniCAM and MERGE have major electrification increases in their policy scenarios. We suggest: 1) comprehensive model output suitable for secondary analysis should be more readily available; 2) directly comparable reference and policy-driven mitigation scenarios are essential for assessing mitigation measures; 3) model validation using historical, source-specific energy data is crucial for assessing model credibility; 4) separation of mitigation contributions into no-policy and policy-driven amounts is needed to assess the effectiveness of mitigation policies; and 5) detailed inter-model comparisons can provide important insights into model credibility.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111605&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:American Chemical Society (ACS) Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP200101293Jianwei Tian; Jishan Liu; Derek Elsworth; Yee-Kwong Leong; Wai Li;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acs.energyfuels.2c02857&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Future Fellowships - Gran...ARC| Future Fellowships - Grant ID: FT110100174Authors: Schlegel, RW; Oliver, ECJ; Wernberg, T; Smit, AJ;Abstract A changing global climate places shallow water ecosystems at more risk than those in the open ocean as their temperatures may change more rapidly and dramatically. To this end, it is necessary to identify the occurrence of extreme ocean temperature events – marine heatwaves (MHWs) and marine cold-spells (MCSs) – in the nearshore ( 1 4 ° NOAA Optimally Interpolated sea surface temperatures. Regional drivers due to nearshore influences (local-scale) and the forcing of two offshore ocean currents (broad-scale) on MHWs and MCSs were taken into account when the events detected in these two datasets were used to infer the links between offshore and nearshore temperatures in time and space. We show that MHWs and MCSs occur at least once a year on average but that proportions of co-occurrence of events between the broad- and local scales are low (0.20–0.50), with MHWs having greater proportions of co-occurrence than MCSs. The low rates of co-occurrence between the nearshore and offshore datasets show that drivers other than mesoscale ocean temperatures play a role in the occurrence of at least half of nearshore events. Significant differences in the duration and intensity of events between different coastal sections may be attributed to the effects of the interaction of oceanographic processes offshore, as well as with local features of the coast. The decadal trends in the occurrence of MHWs and MCSs in the offshore dataset show that generally MHWs are increasing there while MCSs are decreasing. This study represents an important first step in the analysis of the dynamics of events in nearshore environments, and their relationship with broad-scale influences.
Progress In Oceanogr... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2017.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 85 citations 85 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress In Oceanogr... arrow_drop_down University of Tasmania: UTas ePrintsArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pocean.2017.01.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160103071Bergstrom, E; Ordonez, A; Ho, M; Hurd, C; Fry, B; Diaz-Pulido, G;Dissolved inorganic carbon (DIC) assimilation is essential to the reef-building capacity of crustose coralline algae (CCA). Little is known, however, about the DIC uptake strategies and their potential plasticity under ongoing ocean acidification (OA) and warming. The persistence of CCA lineages throughout historical oscillations of pCO2 and temperature suggests that evolutionary history may play a role in selecting for adaptive traits. We evaluated the effects of pCO2 and temperature on the plasticity of DIC uptake strategies and associated energetic consequences in reef-building CCA from different evolutionary lineages. We simulated past, present, moderate (IPCC RCP 6.0) and high pCO2 (RCP 8.5) and present and high (RCP 8.5) temperature conditions and quantified stable carbon isotope fractionation (13ε), organic carbon content, growth and photochemical efficiency. All investigated CCA species possess CO2-concentrating mechanisms (CCMs) and assimilate CO2 via diffusion to varying degrees. Under OA and warming, CCA either increased or maintained CCM capacity, which was associated with overall neutral effects on metabolic performance. More basal taxa, Sporolithales and Hapalidiales, had greater capacity for diffusive CO2 use than Corallinales. We suggest that CCMs are an adaptation that supports a robust carbon physiology and are likely responsible for the endurance of CCA in historically changing oceans.
Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Marine Environmental... arrow_drop_down Marine Environmental ResearchArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGriffith University: Griffith Research OnlineArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marenvres.2020.105107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP180101788Authors: Shu Zhang; Chun-Zhu Li; Muhammad Asif Akhtar; Muhammad Asif Akhtar;Abstract This study aims to gain insight into the mechanism and kinetics during the gasification of biochar in steam, which was formed in situ in a fluidised-bed reactor using mallee wood in two particle size ranges of 0.80–1.0 mm and 2.0–3.3 mm. The overall biochar gasification rate and the formation rates of key product components were calculated by continuously monitoring the product gas stream with a quadrupole mass spectrometer. The kinetic compensation effects reveal that CO and CO2 are both formed from the heterogeneous reactions between the biochar surface and H2O. CO2 is formed either by the surface (biochar)-catalysed water-gas-shift reaction or directly from the carbon active sites involving the same intermediate for the formation of CO, as revealed by the apparent activation energies and apparent pre-exponential factors for CO and CO2 formation. The changes in the particle size of biomass substrate do not affect the extent of the kinetic compensation effects of biochar consumption and formation of CO, CO2 and H2 in the kinetics-controlled and mixed regimes. The similar extent of the kinetic compensation effects of H2 formation and biochar consumption for both particle sizes indicates that the formation of H2 also mainly involve the carbon active sites on the biochar surface instead of the gas-phase water-gas-shift reaction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.115839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2019.115839&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:ARC | Linkage Projects - Grant ..., ARC | Industrial Transformation...ARC| Linkage Projects - Grant ID: LP160100819 ,ARC| Industrial Transformation Research Hubs - Grant ID: IH140100035Aibing Yu; Aibing Yu; Zheng Qi; Tingsheng Qiu; Shibo Kuang;Abstract Non-Newtonian fluid flows through packed beds are common in many industries. Our understanding of this flow system is very limited, and the correlations for describing the fluid-particle interaction are not fully established. To overcome these problems, this paper presents a comprehensive study of this system on a sub-particle scale, with a special reference to the interaction between fluid rheology and bed properties. This is done by conducting about five hundred Lattice Boltzmann simulations under different conditions. The fluid rheology is represented by the power-law model to consider the shear-thinning, shear thickening and Newtonian behaviors of fluids. The simulation condition covers a wide range of bed porosity, particle size distribution and Reynolds number (Re). The results show that the effect of fluid rheology on the fluid behavior is strong. This effect varies significantly with bed porosity which is a function of particle size distribution. The interplay between fluid rheology and bed properties is however not strong in determining the distributions of particle-fluid interaction force. Based on the simulation data, a new drag correlation is established and validated against the experimental data in the literature. This correlation is more accurate and consistent than those reported in the past. It can estimate the mean drag forces on individual particles of different sizes, and is recommended to be used generally in the modeling of particle-fluid flows either for Newtonian fluids or for non-Newtonian fluids obeying the power-law model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.05.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu