
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming

Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming
Dissolved inorganic carbon (DIC) assimilation is essential to the reef-building capacity of crustose coralline algae (CCA). Little is known, however, about the DIC uptake strategies and their potential plasticity under ongoing ocean acidification (OA) and warming. The persistence of CCA lineages throughout historical oscillations of pCO2 and temperature suggests that evolutionary history may play a role in selecting for adaptive traits. We evaluated the effects of pCO2 and temperature on the plasticity of DIC uptake strategies and associated energetic consequences in reef-building CCA from different evolutionary lineages. We simulated past, present, moderate (IPCC RCP 6.0) and high pCO2 (RCP 8.5) and present and high (RCP 8.5) temperature conditions and quantified stable carbon isotope fractionation (13ε), organic carbon content, growth and photochemical efficiency. All investigated CCA species possess CO2-concentrating mechanisms (CCMs) and assimilate CO2 via diffusion to varying degrees. Under OA and warming, CCA either increased or maintained CCM capacity, which was associated with overall neutral effects on metabolic performance. More basal taxa, Sporolithales and Hapalidiales, had greater capacity for diffusive CO2 use than Corallinales. We suggest that CCMs are an adaptation that supports a robust carbon physiology and are likely responsible for the endurance of CCA in historically changing oceans.
- University of Tasmania Australia
- Griffith University Australia
- University of Tasmania Australia
- Griffith University Australia
Oceans and Seas, ocean acidification, 551, Toxicology, ocean warming, Marine & Freshwater Biology, Seawater, fractionation, isotopes, Science & Technology, temperature, Carbon Dioxide, Hydrogen-Ion Concentration, Carbon, Environmental sciences, Biological sciences, climate change, Chemical sciences, seaweed, Rhodophyta, coralline algae, Life Sciences & Biomedicine
Oceans and Seas, ocean acidification, 551, Toxicology, ocean warming, Marine & Freshwater Biology, Seawater, fractionation, isotopes, Science & Technology, temperature, Carbon Dioxide, Hydrogen-Ion Concentration, Carbon, Environmental sciences, Biological sciences, climate change, Chemical sciences, seaweed, Rhodophyta, coralline algae, Life Sciences & Biomedicine
3 Research products, page 1 of 1
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
