Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
303 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Australian Research Council (ARC)
  • 12. Responsible consumption
  • 1. No poverty

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Barry W. Brook;
    Barry W. Brook
    ORCID
    Harvested from ORCID Public Data File

    Barry W. Brook in OpenAIRE
    Sanghyun Hong; orcid bw Tom M. L. Wigley;
    Tom M. L. Wigley
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Tom M. L. Wigley in OpenAIRE
    Tom M. L. Wigley;

    Abstract We evaluated three Integrated Assessment Models (IAMs: IGSM, MERGE, MiniCAM) by: (i) comparing their global Primary Energy year-2000 initializations and projections for 2010 and 2015 to historical data; (ii) mapping their CO2 emissions projections against observations; and (iii) examining model-output diagnostics. The IAMs underestimated historical primary energy consumption and initial/projected CO2 emissions in both reference and stabilization scenarios (particularly for combustion fuels) but overestimated usage of non-biomass renewables, causing underestimates of future CO2 emissions that, for the stabilization scenarios, are wildly optimistic. Mitigation technology breakdowns in the policy scenarios vary enormously across IAMs, suggesting that confidence in their projections might be misplaced, or that options for mitigation have greater scope than is supposed. Most increases in carbon-free technologies in the stabilization scenarios are already captured in the reference cases. Energy-conversion efficiencies in electricity generation improve over time, but, (except for gas-powered generation in IGSM), efficiencies in the policy scenarios are less than in the reference. Electrification results diverge widely: IGSM has little change over the 21st century, while MiniCAM and MERGE have major electrification increases in their policy scenarios. We suggest: 1) comprehensive model output suitable for secondary analysis should be more readily available; 2) directly comparable reference and policy-driven mitigation scenarios are essential for assessing mitigation measures; 3) model validation using historical, source-specific energy data is crucial for assessing model credibility; 4) separation of mitigation contributions into no-policy and policy-driven amounts is needed to assess the effectiveness of mitigation policies; and 5) detailed inter-model comparisons can provide important insights into model credibility.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    2
    citations2
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Chloe H. Lucas;
    Chloe H. Lucas
    ORCID
    Harvested from ORCID Public Data File

    Chloe H. Lucas in OpenAIRE
    orcid Kate I. Booth;
    Kate I. Booth
    ORCID
    Harvested from ORCID Public Data File

    Kate I. Booth in OpenAIRE

    AbstractAs losses from extreme weather events grow, many governments are looking to privatize the financing and incentivization of climate adaptation through insurance markets. In a pure market approach to insurance for extreme weather events, individuals become responsible for ensuring they are adequately covered for risks to their own properties, and governments no longer contribute funds to post‐disaster recovery. Theoretically, insurance premiums signal the level of risk faced by each household, and incentivize homeowners to invest in adaptive action, such as retrofitting, or drainage work, to reduce premiums. Where risk is considered too high by insurance markets, housing is devalued, in theory leading to retreat from risky areas. In this review article, we evaluate the suitability of private insurance as a mechanism for climate adaptation at a household and community level. We find a mismatch between social understandings of responsibility for climate risks, and the technocratic, market‐based home insurance products offered by private insurance markets. We suggest that by constructing increasingly individualized, technical, and calculative evaluations of risk, market‐based models of insurance for extreme weather events erode the solidaristic and collective discourses and practices that support adaptive behavior.This article is categorized under: Vulnerability and Adaptation to Climate Change > Institutions for Adaptation

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wiley Interdisciplin...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Wiley Interdisciplinary Reviews Climate Change
    Article
    License: publisher-specific, author manuscript
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Wiley Interdisciplinary Reviews Climate Change
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    22
    citations22
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Wiley Interdisciplin...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Wiley Interdisciplinary Reviews Climate Change
      Article
      License: publisher-specific, author manuscript
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Wiley Interdisciplinary Reviews Climate Change
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Mauricio Becerra-Fernandez;
    Mauricio Becerra-Fernandez
    ORCID
    Harvested from ORCID Public Data File

    Mauricio Becerra-Fernandez in OpenAIRE
    orcid Liliana Elizabeth Ruiz-Acosta;
    Liliana Elizabeth Ruiz-Acosta
    ORCID
    Harvested from ORCID Public Data File

    Liliana Elizabeth Ruiz-Acosta in OpenAIRE
    orcid bw David Andres Camargo-Mayorga;
    David Andres Camargo-Mayorga
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    David Andres Camargo-Mayorga in OpenAIRE
    orcid Mario Andrés Muñoz;
    Mario Andrés Muñoz
    ORCID
    Harvested from ORCID Public Data File

    Mario Andrés Muñoz in OpenAIRE
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Me...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Production
    Article . 2022 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    ResearchGate Data
    Preprint . 2021
    Data sources: Datacite
    addClaim
    Access Routes
    Green
    gold
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The University of Me...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Production
      Article . 2022 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      ResearchGate Data
      Preprint . 2021
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Vu, Minh T.;
    Vu, Minh T.
    ORCID
    Harvested from ORCID Public Data File

    Vu, Minh T. in OpenAIRE
    Vu, Hang P.; orcid Nguyen, Luong N.;
    Nguyen, Luong N.
    ORCID
    Harvested from ORCID Public Data File

    Nguyen, Luong N. in OpenAIRE
    Semblante, Galilee U. (R20112); +2 Authors

    Abstract In the concept of a circular economy, wastewater is no longer waste but a resource for water, energy and nutrients. In this study, a hybrid system containing an anaerobic membrane bioreactor (AnMBR) and a microalgal membrane reactor (MMR) was developed to harvest energy, nutrients, and microalgal biomass from food and agribusiness industrial wastewater. The AnMBR removed over 97% of chemical oxygen demand (COD) and generated 4.7 ± 0.15 L (n=80) of biogas equivalent to 2.4 kWh kg−1 COD (feed) d−1. Through anaerobic metabolism, the microorganism in AnMBR generated NH 4 + and PO 4 3 − -rich effluent. Their effluent concentrations were 1.9 and 1.4 times of that in the influent, respectively. NH 4 + and PO 4 3 − -rich effluent was directly used (i.e. without filtration or sterilization) to culture microalgae Chlorella vulgaris in the MMR. . Microalgal biomass production reached up to 700 mg/L after 6 days of operation and nutrient removal rates of above 75% were achieved. However, biomass production and nutrient removal declined towards the end of experiment. The generated biomass was completely harvested using cationic polyacrylamide at the dose of 36 mg g−1 dry weight. Overall, the AnMBR has great potential to produce energy. Future research is needed to intensify the microalgal growth (e.g. genetic modification of strains, addition of plant hormones) in the MMR for continuous operation of the hybrid system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Techno...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Environmental Technology & Innovation
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    45
    citations45
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Environmental Techno...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Environmental Technology & Innovation
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Gill, Nicholas J; Osman, Peter; orcid Head, Lesley M;
    Head, Lesley M
    ORCID
    Harvested from ORCID Public Data File

    Head, Lesley M in OpenAIRE
    orcid Voyer, Michelle;
    Voyer, Michelle
    ORCID
    Harvested from ORCID Public Data File

    Voyer, Michelle in OpenAIRE
    +3 Authors

    AbstractThis paper examines household responses to sustainability issues and adoption of energy saving technologies. Our example of solar hot water systems highlights the complexity and variability of responses to low-carbon technologies. While SHW systems have the potential to provide the majority of household hot water and to lower carbon emissions, little research has been done to investigate how SHW systems are integrated into everyday life. We draw on cultural understandings of the household to identify passive and active users of SHW systems and utilize a model that illustrates how technology use is dependent on inter-relations between cultural norms, systems of provision, the material elements of homes, and practice. A key finding is that households can be ill-prepared to make the most of their SHW systems and lack post-installation support to do so. Thus, informed and efficient use of SHW systems is hit and miss. Current policy is largely aimed at subsidizing purchase and installation on the assumption that this is sufficient for emission reduction goals. Our analysis provides evidence to the contrary. Areas we highlight for policy and practice improvement are independent pre-purchase advice, installation quality, and practical guidance on system operation and interaction with patterns of hot water use.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Queensland Universit...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Policy
    Article . 2015 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Policy
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    21
    citations21
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Queensland Universit...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Policy
      Article . 2015 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Policy
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Isabelle Fauconnier; Nicholas J. Souter; David Dudgeon; orcid Chengguang Lai;
    Chengguang Lai
    ORCID
    Harvested from ORCID Public Data File

    Chengguang Lai in OpenAIRE
    +19 Authors

    Degradation of freshwater ecosystems and the services they provide is a primary cause of increasing water insecurity, raising the need for integrated solutions to freshwater management. While methods for characterizing the multi-faceted challenges of managing freshwater ecosystems abound, they tend to emphasize either social or ecological dimensions and fall short of being truly integrative. This paper suggests that management for sustainability of freshwater systems needs to consider the linkages between human water uses, freshwater ecosystems and governance. We present a conceptualization of freshwater resources as part of an integrated social-ecological system and propose a set of corresponding indicators to monitor freshwater ecosystem health and to highlight priorities for management. We demonstrate an application of this new framework -the Freshwater Health Index (FHI) - in the Dongjiang River Basin in southern China, where stakeholders are addressing multiple and conflicting freshwater demands. By combining empirical and modeled datasets with surveys to gauge stakeholders' preferences and elicit expert information about governance mechanisms, the FHI helps stakeholders understand the status of freshwater ecosystems in their basin, how ecosystems are being manipulated to enhance or decrease water-related services, and how well the existing water resource management regime is equipped to govern these dynamics over time. This framework helps to operationalize a truly integrated approach to water resource management by recognizing the interplay between governance, stakeholders, freshwater ecosystems and the services they provide.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The Science of The Total Environment
    Article . 2018 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    The Science of The Total Environment
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    addClaim
    109
    citations109
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ CGIAR CGSpace (Consu...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The Science of The Total Environment
      Article . 2018 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      The Science of The Total Environment
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Jiti Gao; Bin Peng; orcid Russell Smyth;
    Russell Smyth
    ORCID
    Harvested from ORCID Public Data File

    Russell Smyth in OpenAIRE

    Obtaining reliable cross-country estimates of the income and price elasticity of energy demand requires a panel data model that can simultaneously account for endogeneity, heterogeneity, nonstationarity and cross-sectional dependence. We propose such an integrated framework and apply it to a very large dataset of 65 countries over the period 1960-2016 recently assembled by Liddle and Huntington (2020). We find that while the elasticities of income and price are non-linear, the income elasticity is generally in the range 0.6 to 0.8 and the price elasticity in the range -0.1 to -0.3. We also find that the income elasticity has been declining since the 1990s, which broadly corresponds to increasing awareness of the negative externalities associated with burning fossil fuels associated with the Kyoto Protocol. From a policy perspective, that the income energy elasticity is less than one, and has been declining since the 1990s, bodes well for climate change mitigation because it suggests that energy intensity will fall with economic growth.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Economics
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Economics
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.26180/21...
    Other literature type . 2022
    Data sources: Datacite
    https://dx.doi.org/10.26180/21...
    Other literature type . 2022
    Data sources: Datacite
    addClaim
    18
    citations18
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ SSRN Electronic Jour...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Economics
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Economics
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      https://dx.doi.org/10.26180/21...
      Other literature type . 2022
      Data sources: Datacite
      https://dx.doi.org/10.26180/21...
      Other literature type . 2022
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Peng Wu;
    Peng Wu
    ORCID
    Harvested from ORCID Public Data File

    Peng Wu in OpenAIRE
    orcid Yongze Song;
    Yongze Song
    ORCID
    Harvested from ORCID Public Data File

    Yongze Song in OpenAIRE
    orcid Xin Hu;
    Xin Hu
    ORCID
    Harvested from ORCID Public Data File

    Xin Hu in OpenAIRE
    orcid Xiangyu Wang;
    Xiangyu Wang
    ORCID
    Harvested from ORCID Public Data File

    Xiangyu Wang in OpenAIRE

    The Leadership in Energy and Environmental Design for Neighborhood Development (LEED ND) rating system has been considered one of the major tools to assess the performance of green communities. However, few studies have been conducted on how the traditional focus on green building can be effectively transitioned to green communities. In order to facilitate the transition process, this paper reviews and analyzes the credits obtained from LEED ND 2009 certified plans. A total of 55 projects were identified from the LEED project directory of the U.S. Green Building Council. The performance of these neighborhood development projects, including project landscape, percentage of achievement and predictors of LEED ND rating, was analyzed. The performance was then compared with the performance of green buildings certified under LEED New Construction (LEED NC). The results indicate that there is an unbalanced allocation of credits to economic, social and environmental sustainability in the LEED ND rating. In addition, green infrastructure and building credits, such as wastewater management, on-site renewable energy and solar orientation, have extremely low percentage of achievement, indicating that these credits should be redesigned. The results provide useful insights for developers to prepare for LEED ND certification and for regulatory bodies to improve the performance of the current LEED ND rating system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Curtin University: e...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2018 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article
    License: CC BY
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Sustainability
    Article . 2018
    Data sources: DOAJ
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Curtin University: e...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2018 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article
      License: CC BY
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Sustainability
      Article . 2018
      Data sources: DOAJ
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Haijiao Lu;
    Haijiao Lu
    ORCID
    Harvested from ORCID Public Data File

    Haijiao Lu in OpenAIRE
    orcid Julie Tournet;
    Julie Tournet
    ORCID
    Harvested from ORCID Public Data File

    Julie Tournet in OpenAIRE
    orcid Kamran Dastafkan;
    Kamran Dastafkan
    ORCID
    Harvested from ORCID Public Data File

    Kamran Dastafkan in OpenAIRE
    orcid Yun Liu;
    Yun Liu
    ORCID
    Harvested from ORCID Public Data File

    Yun Liu in OpenAIRE
    +4 Authors

    Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Reviewsarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Chemical Reviews
    Article . 2021 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    Chemical Reviews
    Article . 2022
    addClaim
    179
    citations179
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Chemical Reviewsarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Chemical Reviews
      Article . 2021 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      Chemical Reviews
      Article . 2022
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Huu Hao Ngo; Huu Hao Ngo; Dinh Duc Nguyen; orcid Yiwen Liu;
    Yiwen Liu
    ORCID
    Harvested from ORCID Public Data File

    Yiwen Liu in OpenAIRE
    +6 Authors

    Wastewater is now considered to be a vital reusable source of water reuse and saving energy. However, current wastewater has multiple limitations such as high energy costs, large quantities of residuals being generated and lacking in potential resources. Recently, great attention has been paid to microbial fuel cells (MFCs) due to their mild operating conditions where a variety of biodegradable substrates can serve as fuel. MFCs can be used in wastewater treatment facilities to break down organic matter, and they have also been analysed for application as a biosensor such as a sensor for biological oxygen which demands monitoring. MFCs represent an innovation technology solution that is simple and rapid. Despite the advantages of this technology, there are still practical barriers to consider including low electricity production, current instability, high internal resistance and costly materials used. Thus, many problems must be overcome and doing this requires a more detailed analysis of energy production, consumption, and application. Currently, real-world applications of MFCs are limited due to their low power density level of only several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This paper explores several aspects of MFCs such as anode, cathode and membrane, and in an effort to overcome the practical challenges of this system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    244
    citations244
    popularityTop 0.1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Science of The T...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim