- home
- Advanced Search
- Energy Research
- Chinese
- Chinese Academy of Sciences
- Energy Research
- Chinese
- Chinese Academy of Sciences
Research data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Zemeng Fan; Tianxiang YUE; Saibo LI; Xuyang BAI; Chesheng ZHAN; LUO, Yong;Based on the observation monthly climatic data collected from 2766 weather observation stations on global during the period from 1981 to 2010, and the climatic scenarios data of SSP1_2.6、SSP1_4.5 and SSP1_8.5 scenarios released by CMIP6, the mean annual biotemperature, average total annual precipitation and potential evapotranspiration ratio on spatial resolution of 0.1º× 0.1º were respectively obtained by operating a high accuracy and speed method of surfacing modeling (HASM) (Yue, 2010, Yue et al., 2016) during all the four periods from 2020 to 2050 per decade. The method for surface modelling of land cover scenarios (SMLCS) has been developed to simulate the scenarios of land cover in Eurasia (Fan et al., 2019, 2020, 2021). Finally, the scenario dataset of land cover under scenario SSP1_2.6、SSP1_4.5 and SSP1_8.5 were simulated by the SMLCS method from 2020 to 2050. 采用1981-2010年全球2766个气象观测站的观测月气候数据,以及CMIP6发布的SSP1_2.6、SSP1_4.5和SSP1_8.5情景的气候情景数据。通过运行高精度面建模方法(HASM)(Yue, 2010, Yue et al., 2016),分别获得2020-2050年间每10年的空间分辨率为0.1º×0.1º的平均生物温度数据、多年平均年降水和潜在蒸散比率数据。采用自主研发的土地覆被情景曲面建模(SMLCS)方法(Fan et al., 2019, 2020, 2021),实现了SSP1_2.6、SSP1_4.5和SSP1_8.5情景的2020-2050年间每10年的全球土地覆被变化情景模拟。
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.o00014.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.o00014.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; Dengpan Xia;Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Science Data Bank ZHU Mengyao; DAI Junhu; WANG Huanjiong; HAO Yulong; LIU Wei; CAO Lijuan;This dataset contains the grid data of the first leaf date (FLD) and first flower date (FFD) of six woody plants in Europe (34°57′N-72°3′N,25°3′W-40°3′E) from 1951 to 2021, with a spatial resolution of 0.1° and a temporal resolution of 1 day. The quality evaluation of the grid phenology data shows that the average error of FLD and FFD is 7.9 and 7.6 days respectively, which has high simulation accuracy.Method: Based on the in-situ phenology observations from the Pan European Phenology Project (PEP725) in the past 70 years, this dataset employed three phenology models (Unichill, Unified and Temporal-Spatial Coupling) to predict and upscale the phenology data on the continental scale, and developed a grid phenology dataset of woody plants in Europe.Dataset composition: The dataset contains the gridded phenology data of six woody plants in Europe from 1951 to 2021, including the spring FLD (BBCH11.zip) and the spring FFD (BBCH60.zip). The annual data of each species is stored as a Geotiff file with 651 row × 371 column. The data is named according to "year (YYYY) + species genus (Genus) + phenophase (_xx)". For example, "2021Aesculus_11. tif" is the grid data file of the FLD of European Aesculus in 2021. The unit of phenology data is Julian day of year (DOY), which represents the actual number of days from the date of phenology occurrence to January 1 of the current year. The valid value is 1-366, and the invalid filling value is 999. The spatial reference system of the data is EPSG:4326 (WGS84). This dataset contains the grid data of the first leaf date (FLD) and first flower date (FFD) of six woody plants in Europe (34°57′N-72°3′N,25°3′W-40°3′E) from 1951 to 2021, with a spatial resolution of 0.1° and a temporal resolution of 1 day. The quality evaluation of the grid phenology data shows that the average error of FLD and FFD is 7.9 and 7.6 days respectively, which has high simulation accuracy.Method: Based on the in-situ phenology observations from the Pan European Phenology Project (PEP725) in the past 70 years, this dataset employed three phenology models (Unichill, Unified and Temporal-Spatial Coupling) to predict and upscale the phenology data on the continental scale, and developed a grid phenology dataset of woody plants in Europe.Dataset composition: The dataset contains the gridded phenology data of six woody plants in Europe from 1951 to 2021, including the spring FLD (BBCH11.zip) and the spring FFD (BBCH60.zip). The annual data of each species is stored as a Geotiff file with 651 row × 371 column. The data is named according to "year (YYYY) + species genus (Genus) + phenophase (_xx)". For example, "2021Aesculus_11. tif" is the grid data file of the FLD of European Aesculus in 2021. The unit of phenology data is Julian day of year (DOY), which represents the actual number of days from the date of phenology occurrence to January 1 of the current year. The valid value is 1-366, and the invalid filling value is 999. The spatial reference system of the data is EPSG:4326 (WGS84).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang; Xiaoxiao Lin; Xuejun Gu; Weijun Zhang;This article presents the data of the published paper: Threshold photoelectron spectroscopy of the HO2 radical (J. Chem. Phys. 153, 124306 (2020)) 本论文展示了已发表论文的数据:Threshold photoelectron spectroscopy of the HO2 radical (J. Chem. Phys. 153, 124306 (2020))
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Guishi Wang;In this dataset, a near-infrared laser heterodyne spectrometer developed by the laboratory is used to investigate the inversion of greenhouse gas column concentration and approximately evaluate the system measurement errors based on the optimal estimation algorithm. Firstly, the spectral database and the calculation results from the reference forward model are compared with the ground-based FTIR results, thereby selecting the detection window, the corresponding laser and detector. Secondly, the optimal estimation concentration inversion algorithm based on the reference forward model is established, and the LevenbergMarquardt (LM) iterative method is adopted to realize the inversion of the concentration and vertical distribution profile of atmospheric CO2 column in the whole layer, and the long-term observation comparative experiment is carried out to verify the feasibility of this algorithm. Finally, by simulating the selected detection window spectrum in different white noise, the approximate corresponding relationship between the system signal-noise-ratio (SNR) and CO2 column concentration measuring error is eventually obtained. 利用实验室研制的近红外激光外差光谱仪,开展了基于最优估计算法的温室气体柱浓度反演和系统测量误差的近似评估等相关工作。首先, 通过光谱数据库、参考正向模型计算结果与傅里叶变换红外光谱技术探测结果筛选出了探测窗口, 并以此为依据选择了相应的激光器和探测器; 其次, 建立了基于参考正向模型最优估计浓度反演算法,采用 Levenberg-Marquardt (LM) 迭代方法, 实现了整层大气 CO2 柱浓度及垂直分布廓线的反演, 并开展了长期观测对比实验, 验证了反演算法的可行性, 通过模拟所选探测窗口波段在不同白噪声条件下的正向大气透过率谱, 获得了系统 SNR 与柱浓度测量误差之间的近似对应关系。
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang;This article presents the data of the published paper: Dissociation of High-Lying Electronic States of NO2+ in the 15.5−20 eV Region (J. Phys. Chem. A 2021, 125, 1517-1525) This article presents the data of the published paper: Dissociation of High-Lying Electronic States of NO2+ in the 15.5−20 eV Region (J. Phys. Chem. A 2021, 125, 1517-1525)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Science Data Bank Yuwen Xiaomeng; Wenshuang, Feng; Xiaoliang, Mu; Zhao, Lu; Kegong, Fang;Ethanol is a significant chemical feedstock, which can be employed not only as a raw material for chemicals and polymers, but also as an additive to petrol. It is typically produced in industry through either fermentation or ethylene hydration. In light of the growing demand for ethanol, it is imperative to investigate the potential of multi-channel production of ethanol. One-step ethanol production from syngas represents a significant method of ethanol production from non-fossil oil energy sources, and it is also an important means of clean utilization of coal. The cost of direct ethanol production from syngas is relatively low, but the distribution of alcohols with different carbon numbers in the alcohol product is wide, which makes subsequent separation difficult and restricts its large-scale development. Consequently, in the research of direct ethanol production from syngas, the key points to improve the process economics and promote the development of this technology are to improve the selectivity of ethanol and develop the efficient catalysts. Mo-based catalysts can be employed for low-hydrogen syngas. At the same time, it is challenging to deposit carbon, exhibits robust resistance to sulfur poisoning, and demonstrates excellent stability, which also extends the reaction cycle. However, the methanol content of the alcohol product is relatively high. Although the use of Fischer-Tropsch element modification can significantly reduce the methanol selectivity, it will inevitably lead to the problem of broadening the distribution of alcohols. In recent years, there has been a growing attention in the preparation of catalysts using non-thermal plasma technology. Non-thermal plasma comprises not only electrons, ions, molecules and free radicals, but also photons and excited substances. Previous studies have demonstrated that the non-thermal plasma method can induce alterations in the nucleation of the active phase and the crystal growth mode in the preparation of catalysts. Concurrently, for thermodynamically unfavorable reactions, the utilization of non-thermal plasma technology can disrupt the thermodynamic equilibrium limit, thereby facilitating the reaction. In this study, Mo-based oxide and sulfide composite catalysts were prepared from the precursor of molybdenum sulfide by two distinct methods: the conventional thermal method and the RF non-thermal plasma method. The catalytic performance of Mo-based oxide and sulfide composite catalysts for the synthesis of ethanol from syngas was then investigated. A range of analytical techniques were employed to investigate the physical and chemical properties of the molybdenum-based oxygen-sulfur complex catalysts synthesized by different preparation methods. These included XRD, UV-visible, HR-TEM, SEM, HAADF-STEM, XPS, CO-TPD, H2-TPD, CO2-TPD and In-situ DRIFTS. Moreover, the objective was also to ascertain the impact of the physical and chemical properties on the catalytic performance of the different catalysts. Among them, the MOS-P catalyst exhibited the best catalytic performance. Under the reaction conditions of 6 MPa, 320 ℃, and a space velocity of 4500 h-1, the CO conversion reached 22.5%. The selectivity of total alcohols was 71.4%, with ethanol accounting for 29.1% of the total alcohols. This research will provide theoretical guidance for the directional conversion of syngas and serves as a reference for the design and preparation of new molybdenum-based materials. Ethanol is a significant chemical feedstock, which can be employed not only as a raw material for chemicals and polymers, but also as an additive to petrol. It is typically produced in industry through either fermentation or ethylene hydration. In light of the growing demand for ethanol, it is imperative to investigate the potential of multi-channel production of ethanol. One-step ethanol production from syngas represents a significant method of ethanol production from non-fossil oil energy sources, and it is also an important means of clean utilization of coal. The cost of direct ethanol production from syngas is relatively low, but the distribution of alcohols with different carbon numbers in the alcohol product is wide, which makes subsequent separation difficult and restricts its large-scale development. Consequently, in the research of direct ethanol production from syngas, the key points to improve the process economics and promote the development of this technology are to improve the selectivity of ethanol and develop the efficient catalysts. Mo-based catalysts can be employed for low-hydrogen syngas. At the same time, it is challenging to deposit carbon, exhibits robust resistance to sulfur poisoning, and demonstrates excellent stability, which also extends the reaction cycle. However, the methanol content of the alcohol product is relatively high. Although the use of Fischer-Tropsch element modification can significantly reduce the methanol selectivity, it will inevitably lead to the problem of broadening the distribution of alcohols. In recent years, there has been a growing attention in the preparation of catalysts using non-thermal plasma technology. Non-thermal plasma comprises not only electrons, ions, molecules and free radicals, but also photons and excited substances. Previous studies have demonstrated that the non-thermal plasma method can induce alterations in the nucleation of the active phase and the crystal growth mode in the preparation of catalysts. Concurrently, for thermodynamically unfavorable reactions, the utilization of non-thermal plasma technology can disrupt the thermodynamic equilibrium limit, thereby facilitating the reaction. In this study, Mo-based oxide and sulfide composite catalysts were prepared from the precursor of molybdenum sulfide by two distinct methods: the conventional thermal method and the RF non-thermal plasma method. The catalytic performance of Mo-based oxide and sulfide composite catalysts for the synthesis of ethanol from syngas was then investigated. A range of analytical techniques were employed to investigate the physical and chemical properties of the molybdenum-based oxygen-sulfur complex catalysts synthesized by different preparation methods. These included XRD, UV-visible, HR-TEM, SEM, HAADF-STEM, XPS, CO-TPD, H2-TPD, CO2-TPD and In-situ DRIFTS. Moreover, the objective was also to ascertain the impact of the physical and chemical properties on the catalytic performance of the different catalysts. Among them, the MOS-P catalyst exhibited the best catalytic performance. Under the reaction conditions of 6 MPa, 320 ℃, and a space velocity of 4500 h-1, the CO conversion reached 22.5%. The selectivity of total alcohols was 71.4%, with ethanol accounting for 29.1% of the total alcohols. This research will provide theoretical guidance for the directional conversion of syngas and serves as a reference for the design and preparation of new molybdenum-based materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.08848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.08848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang;This article presents the data of the published paper: High resolution vibronic state-specific dissociation of NO2+ in the 10.0–15.5 eV energy range by synchrotron double imaging photoelectron photoion coincidence (Phys. Chem. Chem. Phys., 2020, 22, 1974) 本文展示了已发表论文的数据:High resolution vibronic state-specific dissociation of NO2+ in the 10.0–15.5 eV energy range by synchrotron double imaging photoelectron photoion coincidence (Phys. Chem. Chem. Phys., 2020, 22, 1974)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang; Xuejun Gu; Xiaoxiao Lin; Weijun Zhang;This article presents the data of the published paper: Vacuum ultraviolet photodynamics of the methyl peroxy radical studied by double imaging photoelectron photoion coincidences (J. Chem. Phys. 152, 104301 (2020)) 本文展示了已发表论文的数据:Vacuum ultraviolet photodynamics of the methyl peroxy radical studied by double imaging photoelectron photoion coincidences (J. Chem. Phys. 152, 104301 (2020))
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Science Data Bank Authors: Xiaoyang Song;Janzen-Connell (JC) effects, hypothesized to be mostly driven by negative plant-soil feedbacks (PSFs), are considered to be the key mechanism that regulates tropical forest plant diversity and coexistence. However, intraspecific variation in JC effects may weaken this mechanism, with the strength of PSFs being a potentially key variable process. We conducted a manipulated experiment with seedlings from two populations of Pometia pinnata (Sapindaceae), a tropical tree species in southwest China. We aimed to measure the intraspecific difference in PSF magnitude caused by inoculating the soil from different P. pinnata source populations and growing seedlings under differing light intensity and water availability treatments, and at varying plant densities. We found negative PSFs for both populations with the inoculum soil originating from the same sites, but PSFs differed significantly with the inoculum soil from different sites. PSF strength responded differently to biotic and abiotic drivers; PSF strength was weaker in low moisture and high light treatments than in high moisture and low light treatments. Our study documents intraspecific variation in JC effects: specifically, P. pinnata have less defences to their natively-sourced soil, but are more defensive to the soil feedbacks from soil sourced from other populations. Our results imply that drought and light intensity tended to weaken JC effects, which may result in loss of species diversity with climate change. Janzen-Connell (JC) effects, hypothesized to be mostly driven by negative plant-soil feedbacks (PSFs), are considered to be the key mechanism that regulates tropical forest plant diversity and coexistence. However, intraspecific variation in JC effects may weaken this mechanism, with the strength of PSFs being a potentially key variable process. We conducted a manipulated experiment with seedlings from two populations of Pometia pinnata (Sapindaceae), a tropical tree species in southwest China. We aimed to measure the intraspecific difference in PSF magnitude caused by inoculating the soil from different P. pinnata source populations and growing seedlings under differing light intensity and water availability treatments, and at varying plant densities. We found negative PSFs for both populations with the inoculum soil originating from the same sites, but PSFs differed significantly with the inoculum soil from different sites. PSF strength responded differently to biotic and abiotic drivers; PSF strength was weaker in low moisture and high light treatments than in high moisture and low light treatments. Our study documents intraspecific variation in JC effects: specifically, P. pinnata have less defences to their natively-sourced soil, but are more defensive to the soil feedbacks from soil sourced from other populations. Our results imply that drought and light intensity tended to weaken JC effects, which may result in loss of species diversity with climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.17001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.17001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Zemeng Fan; Tianxiang YUE; Saibo LI; Xuyang BAI; Chesheng ZHAN; LUO, Yong;Based on the observation monthly climatic data collected from 2766 weather observation stations on global during the period from 1981 to 2010, and the climatic scenarios data of SSP1_2.6、SSP1_4.5 and SSP1_8.5 scenarios released by CMIP6, the mean annual biotemperature, average total annual precipitation and potential evapotranspiration ratio on spatial resolution of 0.1º× 0.1º were respectively obtained by operating a high accuracy and speed method of surfacing modeling (HASM) (Yue, 2010, Yue et al., 2016) during all the four periods from 2020 to 2050 per decade. The method for surface modelling of land cover scenarios (SMLCS) has been developed to simulate the scenarios of land cover in Eurasia (Fan et al., 2019, 2020, 2021). Finally, the scenario dataset of land cover under scenario SSP1_2.6、SSP1_4.5 and SSP1_8.5 were simulated by the SMLCS method from 2020 to 2050. 采用1981-2010年全球2766个气象观测站的观测月气候数据,以及CMIP6发布的SSP1_2.6、SSP1_4.5和SSP1_8.5情景的气候情景数据。通过运行高精度面建模方法(HASM)(Yue, 2010, Yue et al., 2016),分别获得2020-2050年间每10年的空间分辨率为0.1º×0.1º的平均生物温度数据、多年平均年降水和潜在蒸散比率数据。采用自主研发的土地覆被情景曲面建模(SMLCS)方法(Fan et al., 2019, 2020, 2021),实现了SSP1_2.6、SSP1_4.5和SSP1_8.5情景的2020-2050年间每10年的全球土地覆被变化情景模拟。
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.o00014.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.o00014.00005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Yucui Zhang; Huimin Lei; Wenguang Zhao; Yanjun Shen; Dengpan Xia;Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain Comparison of the water budget for the typical cropland and pear orchard ecosystems in the North China Plain
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.06165&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Science Data Bank ZHU Mengyao; DAI Junhu; WANG Huanjiong; HAO Yulong; LIU Wei; CAO Lijuan;This dataset contains the grid data of the first leaf date (FLD) and first flower date (FFD) of six woody plants in Europe (34°57′N-72°3′N,25°3′W-40°3′E) from 1951 to 2021, with a spatial resolution of 0.1° and a temporal resolution of 1 day. The quality evaluation of the grid phenology data shows that the average error of FLD and FFD is 7.9 and 7.6 days respectively, which has high simulation accuracy.Method: Based on the in-situ phenology observations from the Pan European Phenology Project (PEP725) in the past 70 years, this dataset employed three phenology models (Unichill, Unified and Temporal-Spatial Coupling) to predict and upscale the phenology data on the continental scale, and developed a grid phenology dataset of woody plants in Europe.Dataset composition: The dataset contains the gridded phenology data of six woody plants in Europe from 1951 to 2021, including the spring FLD (BBCH11.zip) and the spring FFD (BBCH60.zip). The annual data of each species is stored as a Geotiff file with 651 row × 371 column. The data is named according to "year (YYYY) + species genus (Genus) + phenophase (_xx)". For example, "2021Aesculus_11. tif" is the grid data file of the FLD of European Aesculus in 2021. The unit of phenology data is Julian day of year (DOY), which represents the actual number of days from the date of phenology occurrence to January 1 of the current year. The valid value is 1-366, and the invalid filling value is 999. The spatial reference system of the data is EPSG:4326 (WGS84). This dataset contains the grid data of the first leaf date (FLD) and first flower date (FFD) of six woody plants in Europe (34°57′N-72°3′N,25°3′W-40°3′E) from 1951 to 2021, with a spatial resolution of 0.1° and a temporal resolution of 1 day. The quality evaluation of the grid phenology data shows that the average error of FLD and FFD is 7.9 and 7.6 days respectively, which has high simulation accuracy.Method: Based on the in-situ phenology observations from the Pan European Phenology Project (PEP725) in the past 70 years, this dataset employed three phenology models (Unichill, Unified and Temporal-Spatial Coupling) to predict and upscale the phenology data on the continental scale, and developed a grid phenology dataset of woody plants in Europe.Dataset composition: The dataset contains the gridded phenology data of six woody plants in Europe from 1951 to 2021, including the spring FLD (BBCH11.zip) and the spring FFD (BBCH60.zip). The annual data of each species is stored as a Geotiff file with 651 row × 371 column. The data is named according to "year (YYYY) + species genus (Genus) + phenophase (_xx)". For example, "2021Aesculus_11. tif" is the grid data file of the FLD of European Aesculus in 2021. The unit of phenology data is Julian day of year (DOY), which represents the actual number of days from the date of phenology occurrence to January 1 of the current year. The valid value is 1-366, and the invalid filling value is 999. The spatial reference system of the data is EPSG:4326 (WGS84).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.07473&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang; Xiaoxiao Lin; Xuejun Gu; Weijun Zhang;This article presents the data of the published paper: Threshold photoelectron spectroscopy of the HO2 radical (J. Chem. Phys. 153, 124306 (2020)) 本论文展示了已发表论文的数据:Threshold photoelectron spectroscopy of the HO2 radical (J. Chem. Phys. 153, 124306 (2020))
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02613&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Guishi Wang;In this dataset, a near-infrared laser heterodyne spectrometer developed by the laboratory is used to investigate the inversion of greenhouse gas column concentration and approximately evaluate the system measurement errors based on the optimal estimation algorithm. Firstly, the spectral database and the calculation results from the reference forward model are compared with the ground-based FTIR results, thereby selecting the detection window, the corresponding laser and detector. Secondly, the optimal estimation concentration inversion algorithm based on the reference forward model is established, and the LevenbergMarquardt (LM) iterative method is adopted to realize the inversion of the concentration and vertical distribution profile of atmospheric CO2 column in the whole layer, and the long-term observation comparative experiment is carried out to verify the feasibility of this algorithm. Finally, by simulating the selected detection window spectrum in different white noise, the approximate corresponding relationship between the system signal-noise-ratio (SNR) and CO2 column concentration measuring error is eventually obtained. 利用实验室研制的近红外激光外差光谱仪,开展了基于最优估计算法的温室气体柱浓度反演和系统测量误差的近似评估等相关工作。首先, 通过光谱数据库、参考正向模型计算结果与傅里叶变换红外光谱技术探测结果筛选出了探测窗口, 并以此为依据选择了相应的激光器和探测器; 其次, 建立了基于参考正向模型最优估计浓度反演算法,采用 Levenberg-Marquardt (LM) 迭代方法, 实现了整层大气 CO2 柱浓度及垂直分布廓线的反演, 并开展了长期观测对比实验, 验证了反演算法的可行性, 通过模拟所选探测窗口波段在不同白噪声条件下的正向大气透过率谱, 获得了系统 SNR 与柱浓度测量误差之间的近似对应关系。
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02674&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang;This article presents the data of the published paper: Dissociation of High-Lying Electronic States of NO2+ in the 15.5−20 eV Region (J. Phys. Chem. A 2021, 125, 1517-1525) This article presents the data of the published paper: Dissociation of High-Lying Electronic States of NO2+ in the 15.5−20 eV Region (J. Phys. Chem. A 2021, 125, 1517-1525)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Science Data Bank Yuwen Xiaomeng; Wenshuang, Feng; Xiaoliang, Mu; Zhao, Lu; Kegong, Fang;Ethanol is a significant chemical feedstock, which can be employed not only as a raw material for chemicals and polymers, but also as an additive to petrol. It is typically produced in industry through either fermentation or ethylene hydration. In light of the growing demand for ethanol, it is imperative to investigate the potential of multi-channel production of ethanol. One-step ethanol production from syngas represents a significant method of ethanol production from non-fossil oil energy sources, and it is also an important means of clean utilization of coal. The cost of direct ethanol production from syngas is relatively low, but the distribution of alcohols with different carbon numbers in the alcohol product is wide, which makes subsequent separation difficult and restricts its large-scale development. Consequently, in the research of direct ethanol production from syngas, the key points to improve the process economics and promote the development of this technology are to improve the selectivity of ethanol and develop the efficient catalysts. Mo-based catalysts can be employed for low-hydrogen syngas. At the same time, it is challenging to deposit carbon, exhibits robust resistance to sulfur poisoning, and demonstrates excellent stability, which also extends the reaction cycle. However, the methanol content of the alcohol product is relatively high. Although the use of Fischer-Tropsch element modification can significantly reduce the methanol selectivity, it will inevitably lead to the problem of broadening the distribution of alcohols. In recent years, there has been a growing attention in the preparation of catalysts using non-thermal plasma technology. Non-thermal plasma comprises not only electrons, ions, molecules and free radicals, but also photons and excited substances. Previous studies have demonstrated that the non-thermal plasma method can induce alterations in the nucleation of the active phase and the crystal growth mode in the preparation of catalysts. Concurrently, for thermodynamically unfavorable reactions, the utilization of non-thermal plasma technology can disrupt the thermodynamic equilibrium limit, thereby facilitating the reaction. In this study, Mo-based oxide and sulfide composite catalysts were prepared from the precursor of molybdenum sulfide by two distinct methods: the conventional thermal method and the RF non-thermal plasma method. The catalytic performance of Mo-based oxide and sulfide composite catalysts for the synthesis of ethanol from syngas was then investigated. A range of analytical techniques were employed to investigate the physical and chemical properties of the molybdenum-based oxygen-sulfur complex catalysts synthesized by different preparation methods. These included XRD, UV-visible, HR-TEM, SEM, HAADF-STEM, XPS, CO-TPD, H2-TPD, CO2-TPD and In-situ DRIFTS. Moreover, the objective was also to ascertain the impact of the physical and chemical properties on the catalytic performance of the different catalysts. Among them, the MOS-P catalyst exhibited the best catalytic performance. Under the reaction conditions of 6 MPa, 320 ℃, and a space velocity of 4500 h-1, the CO conversion reached 22.5%. The selectivity of total alcohols was 71.4%, with ethanol accounting for 29.1% of the total alcohols. This research will provide theoretical guidance for the directional conversion of syngas and serves as a reference for the design and preparation of new molybdenum-based materials. Ethanol is a significant chemical feedstock, which can be employed not only as a raw material for chemicals and polymers, but also as an additive to petrol. It is typically produced in industry through either fermentation or ethylene hydration. In light of the growing demand for ethanol, it is imperative to investigate the potential of multi-channel production of ethanol. One-step ethanol production from syngas represents a significant method of ethanol production from non-fossil oil energy sources, and it is also an important means of clean utilization of coal. The cost of direct ethanol production from syngas is relatively low, but the distribution of alcohols with different carbon numbers in the alcohol product is wide, which makes subsequent separation difficult and restricts its large-scale development. Consequently, in the research of direct ethanol production from syngas, the key points to improve the process economics and promote the development of this technology are to improve the selectivity of ethanol and develop the efficient catalysts. Mo-based catalysts can be employed for low-hydrogen syngas. At the same time, it is challenging to deposit carbon, exhibits robust resistance to sulfur poisoning, and demonstrates excellent stability, which also extends the reaction cycle. However, the methanol content of the alcohol product is relatively high. Although the use of Fischer-Tropsch element modification can significantly reduce the methanol selectivity, it will inevitably lead to the problem of broadening the distribution of alcohols. In recent years, there has been a growing attention in the preparation of catalysts using non-thermal plasma technology. Non-thermal plasma comprises not only electrons, ions, molecules and free radicals, but also photons and excited substances. Previous studies have demonstrated that the non-thermal plasma method can induce alterations in the nucleation of the active phase and the crystal growth mode in the preparation of catalysts. Concurrently, for thermodynamically unfavorable reactions, the utilization of non-thermal plasma technology can disrupt the thermodynamic equilibrium limit, thereby facilitating the reaction. In this study, Mo-based oxide and sulfide composite catalysts were prepared from the precursor of molybdenum sulfide by two distinct methods: the conventional thermal method and the RF non-thermal plasma method. The catalytic performance of Mo-based oxide and sulfide composite catalysts for the synthesis of ethanol from syngas was then investigated. A range of analytical techniques were employed to investigate the physical and chemical properties of the molybdenum-based oxygen-sulfur complex catalysts synthesized by different preparation methods. These included XRD, UV-visible, HR-TEM, SEM, HAADF-STEM, XPS, CO-TPD, H2-TPD, CO2-TPD and In-situ DRIFTS. Moreover, the objective was also to ascertain the impact of the physical and chemical properties on the catalytic performance of the different catalysts. Among them, the MOS-P catalyst exhibited the best catalytic performance. Under the reaction conditions of 6 MPa, 320 ℃, and a space velocity of 4500 h-1, the CO conversion reached 22.5%. The selectivity of total alcohols was 71.4%, with ethanol accounting for 29.1% of the total alcohols. This research will provide theoretical guidance for the directional conversion of syngas and serves as a reference for the design and preparation of new molybdenum-based materials.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.08848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.08848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang;This article presents the data of the published paper: High resolution vibronic state-specific dissociation of NO2+ in the 10.0–15.5 eV energy range by synchrotron double imaging photoelectron photoion coincidence (Phys. Chem. Chem. Phys., 2020, 22, 1974) 本文展示了已发表论文的数据:High resolution vibronic state-specific dissociation of NO2+ in the 10.0–15.5 eV energy range by synchrotron double imaging photoelectron photoion coincidence (Phys. Chem. Chem. Phys., 2020, 22, 1974)
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02615&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:Science Data Bank Authors: Xiaofeng Tang; Xuejun Gu; Xiaoxiao Lin; Weijun Zhang;This article presents the data of the published paper: Vacuum ultraviolet photodynamics of the methyl peroxy radical studied by double imaging photoelectron photoion coincidences (J. Chem. Phys. 152, 104301 (2020)) 本文展示了已发表论文的数据:Vacuum ultraviolet photodynamics of the methyl peroxy radical studied by double imaging photoelectron photoion coincidences (J. Chem. Phys. 152, 104301 (2020))
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.02612&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2024Publisher:Science Data Bank Authors: Xiaoyang Song;Janzen-Connell (JC) effects, hypothesized to be mostly driven by negative plant-soil feedbacks (PSFs), are considered to be the key mechanism that regulates tropical forest plant diversity and coexistence. However, intraspecific variation in JC effects may weaken this mechanism, with the strength of PSFs being a potentially key variable process. We conducted a manipulated experiment with seedlings from two populations of Pometia pinnata (Sapindaceae), a tropical tree species in southwest China. We aimed to measure the intraspecific difference in PSF magnitude caused by inoculating the soil from different P. pinnata source populations and growing seedlings under differing light intensity and water availability treatments, and at varying plant densities. We found negative PSFs for both populations with the inoculum soil originating from the same sites, but PSFs differed significantly with the inoculum soil from different sites. PSF strength responded differently to biotic and abiotic drivers; PSF strength was weaker in low moisture and high light treatments than in high moisture and low light treatments. Our study documents intraspecific variation in JC effects: specifically, P. pinnata have less defences to their natively-sourced soil, but are more defensive to the soil feedbacks from soil sourced from other populations. Our results imply that drought and light intensity tended to weaken JC effects, which may result in loss of species diversity with climate change. Janzen-Connell (JC) effects, hypothesized to be mostly driven by negative plant-soil feedbacks (PSFs), are considered to be the key mechanism that regulates tropical forest plant diversity and coexistence. However, intraspecific variation in JC effects may weaken this mechanism, with the strength of PSFs being a potentially key variable process. We conducted a manipulated experiment with seedlings from two populations of Pometia pinnata (Sapindaceae), a tropical tree species in southwest China. We aimed to measure the intraspecific difference in PSF magnitude caused by inoculating the soil from different P. pinnata source populations and growing seedlings under differing light intensity and water availability treatments, and at varying plant densities. We found negative PSFs for both populations with the inoculum soil originating from the same sites, but PSFs differed significantly with the inoculum soil from different sites. PSF strength responded differently to biotic and abiotic drivers; PSF strength was weaker in low moisture and high light treatments than in high moisture and low light treatments. Our study documents intraspecific variation in JC effects: specifically, P. pinnata have less defences to their natively-sourced soil, but are more defensive to the soil feedbacks from soil sourced from other populations. Our results imply that drought and light intensity tended to weaken JC effects, which may result in loss of species diversity with climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.17001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.57760/sciencedb.17001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu