- home
- Advanced Search
- Energy Research
- 2021-2025
- 11. Sustainability
- Tsinghua University
- Energy Research
- 2021-2025
- 11. Sustainability
- Tsinghua University
Research data keyboard_double_arrow_right Dataset 2021Publisher:IEEE DataPort Authors: Zhuo, Zhenyu;doi: 10.21227/gv9p-2n61
This dataset provides the data applied in the case studies of the manuscript "Backcasting the Techno-economic Targets For Constructing Low-carbon Power Systems". Both the modified Garver’s 6-bus and realistic Northwest China power system are presented here, in two excel files respectively. The datasets include detailed information about buses, units, existing corridors, and candidate corridors.Average cost variations and load growth rate over the planning period are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21227/gv9p-2n61&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21227/gv9p-2n61&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Moses Jeremiah Barasa Kabeyi; Oludolapo Akanni Olanrewaju;The greatest sustainability challenge facing humanity today is the greenhouse gas emissions and the global climate change with fossil fuels led by coal, natural gas and oil contributing 61.3% of global electricity generation in the year 2020. The cumulative effect of the Stockholm, Rio, and Johannesburg conferences identified sustainable energy development (SED) as a very important factor in the sustainable global development. This study reviews energy transition strategies and proposes a roadmap for sustainable energy transition for sustainable electricity generation and supply in line with commitments of the Paris Agreement aimed at reducing greenhouse gas emissions and limiting the rise in global average temperature to 1.5°C above the preindustrial level. The sustainable transition strategies typically consist of three major technological changes namely, energy savings on the demand side, generation efficiency at production level and fossil fuel substitution by various renewable energy sources and low carbon nuclear. For the transition remain technically and economically feasible and beneficial, policy initiatives are necessary to steer the global electricity transition towards a sustainable energy and electricity system. Large-scale renewable energy adoption should include measures to improve efficiency of existing nonrenewable sources which still have an important cost reduction and stabilization role. A resilient grid with advanced energy storage for storage and absorption of variable renewables should also be part of the transition strategies. From this study, it was noted that whereas sustainable development has social, economic, and environmental pillars, energy sustainability is best analysed by five-dimensional approach consisting of environmental, economic, social, technical, and institutional/political sustainability to determine resource sustainability. The energy transition requires new technology for maximum use of the abundant but intermittent renewable sources a sustainable mix with limited nonrenewable sources optimized to minimize cost and environmental impact but maintained quality, stability, and flexibility of an electricity supply system. Technologies needed for the transition are those that use conventional mitigation, negative emissions technologies which capture and sequester carbon emissions and finally technologies which alter the global atmospheric radiative energy budget to stabilize and reduce global average temperature. A sustainable electricity system needs facilitating technology, policy, strategies and infrastructure like smart grids, and models with an appropriate mix of both renewable and low carbon energy sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.743114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 337 citations 337 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.743114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Springer Science and Business Media LLC Chongqing Kang; Meng Wang; Meng Wang; Wendong Wei; Xi Liang; Qing Yang; Pengfei Zhang; Kuishuang Feng; Jiashuo Li; Ning Zhang; Jing Meng; Dabo Guan; Dabo Guan; Bin Chen; Jinjun Xue; Jinjun Xue; Jinjun Xue; Yaohua Cheng; Haoqi Qian;China has built the world’s largest power transmission infrastructure by consuming massive volumes of greenhouse gas- (GHG-) intensive products such as steel. A quantitative analysis of the carbon implications of expanding the transmission infrastructure would shed light on the trade-offs among three connected dimensions of sustainable development, namely, climate change mitigation, energy access and infrastructure development. By collecting a high-resolution inventory, we developed an assessment framework of, and analysed, the GHG emissions caused by China’s power transmission infrastructure construction during 1990–2017. We show that cumulative embodied GHG emissions have dramatically increased by more than 7.3 times those in 1990, reaching 0.89 GtCO2-equivalent in 2017. Over the same period, the gaps between the well-developed eastern and less-developed western regions in China have gradually narrowed. Voltage class, transmission-line length and terrain were important factors that influenced embodied GHG emissions. We discuss measures for the mitigation of GHG emissions from power transmission development that can inform global low-carbon infrastructure transitions. Expanding energy infrastructure has been vital to China’s development plans, but has had negative consequences. This study finds that in 2017 the level of embodied greenhouse gas emissions from the expansion of China’s power transmission infrastructure increased by more than 7.3 times that in 1990.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00704-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00704-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mingsheng Zhang; Jinping Ma; Zixu Yang; Baolong Wang; Rujin Wang; Xiuping Zhang; Wenxing Shi; Hansong Xiao;Abstract Air source heat pumps (ASHPs) are widely used in various types of buildings in different regions of China. Considering the significant differences in the characteristics in heat source side and user side, providing different products for different zones is an effective strategy to promote the systematic development of the ASHP technology. To realize the goal of energy conservation, standard rating conditions are extremely important. The principles for determining the standard rating conditions based on a two-side (heat source/user side) multi-grade (different conditions) method were proposed along with the development of related standards. Therefore, the establishment of standard rating condition is introduced and summarized systematically. For heat source side, the standard rating conditions for heating were classified into four types according to the lowest ambient temperature (−25, −12, −2, 7 °C), while for cooling they were constant (35 °C). For user side, the conditions for supply air (20/27 °C for heating/ cooling), floor heating (35 °C), radiator (50 °C), fan coil unit (41/7 °C for heating/cooling), domestic hot water (55 °C), and industrial use were also determined. This study introduced the implications on ASHP by different standard rating conditions, especially the technical requirements, which indicated the necessity of providing different system cycles and compressors. The energy savings and economic benefits were also evaluated. The primary energy saving rate reached 15.3% and 41.6% compared with coal heating and conventional ASHP respectively by using low ambient temperature ASHP. The results showed that these standards have been satisfactorily developed.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2021.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2021.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Huzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; +2 AuthorsHuzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; Khalil Ur Rahman; Nadeem Ahmed Sheikh;doi: 10.3390/su15086864
The over-exploitation of groundwater resources is a significant concern due to the potential risks associated with the depletion of this valuable freshwater source. Future planning must consider changes in groundwater availability and urban expansion which are critical for understanding urban growth patterns. This study aims to investigate the impact of land cover change on groundwater depletion. Further, the Land surface temperature (LST) analysis has been performed to find the spatial spread of urbanization and its impact on surface temperature. The Gravity Recovery and Climate Experiment (GRACE) data for groundwater storage monitoring and Landsat data for land cover and LST mapping have been used. The GRACE-based Groundwater Storage (GWS) anomaly has been correlated with Tropical Rainfall Measuring Mission (TRMM)-based precipitation data. The GWS is further cross validated with the groundwater monitoring stations in the study area and the correlation of 0.7 is found. The time series analysis of GWS and the land cover maps with a decadal interval from 1990 to 2020 has been developed to find the impact of groundwater change due to urbanization. The results demonstrate a rapid increase in groundwater depletion and urbanization rates over the past decade. The LST spatial pattern is increasing similarly with the study area’s urban expansion, indicating the temperature rise due to urbanization. The study highlights the limitation of effective policies to regulate groundwater extraction in urban areas and the importance of proper planning to ensure the long-term sustainability of freshwater resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Senchang Hu; Yunhong Wang; Wenzhe Tang;doi: 10.3390/su151411072
International economic cooperation accelerates the flow of capital, technology, labor, and other factors between different countries, which promotes global sustainable development. Building infrastructure construction is an important way to strengthen social development, and absorbing foreign capital is an effective way for developing countries to improve their infrastructure and to promote economic development. This study puts forward the factors that have influenced China’s investment in international engineering projects, and it constructs a panel data regression model for empirical testing. The study shows that, first, international infrastructure investment tends to select countries or regions with good condition of highway infrastructure. Second, international infrastructure investment tends to choose countries or regions with low development level of port and power infrastructure. Third, bilateral diplomatic visits play a significant role in promoting international infrastructure investment. Fourth, international infrastructure investment tends to choose countries or regions with good resource endowment. This study reveals the influencing factors and the mechanisms for the choices of location for China’s investment in international engineering projects, providing a theoretical framework for investors to optimize international infrastructure investment and management, as well as providing the policy references for developing countries to attract international infrastructure investment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151411072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151411072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xuyuan Kang; Da Yan; Jingjing An; Yuan Jin; Hongsan Sun;Abstract Occupancy schedule is one of the essential inputs for building performance simulation. Current designers and researchers refer to the occupancy schedules from energy standards such as ASHRAE 90.1, which was initially published in 1989 and may not apply to the occupancy profiles of the current circumstances. With the advances of mobile communication networks and positioning services, the mobile positioning data has been made available for researchers to obtain and extract real occupancy profiles for buildings of various types. This research utilizes mobile positioning data from social media platforms to extract typical weekly occupancy profiles of non-residential buildings by cluster analysis. The paper investigated the temporal distributions and heterogeneous features for typical profiles with the perspective of two descriptive parameters: peak ratio and daily total occupancy ratio, which represent the deviation of occupancy across the different days of a week. The proposed typical profiles are then compared with the reference profiles from ASRHAE Standards and the impact on energy simulation results is evaluated. Results suggests significant difference on energy load profiles and load distributions with the real occupancy profiles, and this method can prominently contribute to optimal building design strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tao Yang; Kangxin An; Weize Song; Xiaoling Zhang; Heng Li; Can Wang;Abstract Urban built environment regulations can effectively mitigate traffic CO2 emissions. Thus, it is critical to quantify the elasticities of altering built environment configurations. To address this issue, we have built nationwide spatial autoregressive models to differentiate between localized and spillover effects across 325 Chinese cities in the years of 2005 and 2015. Our results indicate that a 1% increase in built-up areas’ size, compactness, and isolation is associated with increases of 0.35%, −0.14%, and 0.13%, respectively, in adjacent traffic CO2 emissions. The underlying reason is that the spatial configurations of built environment do not only systemically affect the probability, frequency, speed, and distance of intracity motorised travels, but also have impacts on the intercity transboundary mobility of motor vehicles. In addition, the built-up areas’ compactness effect has an antagonistic relation with the per capita GDP effect. Thus, our findings provide evidence that the built environment configuration-related measures can benefit traffic CO2 emission reductions in adjacent cities. It is therefore necessary for policymakers to make a traffic CO2 mitigation strategy at the city agglomeration level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Royal Society of Chemistry (RSC) Hua Lun Zhu; Qiang Hu; George Manos; Dan J. L. Brett; Dingding Yao; Lu Yu; Paul R. Shearing; Ye Shui Zhang; Chunfei Wu; Paul T. Williams; Ming Zhao; Dan Xu; Dan Xu;doi: 10.1039/d1se00619c
handle: 2164/17707
Thermo-chemical conversion of carbonaceous wastes such as tyres, plastics, biomass and crude glycerol is a promising technology compared to traditional waste treatment options (e.g. incineration and landfill).
CORE arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17707Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00619c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 16 Powered bymore_vert CORE arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17707Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00619c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Zefang Yin; Chaojie Cui; Xiang Yu; Wanghua Zhao; Dexi Lin; Yu Zhang; Kang Li; Weizhong Qian;AbstractA new technical route of organic matter capture and carbon fixation is proposed in response of the increasingly strict emission standards of volatile organic compounds (VOCs) in petrochemical industry and the Chinese national strategic development goals of carbon peak and carbon neutralization. A closed loop from raw materials to adsorbents for gas treatment can be achieved by two key technical characteristics: (1) construct a new mesoporous adsorbent with complete desorption and regeneration function by carbon nanotubes (CNTs); (2) convert gaseous organic matter which cannot be recycled in liquid/gas state to CNTs. It realizes the resource integration of "turning waste into treasure" and maximizes the carbon emission reduction effect of waste gas treatment process without consuming extra precious fossil fuel, compared with the traditional technologies of VOCs treatments, including combustion or catalytic oxidation. What’s more, the increase in supply of various green electricity is expected to change the current situation of large investment and heavy cost burden of environmental protection technology, and make a great contribution to the national carbon peak and carbon neutrality policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-022-00028-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-022-00028-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:IEEE DataPort Authors: Zhuo, Zhenyu;doi: 10.21227/gv9p-2n61
This dataset provides the data applied in the case studies of the manuscript "Backcasting the Techno-economic Targets For Constructing Low-carbon Power Systems". Both the modified Garver’s 6-bus and realistic Northwest China power system are presented here, in two excel files respectively. The datasets include detailed information about buses, units, existing corridors, and candidate corridors.Average cost variations and load growth rate over the planning period are also provided.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21227/gv9p-2n61&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21227/gv9p-2n61&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Moses Jeremiah Barasa Kabeyi; Oludolapo Akanni Olanrewaju;The greatest sustainability challenge facing humanity today is the greenhouse gas emissions and the global climate change with fossil fuels led by coal, natural gas and oil contributing 61.3% of global electricity generation in the year 2020. The cumulative effect of the Stockholm, Rio, and Johannesburg conferences identified sustainable energy development (SED) as a very important factor in the sustainable global development. This study reviews energy transition strategies and proposes a roadmap for sustainable energy transition for sustainable electricity generation and supply in line with commitments of the Paris Agreement aimed at reducing greenhouse gas emissions and limiting the rise in global average temperature to 1.5°C above the preindustrial level. The sustainable transition strategies typically consist of three major technological changes namely, energy savings on the demand side, generation efficiency at production level and fossil fuel substitution by various renewable energy sources and low carbon nuclear. For the transition remain technically and economically feasible and beneficial, policy initiatives are necessary to steer the global electricity transition towards a sustainable energy and electricity system. Large-scale renewable energy adoption should include measures to improve efficiency of existing nonrenewable sources which still have an important cost reduction and stabilization role. A resilient grid with advanced energy storage for storage and absorption of variable renewables should also be part of the transition strategies. From this study, it was noted that whereas sustainable development has social, economic, and environmental pillars, energy sustainability is best analysed by five-dimensional approach consisting of environmental, economic, social, technical, and institutional/political sustainability to determine resource sustainability. The energy transition requires new technology for maximum use of the abundant but intermittent renewable sources a sustainable mix with limited nonrenewable sources optimized to minimize cost and environmental impact but maintained quality, stability, and flexibility of an electricity supply system. Technologies needed for the transition are those that use conventional mitigation, negative emissions technologies which capture and sequester carbon emissions and finally technologies which alter the global atmospheric radiative energy budget to stabilize and reduce global average temperature. A sustainable electricity system needs facilitating technology, policy, strategies and infrastructure like smart grids, and models with an appropriate mix of both renewable and low carbon energy sources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.743114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 337 citations 337 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.743114&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Springer Science and Business Media LLC Chongqing Kang; Meng Wang; Meng Wang; Wendong Wei; Xi Liang; Qing Yang; Pengfei Zhang; Kuishuang Feng; Jiashuo Li; Ning Zhang; Jing Meng; Dabo Guan; Dabo Guan; Bin Chen; Jinjun Xue; Jinjun Xue; Jinjun Xue; Yaohua Cheng; Haoqi Qian;China has built the world’s largest power transmission infrastructure by consuming massive volumes of greenhouse gas- (GHG-) intensive products such as steel. A quantitative analysis of the carbon implications of expanding the transmission infrastructure would shed light on the trade-offs among three connected dimensions of sustainable development, namely, climate change mitigation, energy access and infrastructure development. By collecting a high-resolution inventory, we developed an assessment framework of, and analysed, the GHG emissions caused by China’s power transmission infrastructure construction during 1990–2017. We show that cumulative embodied GHG emissions have dramatically increased by more than 7.3 times those in 1990, reaching 0.89 GtCO2-equivalent in 2017. Over the same period, the gaps between the well-developed eastern and less-developed western regions in China have gradually narrowed. Voltage class, transmission-line length and terrain were important factors that influenced embodied GHG emissions. We discuss measures for the mitigation of GHG emissions from power transmission development that can inform global low-carbon infrastructure transitions. Expanding energy infrastructure has been vital to China’s development plans, but has had negative consequences. This study finds that in 2017 the level of embodied greenhouse gas emissions from the expansion of China’s power transmission infrastructure increased by more than 7.3 times that in 1990.
Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00704-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 105 citations 105 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Sustainabilit... arrow_drop_down Nature SustainabilityArticle . 2021 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41893-021-00704-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Mingsheng Zhang; Jinping Ma; Zixu Yang; Baolong Wang; Rujin Wang; Xiuping Zhang; Wenxing Shi; Hansong Xiao;Abstract Air source heat pumps (ASHPs) are widely used in various types of buildings in different regions of China. Considering the significant differences in the characteristics in heat source side and user side, providing different products for different zones is an effective strategy to promote the systematic development of the ASHP technology. To realize the goal of energy conservation, standard rating conditions are extremely important. The principles for determining the standard rating conditions based on a two-side (heat source/user side) multi-grade (different conditions) method were proposed along with the development of related standards. Therefore, the establishment of standard rating condition is introduced and summarized systematically. For heat source side, the standard rating conditions for heating were classified into four types according to the lowest ambient temperature (−25, −12, −2, 7 °C), while for cooling they were constant (35 °C). For user side, the conditions for supply air (20/27 °C for heating/ cooling), floor heating (35 °C), radiator (50 °C), fan coil unit (41/7 °C for heating/cooling), domestic hot water (55 °C), and industrial use were also determined. This study introduced the implications on ASHP by different standard rating conditions, especially the technical requirements, which indicated the necessity of providing different system cycles and compressors. The energy savings and economic benefits were also evaluated. The primary energy saving rate reached 15.3% and 41.6% compared with coal heating and conventional ASHP respectively by using low ambient temperature ASHP. The results showed that these standards have been satisfactorily developed.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2021.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijrefrig.2021.07.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Huzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; +2 AuthorsHuzaifah Zahran; Muhammad Zeeshan Ali; Khan Zaib Jadoon; Hammad Ullah Khan Yousafzai; Khalil Ur Rahman; Nadeem Ahmed Sheikh;doi: 10.3390/su15086864
The over-exploitation of groundwater resources is a significant concern due to the potential risks associated with the depletion of this valuable freshwater source. Future planning must consider changes in groundwater availability and urban expansion which are critical for understanding urban growth patterns. This study aims to investigate the impact of land cover change on groundwater depletion. Further, the Land surface temperature (LST) analysis has been performed to find the spatial spread of urbanization and its impact on surface temperature. The Gravity Recovery and Climate Experiment (GRACE) data for groundwater storage monitoring and Landsat data for land cover and LST mapping have been used. The GRACE-based Groundwater Storage (GWS) anomaly has been correlated with Tropical Rainfall Measuring Mission (TRMM)-based precipitation data. The GWS is further cross validated with the groundwater monitoring stations in the study area and the correlation of 0.7 is found. The time series analysis of GWS and the land cover maps with a decadal interval from 1990 to 2020 has been developed to find the impact of groundwater change due to urbanization. The results demonstrate a rapid increase in groundwater depletion and urbanization rates over the past decade. The LST spatial pattern is increasing similarly with the study area’s urban expansion, indicating the temperature rise due to urbanization. The study highlights the limitation of effective policies to regulate groundwater extraction in urban areas and the importance of proper planning to ensure the long-term sustainability of freshwater resources.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15086864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Senchang Hu; Yunhong Wang; Wenzhe Tang;doi: 10.3390/su151411072
International economic cooperation accelerates the flow of capital, technology, labor, and other factors between different countries, which promotes global sustainable development. Building infrastructure construction is an important way to strengthen social development, and absorbing foreign capital is an effective way for developing countries to improve their infrastructure and to promote economic development. This study puts forward the factors that have influenced China’s investment in international engineering projects, and it constructs a panel data regression model for empirical testing. The study shows that, first, international infrastructure investment tends to select countries or regions with good condition of highway infrastructure. Second, international infrastructure investment tends to choose countries or regions with low development level of port and power infrastructure. Third, bilateral diplomatic visits play a significant role in promoting international infrastructure investment. Fourth, international infrastructure investment tends to choose countries or regions with good resource endowment. This study reveals the influencing factors and the mechanisms for the choices of location for China’s investment in international engineering projects, providing a theoretical framework for investors to optimize international infrastructure investment and management, as well as providing the policy references for developing countries to attract international infrastructure investment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151411072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su151411072&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xuyuan Kang; Da Yan; Jingjing An; Yuan Jin; Hongsan Sun;Abstract Occupancy schedule is one of the essential inputs for building performance simulation. Current designers and researchers refer to the occupancy schedules from energy standards such as ASHRAE 90.1, which was initially published in 1989 and may not apply to the occupancy profiles of the current circumstances. With the advances of mobile communication networks and positioning services, the mobile positioning data has been made available for researchers to obtain and extract real occupancy profiles for buildings of various types. This research utilizes mobile positioning data from social media platforms to extract typical weekly occupancy profiles of non-residential buildings by cluster analysis. The paper investigated the temporal distributions and heterogeneous features for typical profiles with the perspective of two descriptive parameters: peak ratio and daily total occupancy ratio, which represent the deviation of occupancy across the different days of a week. The proposed typical profiles are then compared with the reference profiles from ASRHAE Standards and the impact on energy simulation results is evaluated. Results suggests significant difference on energy load profiles and load distributions with the real occupancy profiles, and this method can prominently contribute to optimal building design strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111264&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Tao Yang; Kangxin An; Weize Song; Xiaoling Zhang; Heng Li; Can Wang;Abstract Urban built environment regulations can effectively mitigate traffic CO2 emissions. Thus, it is critical to quantify the elasticities of altering built environment configurations. To address this issue, we have built nationwide spatial autoregressive models to differentiate between localized and spillover effects across 325 Chinese cities in the years of 2005 and 2015. Our results indicate that a 1% increase in built-up areas’ size, compactness, and isolation is associated with increases of 0.35%, −0.14%, and 0.13%, respectively, in adjacent traffic CO2 emissions. The underlying reason is that the spatial configurations of built environment do not only systemically affect the probability, frequency, speed, and distance of intracity motorised travels, but also have impacts on the intercity transboundary mobility of motor vehicles. In addition, the built-up areas’ compactness effect has an antagonistic relation with the per capita GDP effect. Thus, our findings provide evidence that the built environment configuration-related measures can benefit traffic CO2 emission reductions in adjacent cities. It is therefore necessary for policymakers to make a traffic CO2 mitigation strategy at the city agglomeration level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Royal Society of Chemistry (RSC) Hua Lun Zhu; Qiang Hu; George Manos; Dan J. L. Brett; Dingding Yao; Lu Yu; Paul R. Shearing; Ye Shui Zhang; Chunfei Wu; Paul T. Williams; Ming Zhao; Dan Xu; Dan Xu;doi: 10.1039/d1se00619c
handle: 2164/17707
Thermo-chemical conversion of carbonaceous wastes such as tyres, plastics, biomass and crude glycerol is a promising technology compared to traditional waste treatment options (e.g. incineration and landfill).
CORE arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17707Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00619c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 16 Powered bymore_vert CORE arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/17707Data sources: Bielefeld Academic Search Engine (BASE)Queen's University Belfast Research PortalArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d1se00619c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Zefang Yin; Chaojie Cui; Xiang Yu; Wanghua Zhao; Dexi Lin; Yu Zhang; Kang Li; Weizhong Qian;AbstractA new technical route of organic matter capture and carbon fixation is proposed in response of the increasingly strict emission standards of volatile organic compounds (VOCs) in petrochemical industry and the Chinese national strategic development goals of carbon peak and carbon neutralization. A closed loop from raw materials to adsorbents for gas treatment can be achieved by two key technical characteristics: (1) construct a new mesoporous adsorbent with complete desorption and regeneration function by carbon nanotubes (CNTs); (2) convert gaseous organic matter which cannot be recycled in liquid/gas state to CNTs. It realizes the resource integration of "turning waste into treasure" and maximizes the carbon emission reduction effect of waste gas treatment process without consuming extra precious fossil fuel, compared with the traditional technologies of VOCs treatments, including combustion or catalytic oxidation. What’s more, the increase in supply of various green electricity is expected to change the current situation of large investment and heavy cost burden of environmental protection technology, and make a great contribution to the national carbon peak and carbon neutrality policy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-022-00028-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43979-022-00028-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu