- home
- Advanced Search
- Energy Research
- 7. Clean energy
- Tsinghua University
- Energy Research
- 7. Clean energy
- Tsinghua University
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Shigang Zhang; Lanbin Liu; Lin Fu;Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Angela Santangelo; Da Yan; Xiaohang Feng; Simona Tondelli;handle: 11585/631408
Abstract The central role of occupants for achieving energy savings in residential buildings is increasingly recognised. Simulation programmes able to take into account occupant behaviour are considered to be powerful tools for bridging the gap between the predicted and the actual energy consumption for new buildings. Nevertheless, the majority of residential buildings that will constitute the housing stock in 2050 have already been built today, therefore occupant behaviour and building simulation tools need to be fully exploited for supporting the renovation of existing housing stock. The aim of this paper is to explore the role of occupant behaviour modelling in supporting decision-makers dealing with the design of renovation strategies for residential buildings. An Italian multi-family public housing building is assumed as case study to estimate the influence of three dimensions linked with occupant behaviour – management of the thermostat, management of the heating system, variation of building characteristics – on energy heating consumption. The results show that, while the occupant behaviour influences the heating loads up to 1/3 in case of high level of building retrofit, the less the building is renovated, the higher is the behavioural impact in absolute terms of energy reduction. Therefore, in order to be effective, renovation strategies are required to design appropriate informative instruments at an early stage to support behaviour changes towards responsible energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Jinwei Fu; Guang Yang; Guangming Zhang; Shu-Li Liu;pmid: 30328043
In order to enhance the efficiency and benefits of the sludge anaerobic digestion process, K2FeO4 was added to a sludge anaerobic digestion system, and its effects on the system were comprehensively investigated. Results showed that sludge anaerobic digestion was greatly improved by adding 500 mg/L K2FeO4. Biogas and methane productions were increased by 26.6 and 28.4%, respectively. Sludge reduction, protein removal, and the conversion efficiency of dissolved organics were all improved. The mechanism revealed that the disintegration of sludge flocs, enhancement of protease activity, and decrease of soluble sulfide toxicity on microorganisms contributed to biogas production and sludge reduction. Biogas quality was improved, benefitting from the decreasing H2S content in biogas; as additionally, the cost of biogas desulfuration was reduced. In the biogas slurry treatment, the PO43--P concentrations were decreased by 39%, which also reduced the cost of the dephosphorization processes at certain extent.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-018-3438-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-018-3438-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yixun Xue; Mohammad Shahidehpour; Zhaoguang Pan; Bin Wang; Quan Zhou; Qinglai Guo; Hongbin Sun;Massive adoptions of combined heat and power (CHP) units necessitate the coordinated operation of power system and district heating system (DHS). Exploiting the reconfigurable property of district heating networks (DHNs) provides a cost-effective solution to enhance the flexibility of the power system by redistributing heat loads in DHS. In this paper, a unit commitment considering combined electricity and reconfigurable heating network (UC-CERHN) is proposed to coordinate the day-ahead scheduling of power system and DHS. The DHS is formulated as a nonlinear and mixed-integer model with considering the reconfigurable DHN. Also, an auxiliary energy flow variable is introduced in the formed DHS model to make the commitment problem tractable, where the computational burdens are significantly reduced. Extensive case studies are presented to validate the effectiveness of the approximated model and illustrate the potential benefits of the proposed method with respect to congestion management and wind power accommodation. (Corresponding author:Hongbin Sun)
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.3036887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.3036887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Zongwei Liu; Fuquan Zhao; Weiqi Li; Han Hao;Abstract Natural gas vehicles offer the benefits of reducing oil use, CO2 emissions and air pollutants. Promoting the use of natural gas vehicles is considered as one of the most important strategies towards sustainable transportation. China made remarkable progress in promoting natural gas vehicles over recent years, and its 4.6 million natural gas vehicles in 2014 represented the world׳s largest natural gas vehicle fleet. In this paper, the development of natural gas vehicles in China is reviewed based on a triple-perspective (Fuel-Vehicle-Infrastructure) technical–economical framework. The review indicates that (a) pricing of vehicle-use Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG) is essential in determining natural gas vehicle development. A pricing principle similar to the fixed CNG/gasoline price ratio (0.75:1) should be applied to LNG/diesel price ratio; (b) for CNG passenger vehicles, the modified CNG vehicles, with ¥3000–5000 additional cost, is more attractive to consumers than originally manufactured CNG vehicles, with about ¥10,000 additional cost. Vehicle retrofit should be permitted by the government with the precondition that retrofit standards are strictly enforced; (c) for CNG/LNG transit buses, the deployment is strongly affected by local government׳s preference. In regions with sufficient natural gas supply, the government should prioritize the deployment of CNG/LNG transit buses rather than other technologies; (d) for LNG commercial vehicles, with ¥60,000–80,000 higher cost than their counterpart diesel vehicles, financial incentive is critical for their development. China׳s current vehicle subsidy scheme should be extended to cover LNG commercial vehicles; (e) regarding refueling infrastructures, interference with urban land-use planning and long-time administrative approval are the major barriers. Local governments should launch dedicated plans and strategies to support the further deployment of CNG/LNG refueling infrastructures.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2020Embargo end date: 01 Jan 2019 France, Netherlands, South Africa, United Kingdom, Italy, Poland, Italy, United Kingdom, Italy, Netherlands, Turkey, Italy, Spain, Portugal, Italy, Belarus, Netherlands, Norway, United Kingdom, Italy, Sweden, Germany, Italy, Spain, Germany, Turkey, Italy, Belarus, Netherlands, Czech Republic, China (People's Republic of), Italy, Italy, Italy, Italy, Chile, Czech Republic, Germany, Netherlands, China (People's Republic of), Spain, South Africa, Turkey, Norway, Germany, United Kingdom, China (People's Republic of), Italy, Australia, Denmark, Turkey, Australia, Australia, Italy, Italy, United States, TurkeyPublisher:Springer Science and Business Media LLC Funded by:EC | PROBIST, GSRIEC| PROBIST ,GSRIAad, Georges; Abbott, Brad; Abreu, Henso; Araujo Ferraz, Victor; Guth, Manuel; Gutierrez, Phillip; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Araujo Pereira, Rodrigo; Hadef, Asma; Hageboeck, Stephan; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamdaoui, Hassane; Arcangeletti, Chiara; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Han, Yi Fei; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Arce, Ayana; Hansen, Eva; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hanson, Emily Claire; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Arduh, Francisco Anuar; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard; Arguin, Jean-Francois; Hayden, Daniel; Hayes, Christopher; Hayes, Robin Leigh; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; He, Fudong; Heath, Matthew Peter; Hedberg, Vincent; Argyropoulos, Spyridon; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heidorn, William Dale; Heilman, Jesse; Heim, Sarah; Heim, Timon Frank-thomas; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Arling, Jan-Hendrik; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellesund, Simen; Helling, Cole Michael; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Armbruster, Aaron James; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernandez Jimenez, Yesenia; Herr, Holger; Herrmann, Maximilian Georg; Herrmann, Tim; Herten, Gregor; Armstrong, Alexander III; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Higashida, Akihiro; Higashino, Satoshi; Higon-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Abulaiti, Yiming; Arnaez, Olivier; Hill, John; Hill, Kurt Keys; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hinterkeuser, Florian; Hirose, Minoru; Hirose, Shigeki; Hirschbuehl, Dominic; Arnold, Hannah; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoenig, Friedrich; Hohn, David; Arrubarrena Tame, Zulit Paola; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Hommels, Bart; Honda, Shunsuke; Hong, Tae Min; Honig, Jan Cedric; Honle, Andreas; Hooberman, Benjamin Henry; Hopkins, Walter Howard; Artamonov, Andrei; Horii, Yasuyuki; Horn, Philipp; Horyn, Lesya Anna; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Artoni, Giacomo; Hrivnac, Julius; Hrynevich, Aliaksei; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Hu, Yi Fan; Huang, Dan Ping; Huang, Yicong; Artz, Sebastian; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huebner, Michael; Huegging, Fabian; Huffman, Todd Brian; Huhtinen, Mika; Hunter, Robert Francis; Huo, Peng; Hupe, Andre Marc; Asai, Shoji; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Hyrych, Sofiia; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Asbah, Nedaa; Iengo, Paolo; Ignazzi, Rosanna; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios;doi: 10.1007/jhep03(2020)179 , 10.3204/pubdb-2020-02525 , 10.48550/arxiv.1912.09866 , 10.17863/cam.66468 , 10.17863/cam.53552 , 10.17863/cam.69498
handle: 2066/218361 , https://repository.ubn.ru.nl/handle/2066/218361 , 11588/884357 , 11245.1/18bc9ce6-7e36-4673-bd77-df314f6020ed , 20.500.11851/9303 , 10852/83588 , 11250/2756168 , 10261/232887 , 10316/106311 , 10486/708879 , 10481/61851 , 20.500.11770/304198 , 11572/317931 , 11390/1182228 , 2108/275731 , 11590/388554 , 11573/1493191 , 11367/95123 , 11567/1103136 , 11568/1076219 , 11587/427313 , 11585/790275 , 1959.3/463676 , 11571/1370394 , 11343/252034 , 10210/463537 , 11411/2003
doi: 10.1007/jhep03(2020)179 , 10.3204/pubdb-2020-02525 , 10.48550/arxiv.1912.09866 , 10.17863/cam.66468 , 10.17863/cam.53552 , 10.17863/cam.69498
handle: 2066/218361 , https://repository.ubn.ru.nl/handle/2066/218361 , 11588/884357 , 11245.1/18bc9ce6-7e36-4673-bd77-df314f6020ed , 20.500.11851/9303 , 10852/83588 , 11250/2756168 , 10261/232887 , 10316/106311 , 10486/708879 , 10481/61851 , 20.500.11770/304198 , 11572/317931 , 11390/1182228 , 2108/275731 , 11590/388554 , 11573/1493191 , 11367/95123 , 11567/1103136 , 11568/1076219 , 11587/427313 , 11585/790275 , 1959.3/463676 , 11571/1370394 , 11343/252034 , 10210/463537 , 11411/2003
Abstract The dynamics of isolated-photon plus two-jet production in pp collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb−1. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, γ + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.
CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2756168Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/83588Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288766Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252034Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/7ph7j97rData sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275731Data sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep03(2020)179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 50 Powered bymore_vert CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2756168Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/83588Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288766Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252034Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/7ph7j97rData sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275731Data sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep03(2020)179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhi-Zhu He; Sicong Tan; Xiao-Hu Yang; Jing Liu; Jing Liu;Abstract In this paper, a finned heat pipe assisted passive heat sink based on a newly emerging high performance phase change material (PCM), the low melting point metal (LMPM), was developed for thermal buffering of high power electronics which works intermittently with heat generation rate up to 1000 W (10 W/cm2). Firstly, thermal performances of the PCM heat sink under different thermal shocks (from 200 W to 1000 W) were experimentally evaluated, in comparison with that of an organic PCM which has similar melting point. It was found that, the former one can prolong the working duration 1.4–2.4 times that of the latter one. Then, the performance of the heat sink was improved through reducing the contact thermal resistance and by increasing the fin number. Furtherly, an air cooling radiator was configured to accelerate the solidification process of the PCM module, which makes it capable of maintaining its highest temperature below 85 °C under 1000 W periodic thermal shock (10 min on and 15 min off). Moreover, energy dispersive spectrometer (EDS) analysis was conducted to verify the compatibility of the LMPM PCM and the structural materials. Finally, a simplified numerical model was developed and validated for the currently constructed finned heat pipe assisted LMPM PCM heat sink, which can be much helpful for future practical thermal design and optimization of this kind of thermal buffering module.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abdul Raheem; Ming Zhao; Wafa Dastyar; Abdul Qadir Channa; Guozhao Ji; Yeshui Zhang;Abstract This research focuses on parametric influence on product distribution and syngas production from conventional gasification. Three experimental parameters at three different levels of temperature (700, 800 and 900 °C), sugarcane bagasse loading (2, 3 and 4 g) and residence time (10, 20 and 30 min) were studied using horizontal axis tubular furnace. Response Surface Methodology supported by central composite design was adopted in order to investigate parameters impact on product distribution (i.e., gas, tar and char) and gaseous products (i.e., H2, CO, CO2 and CH4). The highest H2 fraction obtained was 42.88 mol% (36.91 g-H2 kg-biomass−1) at 3 g of sugarcane bagasse loading, 900 °C and 30 min reaction time. The temperature was identified as the most influential parameter followed by reaction time for H2 production and diminishing the bio-tar and char yields. An increase in sugarcane bagasse loading, on other hand, favored the production of bio-tar, CO2 and CH4 production. The statistical analysis verified temperature as most significant (p-value 0.0008) amongst the parameters investigated for sugarcane bagasse biomass gasification.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:EC | DEW-COOL-4-CDCEC| DEW-COOL-4-CDCAuthors: Liu Y; Golizadeh Akhlaghi Y; Zhao X; Li J;Abstract This paper investigated the cooling performance of a high-efficiency dew-point evaporative cooler with optimised air and water flow arrangement using the combined experimental and numerical simulation method. The experimental results showed that the wet-bulb efficiency of the dew-point evaporative cooler was increased by 29.3% and COP was increased by 34.6%, compared to the existing commercial dew point air cooler of the same capacity. An improved two-dimensional, multi-factor engaged numerical model which can scale up and optimize the size and capacity of the cooler was developed. The numerical predictions agreed well with the experimental results, indicating that the cooling rate of the dew-point evaporative cooler is influenced by the dew-point evaporative cooler structure. The cooling efficiency of the dew-point evaporative cooler with corrugated plates is more than 10% higher than with flat plates and the cooling efficiency of the dew-point evaporative cooler with the actual flow arrangement is only 62%–67% that of a dew-point evaporative cooler with an ideal counter-flow arrangement. The cooling efficiency can be improved by increasing the channel length and the air entrance length, and decreasing the channel width and channel gap within a reasonable range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Xiuqiang He; Hua Geng; Geng Yang; Xin Zou;doi: 10.3390/en11092207
Wind farms (WFs) controlled with conventional vector control (VC) algorithms cannot be directly integrated to the power grid through line commutated rectifier (LCR)-based high voltage direct current (HVDC) transmission due to the lack of voltage support at its sending-end bus. This paper proposes a novel coordinated control scheme for WFs with LCC-HVDC integration. The scheme comprises two key sub-control loops, referred to as the reactive power-based frequency (Q-f) control loop and the active power-based voltage (P-V) control loop, respectively. The Q-f control, applied to the voltage sources inverters in the WFs, maintains the system frequency and compensates the reactive power for the LCR of HVDC, whereas the P-V control, applied to the LCR, maintains the sending-end bus voltage and achieves the active power balance of the system. Phase-plane analysis and small-signal analysis are performed to evaluate the stability of the system and facilitate the controller parameter design. Simulations performed on PSCAD/EMTDC verify the proposed control scheme.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2207/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2207/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Shigang Zhang; Lanbin Liu; Lin Fu;Abstract A great deal of heat is wasted in intensive public shower facilities, such as those in schools, barracks and natatoriums, which open up at specified time. It will contribute a lot to energy saving and environmental protection with significant economic benefits to recycle the exhaust heat. In this paper, we propose two different kinds of heat pumps (an electric heat pump and an absorption heat pump) in the heat recovery systems. In both system, the used shower water is drained through a pipe and collected in a gray water pool. When the wastewater reaches certain volume, the heat pump system will begin working and recycling heat. The wastewater is filtered and piped to the heat exchanger to exchange heat with the tap water whose temperature will increase from 12 °C to 25 °C with the wastewater temperature dropping from 30 °C to 17 °C. Then the wastewater is piped to the heat pump evaporator and the tap water is piped to the condenser for farther heating. According to the different characteristics of the electric heat pump and absorption heat pump, we also introduce the processes and control methods of different heat recovery systems in details in this paper. Based on a practical example, this paper analyzes and compares the economic and environmental benefits of three retrofitting schemes, including “exhaust heat recovery using electric heat pump”, “exhaust heat recovery using electric heat pump + gas boiler” and “exhaust heat recovery using direct-fired heat pump”. Then we find out that the heat recovery system using direct-fired absorption heat pump has lower energy consumption, less pollution, lower operating cost, and shorter payback period. And it has a promising practical application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.07.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Authors: Angela Santangelo; Da Yan; Xiaohang Feng; Simona Tondelli;handle: 11585/631408
Abstract The central role of occupants for achieving energy savings in residential buildings is increasingly recognised. Simulation programmes able to take into account occupant behaviour are considered to be powerful tools for bridging the gap between the predicted and the actual energy consumption for new buildings. Nevertheless, the majority of residential buildings that will constitute the housing stock in 2050 have already been built today, therefore occupant behaviour and building simulation tools need to be fully exploited for supporting the renovation of existing housing stock. The aim of this paper is to explore the role of occupant behaviour modelling in supporting decision-makers dealing with the design of renovation strategies for residential buildings. An Italian multi-family public housing building is assumed as case study to estimate the influence of three dimensions linked with occupant behaviour – management of the thermostat, management of the heating system, variation of building characteristics – on energy heating consumption. The results show that, while the occupant behaviour influences the heating loads up to 1/3 in case of high level of building retrofit, the less the building is renovated, the higher is the behavioural impact in absolute terms of energy reduction. Therefore, in order to be effective, renovation strategies are required to design appropriate informative instruments at an early stage to support behaviour changes towards responsible energy consumption.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2018.02.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Springer Science and Business Media LLC Authors: Jinwei Fu; Guang Yang; Guangming Zhang; Shu-Li Liu;pmid: 30328043
In order to enhance the efficiency and benefits of the sludge anaerobic digestion process, K2FeO4 was added to a sludge anaerobic digestion system, and its effects on the system were comprehensively investigated. Results showed that sludge anaerobic digestion was greatly improved by adding 500 mg/L K2FeO4. Biogas and methane productions were increased by 26.6 and 28.4%, respectively. Sludge reduction, protein removal, and the conversion efficiency of dissolved organics were all improved. The mechanism revealed that the disintegration of sludge flocs, enhancement of protease activity, and decrease of soluble sulfide toxicity on microorganisms contributed to biogas production and sludge reduction. Biogas quality was improved, benefitting from the decreasing H2S content in biogas; as additionally, the cost of biogas desulfuration was reduced. In the biogas slurry treatment, the PO43--P concentrations were decreased by 39%, which also reduced the cost of the dephosphorization processes at certain extent.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-018-3438-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-018-3438-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2021Embargo end date: 01 Jan 2020Publisher:Institute of Electrical and Electronics Engineers (IEEE) Yixun Xue; Mohammad Shahidehpour; Zhaoguang Pan; Bin Wang; Quan Zhou; Qinglai Guo; Hongbin Sun;Massive adoptions of combined heat and power (CHP) units necessitate the coordinated operation of power system and district heating system (DHS). Exploiting the reconfigurable property of district heating networks (DHNs) provides a cost-effective solution to enhance the flexibility of the power system by redistributing heat loads in DHS. In this paper, a unit commitment considering combined electricity and reconfigurable heating network (UC-CERHN) is proposed to coordinate the day-ahead scheduling of power system and DHS. The DHS is formulated as a nonlinear and mixed-integer model with considering the reconfigurable DHN. Also, an auxiliary energy flow variable is introduced in the formed DHS model to make the commitment problem tractable, where the computational burdens are significantly reduced. Extensive case studies are presented to validate the effectiveness of the approximated model and illustrate the potential benefits of the proposed method with respect to congestion management and wind power accommodation. (Corresponding author:Hongbin Sun)
IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.3036887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Sustainable EnergyArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tste.2020.3036887&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Zongwei Liu; Fuquan Zhao; Weiqi Li; Han Hao;Abstract Natural gas vehicles offer the benefits of reducing oil use, CO2 emissions and air pollutants. Promoting the use of natural gas vehicles is considered as one of the most important strategies towards sustainable transportation. China made remarkable progress in promoting natural gas vehicles over recent years, and its 4.6 million natural gas vehicles in 2014 represented the world׳s largest natural gas vehicle fleet. In this paper, the development of natural gas vehicles in China is reviewed based on a triple-perspective (Fuel-Vehicle-Infrastructure) technical–economical framework. The review indicates that (a) pricing of vehicle-use Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG) is essential in determining natural gas vehicle development. A pricing principle similar to the fixed CNG/gasoline price ratio (0.75:1) should be applied to LNG/diesel price ratio; (b) for CNG passenger vehicles, the modified CNG vehicles, with ¥3000–5000 additional cost, is more attractive to consumers than originally manufactured CNG vehicles, with about ¥10,000 additional cost. Vehicle retrofit should be permitted by the government with the precondition that retrofit standards are strictly enforced; (c) for CNG/LNG transit buses, the deployment is strongly affected by local government׳s preference. In regions with sufficient natural gas supply, the government should prioritize the deployment of CNG/LNG transit buses rather than other technologies; (d) for LNG commercial vehicles, with ¥60,000–80,000 higher cost than their counterpart diesel vehicles, financial incentive is critical for their development. China׳s current vehicle subsidy scheme should be extended to cover LNG commercial vehicles; (e) regarding refueling infrastructures, interference with urban land-use planning and long-time administrative approval are the major barriers. Local governments should launch dedicated plans and strategies to support the further deployment of CNG/LNG refueling infrastructures.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.05.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2020Embargo end date: 01 Jan 2019 France, Netherlands, South Africa, United Kingdom, Italy, Poland, Italy, United Kingdom, Italy, Netherlands, Turkey, Italy, Spain, Portugal, Italy, Belarus, Netherlands, Norway, United Kingdom, Italy, Sweden, Germany, Italy, Spain, Germany, Turkey, Italy, Belarus, Netherlands, Czech Republic, China (People's Republic of), Italy, Italy, Italy, Italy, Chile, Czech Republic, Germany, Netherlands, China (People's Republic of), Spain, South Africa, Turkey, Norway, Germany, United Kingdom, China (People's Republic of), Italy, Australia, Denmark, Turkey, Australia, Australia, Italy, Italy, United States, TurkeyPublisher:Springer Science and Business Media LLC Funded by:EC | PROBIST, GSRIEC| PROBIST ,GSRIAad, Georges; Abbott, Brad; Abreu, Henso; Araujo Ferraz, Victor; Guth, Manuel; Gutierrez, Phillip; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Araujo Pereira, Rodrigo; Hadef, Asma; Hageboeck, Stephan; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamdaoui, Hassane; Arcangeletti, Chiara; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Han, Yi Fei; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Arce, Ayana; Hansen, Eva; Hansen, Jorgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hanson, Emily Claire; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Arduh, Francisco Anuar; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard; Arguin, Jean-Francois; Hayden, Daniel; Hayes, Christopher; Hayes, Robin Leigh; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; He, Fudong; Heath, Matthew Peter; Hedberg, Vincent; Argyropoulos, Spyridon; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heidorn, William Dale; Heilman, Jesse; Heim, Sarah; Heim, Timon Frank-thomas; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Arling, Jan-Hendrik; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellesund, Simen; Helling, Cole Michael; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Armbruster, Aaron James; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernandez Jimenez, Yesenia; Herr, Holger; Herrmann, Maximilian Georg; Herrmann, Tim; Herten, Gregor; Armstrong, Alexander III; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Higashida, Akihiro; Higashino, Satoshi; Higon-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Abulaiti, Yiming; Arnaez, Olivier; Hill, John; Hill, Kurt Keys; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hinterkeuser, Florian; Hirose, Minoru; Hirose, Shigeki; Hirschbuehl, Dominic; Arnold, Hannah; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoenig, Friedrich; Hohn, David; Arrubarrena Tame, Zulit Paola; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Hommels, Bart; Honda, Shunsuke; Hong, Tae Min; Honig, Jan Cedric; Honle, Andreas; Hooberman, Benjamin Henry; Hopkins, Walter Howard; Artamonov, Andrei; Horii, Yasuyuki; Horn, Philipp; Horyn, Lesya Anna; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Artoni, Giacomo; Hrivnac, Julius; Hrynevich, Aliaksei; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Hu, Yi Fan; Huang, Dan Ping; Huang, Yicong; Artz, Sebastian; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huebner, Michael; Huegging, Fabian; Huffman, Todd Brian; Huhtinen, Mika; Hunter, Robert Francis; Huo, Peng; Hupe, Andre Marc; Asai, Shoji; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Hyrych, Sofiia; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Asbah, Nedaa; Iengo, Paolo; Ignazzi, Rosanna; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios;doi: 10.1007/jhep03(2020)179 , 10.3204/pubdb-2020-02525 , 10.48550/arxiv.1912.09866 , 10.17863/cam.66468 , 10.17863/cam.53552 , 10.17863/cam.69498
handle: 2066/218361 , https://repository.ubn.ru.nl/handle/2066/218361 , 11588/884357 , 11245.1/18bc9ce6-7e36-4673-bd77-df314f6020ed , 20.500.11851/9303 , 10852/83588 , 11250/2756168 , 10261/232887 , 10316/106311 , 10486/708879 , 10481/61851 , 20.500.11770/304198 , 11572/317931 , 11390/1182228 , 2108/275731 , 11590/388554 , 11573/1493191 , 11367/95123 , 11567/1103136 , 11568/1076219 , 11587/427313 , 11585/790275 , 1959.3/463676 , 11571/1370394 , 11343/252034 , 10210/463537 , 11411/2003
doi: 10.1007/jhep03(2020)179 , 10.3204/pubdb-2020-02525 , 10.48550/arxiv.1912.09866 , 10.17863/cam.66468 , 10.17863/cam.53552 , 10.17863/cam.69498
handle: 2066/218361 , https://repository.ubn.ru.nl/handle/2066/218361 , 11588/884357 , 11245.1/18bc9ce6-7e36-4673-bd77-df314f6020ed , 20.500.11851/9303 , 10852/83588 , 11250/2756168 , 10261/232887 , 10316/106311 , 10486/708879 , 10481/61851 , 20.500.11770/304198 , 11572/317931 , 11390/1182228 , 2108/275731 , 11590/388554 , 11573/1493191 , 11367/95123 , 11567/1103136 , 11568/1076219 , 11587/427313 , 11585/790275 , 1959.3/463676 , 11571/1370394 , 11343/252034 , 10210/463537 , 11411/2003
Abstract The dynamics of isolated-photon plus two-jet production in pp collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset corresponding to an integrated luminosity of 36.1 fb−1. Cross sections are measured as functions of a variety of observables, including angular correlations and invariant masses of the objects in the final state, γ + jet + jet. Measurements are also performed in phase-space regions enriched in each of the two underlying physical mechanisms, namely direct and fragmentation processes. The measurements cover the range of photon (jet) transverse momenta from 150 GeV (100 GeV) to 2 TeV. The tree-level plus parton-shower predictions from Sherpa and Pythia as well as the next-to-leading-order QCD predictions from Sherpa are compared with the measurements. The next-to-leading-order QCD predictions describe the data adequately in shape and normalisation except for regions of phase space such as those with high values of the invariant mass or rapidity separation of the two jets, where the predictions overestimate the data.
CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2756168Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/83588Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288766Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252034Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/7ph7j97rData sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275731Data sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep03(2020)179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 45visibility views 45 download downloads 50 Powered bymore_vert CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataUniversity of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2756168Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/83588Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288766Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252034Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/7ph7j97rData sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2003Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275731Data sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryPublikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Göttingen Research Online PublicationsArticle . 2020Data sources: Göttingen Research Online PublicationseScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversité Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep03(2020)179&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Zhi-Zhu He; Sicong Tan; Xiao-Hu Yang; Jing Liu; Jing Liu;Abstract In this paper, a finned heat pipe assisted passive heat sink based on a newly emerging high performance phase change material (PCM), the low melting point metal (LMPM), was developed for thermal buffering of high power electronics which works intermittently with heat generation rate up to 1000 W (10 W/cm2). Firstly, thermal performances of the PCM heat sink under different thermal shocks (from 200 W to 1000 W) were experimentally evaluated, in comparison with that of an organic PCM which has similar melting point. It was found that, the former one can prolong the working duration 1.4–2.4 times that of the latter one. Then, the performance of the heat sink was improved through reducing the contact thermal resistance and by increasing the fin number. Furtherly, an air cooling radiator was configured to accelerate the solidification process of the PCM module, which makes it capable of maintaining its highest temperature below 85 °C under 1000 W periodic thermal shock (10 min on and 15 min off). Moreover, energy dispersive spectrometer (EDS) analysis was conducted to verify the compatibility of the LMPM PCM and the structural materials. Finally, a simplified numerical model was developed and validated for the currently constructed finned heat pipe assisted LMPM PCM heat sink, which can be much helpful for future practical thermal design and optimization of this kind of thermal buffering module.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2018.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Abdul Raheem; Ming Zhao; Wafa Dastyar; Abdul Qadir Channa; Guozhao Ji; Yeshui Zhang;Abstract This research focuses on parametric influence on product distribution and syngas production from conventional gasification. Three experimental parameters at three different levels of temperature (700, 800 and 900 °C), sugarcane bagasse loading (2, 3 and 4 g) and residence time (10, 20 and 30 min) were studied using horizontal axis tubular furnace. Response Surface Methodology supported by central composite design was adopted in order to investigate parameters impact on product distribution (i.e., gas, tar and char) and gaseous products (i.e., H2, CO, CO2 and CH4). The highest H2 fraction obtained was 42.88 mol% (36.91 g-H2 kg-biomass−1) at 3 g of sugarcane bagasse loading, 900 °C and 30 min reaction time. The temperature was identified as the most influential parameter followed by reaction time for H2 production and diminishing the bio-tar and char yields. An increase in sugarcane bagasse loading, on other hand, favored the production of bio-tar, CO2 and CH4 production. The statistical analysis verified temperature as most significant (p-value 0.0008) amongst the parameters investigated for sugarcane bagasse biomass gasification.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.04.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:EC | DEW-COOL-4-CDCEC| DEW-COOL-4-CDCAuthors: Liu Y; Golizadeh Akhlaghi Y; Zhao X; Li J;Abstract This paper investigated the cooling performance of a high-efficiency dew-point evaporative cooler with optimised air and water flow arrangement using the combined experimental and numerical simulation method. The experimental results showed that the wet-bulb efficiency of the dew-point evaporative cooler was increased by 29.3% and COP was increased by 34.6%, compared to the existing commercial dew point air cooler of the same capacity. An improved two-dimensional, multi-factor engaged numerical model which can scale up and optimize the size and capacity of the cooler was developed. The numerical predictions agreed well with the experimental results, indicating that the cooling rate of the dew-point evaporative cooler is influenced by the dew-point evaporative cooler structure. The cooling efficiency of the dew-point evaporative cooler with corrugated plates is more than 10% higher than with flat plates and the cooling efficiency of the dew-point evaporative cooler with the actual flow arrangement is only 62%–67% that of a dew-point evaporative cooler with an ideal counter-flow arrangement. The cooling efficiency can be improved by increasing the channel length and the air entrance length, and decreasing the channel width and channel gap within a reasonable range.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018Publisher:MDPI AG Authors: Xiuqiang He; Hua Geng; Geng Yang; Xin Zou;doi: 10.3390/en11092207
Wind farms (WFs) controlled with conventional vector control (VC) algorithms cannot be directly integrated to the power grid through line commutated rectifier (LCR)-based high voltage direct current (HVDC) transmission due to the lack of voltage support at its sending-end bus. This paper proposes a novel coordinated control scheme for WFs with LCC-HVDC integration. The scheme comprises two key sub-control loops, referred to as the reactive power-based frequency (Q-f) control loop and the active power-based voltage (P-V) control loop, respectively. The Q-f control, applied to the voltage sources inverters in the WFs, maintains the system frequency and compensates the reactive power for the LCR of HVDC, whereas the P-V control, applied to the LCR, maintains the sending-end bus voltage and achieves the active power balance of the system. Phase-plane analysis and small-signal analysis are performed to evaluate the stability of the system and facilitate the controller parameter design. Simulations performed on PSCAD/EMTDC verify the proposed control scheme.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2207/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/9/2207/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092207&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu