- home
- Advanced Search
- Energy Research
- 7. Clean energy
- Russian
- Lomonosov Moscow State University
- Energy Research
- 7. Clean energy
- Russian
- Lomonosov Moscow State University
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: L.V, Nefedova; Yu.Yu, Rafikova;The importance of developing a risk management methodology for the development of the renewable energy sector in Russia is justified. The stages of researches on the problem of risk assessments and management in renewable energy in MSU since 2015 are considered. The results are described: a list of risk factors and methods of managing them by using different kinds of renewable energy sources; internal and external components of risk factors that depend and not depend on the developers of RE projects are identified. The author's methodology for assessing resource risks level in the solar energy industry based on the calculation of the variability of the statistical parameters of insolation is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6371859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6371859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Rafikova, Julia; Andreenko, Tatiana;Work is devoted to the use of methods of geoinformatics for the purposes of bioenergy. The main methods and trends in the development of this scientific area over the past 50 years are described. A review of international and domestic practice of research in this area has been carried out. Various methods of mapping bioenergy resources are presented, as well as tools that solve the problem of finding optimal places for placing energy facilities on biomass resources. The specifics of spatial data used in solving the problems of the bioenergy industry and the features of working with them in the environment of geographic information systems (GIS) are described.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Chekarev, Konstantin; Zalihanov, Alim;Equipment that converts kinetic wind energy into electricity, including floating wind turbines, have large dimensions because of low air density. A variant of a sailing power plant is known, which converts the energy of the wind flow into the energy of a water current, which is used to produce electricity, which allows reducing the size of the energy converter, but the efficiency of power plants decreases at the same time, since part of the energy of the wind flow is spent on moving the sailing vehicle. In addition, there are difficulties in transferring the generated energy to an external consumer. The efficiency of a sailing power plant can be improved if it is installed on the ground. In this case, the movement of a vehicle is used to generate electricity, while the problem of transferring the generated energy to an external consumer is removed. In addition, land-based sailing power plants expand the field of wind energy use. An analysis of possible ways to implement a land-based sailing power plant was carried out, and an experimental installation was created on which mock-ups of sailing power plants were tested in order to verify the functioning of the elements included in the experimental installation and to find structural elements that can be used in the implementation of a land-based sailing installation. The results of these studies are presented in the article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 18 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Zenodo D V Timcenko; A A Juravliov; V I Burciu; M L Sit; O I Goncharov;The paper presents deal with the heat pump designed mainly for heat supply systems using the qualitative law of regulation of the heat supply mode (constant flow rate of the heat carrier). For this purpose, an air-to-water heat pump with carbon dioxide as a refrigerant and compressor driven be gas piston unit is used. The aim of the work is to develop a scheme in which the position of the operating point of the heat pump compressor does not depend on fluctuations in the refrigerant flow rate, as well as using the heat produced by the gas engine - driven by the heat pump compressor. This goal achieves by elaboration of internal heat exchangers with an adjustable heat exchange surface area. The heat exchange surface area regulates by installing of an intermediate heat-conducting cylindrical element between the refrigerant and thermal agent circuits. The intermediate cylindrical element moved by using, for example, an electric stepper drive. The conditions, under which the sleeve can be considered as a thermally thin body. To increase the COP of the heat pump (HP), the additional heat exchanger, installed at the outlet of the ejector used in the pump has been used. It is. In the heat exchanger, the working fluid has been heated by using the waste heat of the gas piston unit (GPU. It had been shown that in the temperature control loop the PI controller may be used, and to compensate for the flow rate pulsations, it is necessary to use a combined control system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Zenodo Authors: Chekarev Konstantin; Zalihanov Alim;Installations that convert kinetic wind energy into electricity, including floating wind turbines, are large due to the low air density. The authors propose a sailing power plant that converts energy of the wind flow into energy of the water flow, which is used to generate electricity. That makes it possible to reduce the size of the energy converter. A model of a sailing power plant was created. It was madeas catamaran-wise, symmetrical with respect to the bow and stern, which makes cyclical movements along an arc of a circle in an angular interval specified with respect to the direction of the wind. Laboratory studies showed the fundamental feasibility ofthe installation, thoughits implementation requires to solve a number of problems, in particular, to determine design solutions to increase the speed of the catamaran. There were createdseveral versions of the catamaran model of different weights, with a different number of masts and sail areas, with which experimental studies were carried out. The article presents the results of these studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Berezkin, Mikhail; Degtyarev, Kirill; Sinyugin, Oleg;The article contains a rough estimate of global investment costs that are required for the global energy transition to zero-carbon economy by 2050. The evaluations are based on the data on global energy supply and its forecast to 2050, assumption that all the global energy needs are to be satisfied only through non-carbon facilities, and data on investment costs per unit for the facilities that use different types of non-carbon energy carriers. The authors conclude that the total costs of the energy transition worldwide are some $120 trillion, and that achieving the goal of totally non-carbon economy by the middle of the century would require a sharp, two-threefold, increase in investments in energy supply comparatively with the modern level, including acceleration in development of hydro and nuclear energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6369818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6369818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Zenodo Authors: Berezkin M. Yu.; Sinyugin O.A.;The work is devoted to economic and geographical features and prospects for the development of renewable energy in the world. Three main aspects are distinguished: structural, innovative and investment. The structure of world energy in the next decade is greatly diversified. High growth rates of investments in renewable energy demonstrate a significant potential for improvement. Renewable energy can be considered a high-tech innovative industry. A geographic shift has occurred in investments in renewable energy: developing countries have exceeded developed countries in terms of absolute level of investments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3737933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 31visibility views 31 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3737933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Zenodo Authors: Akimova, V.V.;The article is dedicated to a geographical analysis of the current state and prospects for the development of solar energy in the United States of America. This paper identifies the main features and patterns of the formation of the territorial structure of the industry in the region, as well as the factors that determined the development of solar energy. As a result of the study, we can conclude that there is now a gradual expansion of the geography of solar energy in the United States, contributing to the transformation of the territorial structure of the industry from monocentric to polycentric.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4139200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4139200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Zenodo Authors: Popova Elena;From the legal point of view, the article examines the problems of the functioning of the system of competitive selection by the state of enterprises participating in the renewable energy market for the purpose of their subsequent inclusion in the scheme of renewable energy generating facilities and their right to receive state support. The author considers the criteria for state selection, the procedure and conditions for its implementation at the regional level, the requirements and selection criteria for investment projects using the example of the Republic of Bashkortostan. Based on the results of consideration and analysis of the above issues, the author has identified the main practical problems of the implementation of this competitive selection system and gives recommendations on how to address them at the legislative level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Zenodo Authors: S Gvozdkova; N Bukeikhanov; А Nikishechkin;{"references": ["Schwarzburg, L. E., Ivanova, N. A., Ryabov, S. A., Gvozdkova, S., & Zmieva, C. A. (2012). Automation of maintenance of indicators of safety of machine-building technologies of formation. Life Safety, (S2), 1-24. (in Russian).", "Schwarzburg, L. E. (2008). Ecological support of technology of formation. The Bulletin of the Moscow State Technical University Stankin, (1), 38-43. (in Russian).", "Schwarzburg, L. E. (2010). Analysis of energy security of technological processes. Bulletin of the Moscow State Technical University Stankin, (4), 98-105. (in Russian).", "Ivanova, N. A. (2008). Principles of automating the reduction of environmental hazards of technological processes by the example of chemical pollution. Bulletin of the Moscow State Technical University Stankin, (3), 73-77. (in Russian).", "Bukeikhanov, N. R. (2009). Renovation of technological processes is an instrument of resource saving and enhancement of environmental safety. Bulletin of the Moscow State Technical University Stankin, (4), 21-24. (in Russian).", "Schwarzburg, L. E., Butrimova, E. V., & Drozdova, N. V. (2014). Development of an algorithm for automated forecasting of vibration and noise in a process environment. Vestnik MSTU \"Stankin, (4), 187-190. (in Russian).", "Schwarzburg, L. E. (2008). Human and environmental protection of automated engineering. Bulletin of the Moscow State Technical University Stankin, (3), 19-21. (in Russian).", "Guillot, A., & Meye, J. A. (2013). Bionics. When science imitates nature. Moscow: Tekhnosfera. 280. (in Russian).", "Gnatik, E. N. (2009). Genetic Engineering of Man: Challenges, Problems, Risks. Moscow: LIBROKOM, 240. (in Russian).", "Karenov, R. S. (2015) Otsenka potentsiala i perspektiv razvitiya gelioenergetiki v mire i Kazakhstane. Vestnik Karagandinskogo universiteta: Seriya Ekonomika, 1(77), 5-15. (in Russian).", "Koretko, O. V. (2003) Konstruktsii zenitnykh fonarey i steklyannykh krysh. Moscow: MArkHI, 48. (in Russian).", "Nikishechkin, A. P. (2006) Teoriya diskretnykh sistem upravleniya. Moscow: ITS GOU MGTU Stankin, 242. (in Russian)."]} The prospects of innovative lights of the new generation. These lights by the day conduct natural sunlight in the hollow, fibre-optic light guides through the roof into the interior rooms of enterprises, where there is no possibility to use windows or not enough daylight. At night and on cloudy days illumination is provided by incandescent lamps, halogen and LED lamps, the light of which is transmitted through the same light guides. This is especially important for fire-hazardous premises. Program implementation of the developed automated systems has the ability to quickly changeovers and change the control algorithms. The model of the automated process of this type of lighting was developed on the basis of a modified Petri net. The resulting operator formulas formalize and facilitate the programming process of the PLC, reducing the risk of errors in the relevant programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1246206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 37 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1246206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: L.V, Nefedova; Yu.Yu, Rafikova;The importance of developing a risk management methodology for the development of the renewable energy sector in Russia is justified. The stages of researches on the problem of risk assessments and management in renewable energy in MSU since 2015 are considered. The results are described: a list of risk factors and methods of managing them by using different kinds of renewable energy sources; internal and external components of risk factors that depend and not depend on the developers of RE projects are identified. The author's methodology for assessing resource risks level in the solar energy industry based on the calculation of the variability of the statistical parameters of insolation is presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6371859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 26visibility views 26 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6371859&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Rafikova, Julia; Andreenko, Tatiana;Work is devoted to the use of methods of geoinformatics for the purposes of bioenergy. The main methods and trends in the development of this scientific area over the past 50 years are described. A review of international and domestic practice of research in this area has been carried out. Various methods of mapping bioenergy resources are presented, as well as tools that solve the problem of finding optimal places for placing energy facilities on biomass resources. The specifics of spatial data used in solving the problems of the bioenergy industry and the features of working with them in the environment of geographic information systems (GIS) are described.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Chekarev, Konstantin; Zalihanov, Alim;Equipment that converts kinetic wind energy into electricity, including floating wind turbines, have large dimensions because of low air density. A variant of a sailing power plant is known, which converts the energy of the wind flow into the energy of a water current, which is used to produce electricity, which allows reducing the size of the energy converter, but the efficiency of power plants decreases at the same time, since part of the energy of the wind flow is spent on moving the sailing vehicle. In addition, there are difficulties in transferring the generated energy to an external consumer. The efficiency of a sailing power plant can be improved if it is installed on the ground. In this case, the movement of a vehicle is used to generate electricity, while the problem of transferring the generated energy to an external consumer is removed. In addition, land-based sailing power plants expand the field of wind energy use. An analysis of possible ways to implement a land-based sailing power plant was carried out, and an experimental installation was created on which mock-ups of sailing power plants were tested in order to verify the functioning of the elements included in the experimental installation and to find structural elements that can be used in the implementation of a land-based sailing installation. The results of these studies are presented in the article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 18 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6801760&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018Publisher:Zenodo D V Timcenko; A A Juravliov; V I Burciu; M L Sit; O I Goncharov;The paper presents deal with the heat pump designed mainly for heat supply systems using the qualitative law of regulation of the heat supply mode (constant flow rate of the heat carrier). For this purpose, an air-to-water heat pump with carbon dioxide as a refrigerant and compressor driven be gas piston unit is used. The aim of the work is to develop a scheme in which the position of the operating point of the heat pump compressor does not depend on fluctuations in the refrigerant flow rate, as well as using the heat produced by the gas engine - driven by the heat pump compressor. This goal achieves by elaboration of internal heat exchangers with an adjustable heat exchange surface area. The heat exchange surface area regulates by installing of an intermediate heat-conducting cylindrical element between the refrigerant and thermal agent circuits. The intermediate cylindrical element moved by using, for example, an electric stepper drive. The conditions, under which the sleeve can be considered as a thermally thin body. To increase the COP of the heat pump (HP), the additional heat exchanger, installed at the outlet of the ejector used in the pump has been used. It is. In the heat exchanger, the working fluid has been heated by using the waste heat of the gas piston unit (GPU. It had been shown that in the temperature control loop the PI controller may be used, and to compensate for the flow rate pulsations, it is necessary to use a combined control system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.2222343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Zenodo Authors: Chekarev Konstantin; Zalihanov Alim;Installations that convert kinetic wind energy into electricity, including floating wind turbines, are large due to the low air density. The authors propose a sailing power plant that converts energy of the wind flow into energy of the water flow, which is used to generate electricity. That makes it possible to reduce the size of the energy converter. A model of a sailing power plant was created. It was madeas catamaran-wise, symmetrical with respect to the bow and stern, which makes cyclical movements along an arc of a circle in an angular interval specified with respect to the direction of the wind. Laboratory studies showed the fundamental feasibility ofthe installation, thoughits implementation requires to solve a number of problems, in particular, to determine design solutions to increase the speed of the catamaran. There were createdseveral versions of the catamaran model of different weights, with a different number of masts and sail areas, with which experimental studies were carried out. The article presents the results of these studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 28 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094495&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Zenodo Authors: Berezkin, Mikhail; Degtyarev, Kirill; Sinyugin, Oleg;The article contains a rough estimate of global investment costs that are required for the global energy transition to zero-carbon economy by 2050. The evaluations are based on the data on global energy supply and its forecast to 2050, assumption that all the global energy needs are to be satisfied only through non-carbon facilities, and data on investment costs per unit for the facilities that use different types of non-carbon energy carriers. The authors conclude that the total costs of the energy transition worldwide are some $120 trillion, and that achieving the goal of totally non-carbon economy by the middle of the century would require a sharp, two-threefold, increase in investments in energy supply comparatively with the modern level, including acceleration in development of hydro and nuclear energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6369818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 32visibility views 32 download downloads 23 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.6369818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2020Publisher:Zenodo Authors: Berezkin M. Yu.; Sinyugin O.A.;The work is devoted to economic and geographical features and prospects for the development of renewable energy in the world. Three main aspects are distinguished: structural, innovative and investment. The structure of world energy in the next decade is greatly diversified. High growth rates of investments in renewable energy demonstrate a significant potential for improvement. Renewable energy can be considered a high-tech innovative industry. A geographic shift has occurred in investments in renewable energy: developing countries have exceeded developed countries in terms of absolute level of investments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3737933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 31visibility views 31 download downloads 17 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3737933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Zenodo Authors: Akimova, V.V.;The article is dedicated to a geographical analysis of the current state and prospects for the development of solar energy in the United States of America. This paper identifies the main features and patterns of the formation of the territorial structure of the industry in the region, as well as the factors that determined the development of solar energy. As a result of the study, we can conclude that there is now a gradual expansion of the geography of solar energy in the United States, contributing to the transformation of the territorial structure of the industry from monocentric to polycentric.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4139200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4139200&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:Zenodo Authors: Popova Elena;From the legal point of view, the article examines the problems of the functioning of the system of competitive selection by the state of enterprises participating in the renewable energy market for the purpose of their subsequent inclusion in the scheme of renewable energy generating facilities and their right to receive state support. The author considers the criteria for state selection, the procedure and conditions for its implementation at the regional level, the requirements and selection criteria for investment projects using the example of the Republic of Bashkortostan. Based on the results of consideration and analysis of the above issues, the author has identified the main practical problems of the implementation of this competitive selection system and gives recommendations on how to address them at the legislative level.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 15 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5094602&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Zenodo Authors: S Gvozdkova; N Bukeikhanov; А Nikishechkin;{"references": ["Schwarzburg, L. E., Ivanova, N. A., Ryabov, S. A., Gvozdkova, S., & Zmieva, C. A. (2012). Automation of maintenance of indicators of safety of machine-building technologies of formation. Life Safety, (S2), 1-24. (in Russian).", "Schwarzburg, L. E. (2008). Ecological support of technology of formation. The Bulletin of the Moscow State Technical University Stankin, (1), 38-43. (in Russian).", "Schwarzburg, L. E. (2010). Analysis of energy security of technological processes. Bulletin of the Moscow State Technical University Stankin, (4), 98-105. (in Russian).", "Ivanova, N. A. (2008). Principles of automating the reduction of environmental hazards of technological processes by the example of chemical pollution. Bulletin of the Moscow State Technical University Stankin, (3), 73-77. (in Russian).", "Bukeikhanov, N. R. (2009). Renovation of technological processes is an instrument of resource saving and enhancement of environmental safety. Bulletin of the Moscow State Technical University Stankin, (4), 21-24. (in Russian).", "Schwarzburg, L. E., Butrimova, E. V., & Drozdova, N. V. (2014). Development of an algorithm for automated forecasting of vibration and noise in a process environment. Vestnik MSTU \"Stankin, (4), 187-190. (in Russian).", "Schwarzburg, L. E. (2008). Human and environmental protection of automated engineering. Bulletin of the Moscow State Technical University Stankin, (3), 19-21. (in Russian).", "Guillot, A., & Meye, J. A. (2013). Bionics. When science imitates nature. Moscow: Tekhnosfera. 280. (in Russian).", "Gnatik, E. N. (2009). Genetic Engineering of Man: Challenges, Problems, Risks. Moscow: LIBROKOM, 240. (in Russian).", "Karenov, R. S. (2015) Otsenka potentsiala i perspektiv razvitiya gelioenergetiki v mire i Kazakhstane. Vestnik Karagandinskogo universiteta: Seriya Ekonomika, 1(77), 5-15. (in Russian).", "Koretko, O. V. (2003) Konstruktsii zenitnykh fonarey i steklyannykh krysh. Moscow: MArkHI, 48. (in Russian).", "Nikishechkin, A. P. (2006) Teoriya diskretnykh sistem upravleniya. Moscow: ITS GOU MGTU Stankin, 242. (in Russian)."]} The prospects of innovative lights of the new generation. These lights by the day conduct natural sunlight in the hollow, fibre-optic light guides through the roof into the interior rooms of enterprises, where there is no possibility to use windows or not enough daylight. At night and on cloudy days illumination is provided by incandescent lamps, halogen and LED lamps, the light of which is transmitted through the same light guides. This is especially important for fire-hazardous premises. Program implementation of the developed automated systems has the ability to quickly changeovers and change the control algorithms. The model of the automated process of this type of lighting was developed on the basis of a modified Petri net. The resulting operator formulas formalize and facilitate the programming process of the PLC, reducing the risk of errors in the relevant programs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1246206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
visibility 22visibility views 22 download downloads 37 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.1246206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu