- home
- Advanced Search
- Energy Research
- Research Repository of Catalonia
- University of Lleida
- Energy Research
- Research Repository of Catalonia
- University of Lleida
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, ItalyPublisher:Elsevier BV Funded by:EC | INNOSTORAGE, EC | INPATH-TESEC| INNOSTORAGE ,EC| INPATH-TESDomenico Mazzeo; Giuseppe Oliveti; Alvaro de Gracia; Julià Coma; Aran Solé; Luisa F. Cabeza;handle: 10459.1/60248 , 20.500.11770/270333 , 2117/112028
Phase change materials (PCM) are used in many industrial and residential applications for their advantageous characteristic of high capacity of latent thermal storage by means of an isothermal process. In this context, it is very useful to have predictive mathematical models for the analysis of the thermal performance and for the thermal design of these layers. In this work, an experimental validation of an analytical model that resolves the steady periodic heat transfer problem in a finite layer of PCM is presented. The experimental investigation was conducted employing a PCM with thermophysical and thermochemical behavior very close to those hypothesized in the formulation of the analytical model. For the evaluation of the thermophysical properties of the PCM sample used, an experimental procedure created by the authors was employed. In all tests realized in a sinusoidal and non-sinusoidal periodic regime, the comparison between the measured and calculated trends of the temperature at different sample heights and of the surface heat fluxes show an excellent agreement. Moreover, also having verified the analytical total stored energy, the analytical model constitutes a valid instrument for the evaluation of the latent and sensible contribution and the trend in time of the position of the bi-phase interface. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/112028Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IArchivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 42visibility views 42 download downloads 131 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/112028Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IArchivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors: Cabeza, Luisa F.; de Gracia, Alvaro; Fernández, A. Inés; Farid, Mohammed M.;handle: 10459.1/60022
This paper presents a comprehensive review of all correlations and experimental studies available in the literature to determine the heat transfer coefficient of supercritical CO2 flowing in heat exchangers. The different applications in which it is used are also reviewed and discussed. The correlations obtained from extensive experimental measurements are presented for different geometries (horizontal, vertical and inclined tubes, closed-loop circular pipes, and mini-channels) and dimensions. The review shows that there is a lack of a unique universal correlation for each geometry, suggesting the need for more work in this area. The work partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-3-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2014 SGR 123). This project has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under Grant agreement N°PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 657466 (INPATH-TES), and the funds received by the Royal Society of New Zealand. Alvaro de Gracia would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-19940.
Applied Thermal Engi... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaApplied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 245 citations 245 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaApplied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:MDPI AG Gabriel Zsembinszki; Aran Solé; Camila Barreneche; Cristina Prieto; A. Inés Fernández; Luisa F. Cabeza;doi: 10.3390/en11092358
handle: 10459.1/64733
The aim of this study is to perform a review of the state-of-the-art of the reactors available in the literature, which are used for solid–gas reactions or thermal decomposition processes around 1000 °C that could be further implemented for thermochemical energy storage in CSP (concentrated solar power) plants, specifically for SPT (solar power tower) technology. Both direct and indirect systems can be implemented, with direct and closed systems being the most studied ones. Among direct and closed systems, the most used configuration is the stacked bed reactor, with the fixed bed reactor being the most frequent option. Out of all of the reactors studied, almost 70% are used for solid–gas chemical reactions. Few data are available regarding solar efficiency in most of the processes, and the available information indicates relatively low values. Chemical reaction efficiencies show better values, especially in the case of a fluidized bed reactor for solid–gas chemical reactions, and fixed bed and rotary reactors for thermal decompositions.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2018License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 87visibility views 87 download downloads 84 Powered bymore_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2018License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Authors: Eduard Cristobal-Fransi; Natalia Daries; Berta Ferrer-Rosell; Estela Marine-Roig; +1 AuthorsEduard Cristobal-Fransi; Natalia Daries; Berta Ferrer-Rosell; Estela Marine-Roig; Eva Martin-Fuentes;doi: 10.3390/su12051865
In this article, we introduce the themes and approaches covered in this special issue on Sustainable Tourism Marketing. Its objective has been to analyze the main contributions made as a result of research related to sustainable tourism-marketing management and current trends in this field. This issue has gathered articles about the marketing of destinations and the marketing and communication management of companies and tourism organizations from a sustainable tourism perspective. This editorial piece provides a useful introduction to the relationship between tourism and sustainable marketing management that can be used by researchers and practitioners to develop tourism marketing strategies from a sustainable perspective.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12051865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12051865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Spain, Spain, Spain, Spain, Spain, ItalyPublisher:Elsevier BV Marta Chàfer; Marta Chàfer; Anna Laura Pisello; Ilaria Pigliautile; Gabriel Pérez; Luisa F. Cabeza;handle: 10459.1/66801 , 11391/1458806 , 20.500.12251/1930
Large scale mitigation strategies showed to represent promising solutions for enhancing liveability in dense urban contexts. Therefore, most of the researches are focused on assessing the effect of high albedo surfaces and greenery. The paper deals with a numerical and experimental analysis of these evapotranspiration and high-reflectance surfaces in a full scale experimental set-up where more than 20 cubicles are monitored in a Mediterranean continental climate. The experimental set-up itself covers an intermediate inter-building perspective between the lab scale and the real urban contexts, which compromises the possibility to generalize final results. This scale is able to better control geometry of area, but allows real microclimate monitoring and calibration of CFD models. Starting from a validated model, this study simulated alternative scenarios with gradually varying the presence of common mitigation strategies with the scope to evaluate their effect to this aim. Results showed that high albedo solutions best mitigate summer overheating reducing the air temperature, while greenery was more effective in the densest configurations with low albedo envelopes, showing how geometry related variables may play a key role in determining the optima configurations of microclimate mitigation strategies, also important for the best exploitation of renewables in the built environment. © 2019 Elsevier Ltd
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Spain, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | BASEEC| BASEAuthors: Plaza-Bonilla, Daniel; Arrúe, José Luis; Cantero-Martínez, Carlos; Fanlo, Rosario; +2 AuthorsPlaza-Bonilla, Daniel; Arrúe, José Luis; Cantero-Martínez, Carlos; Fanlo, Rosario; Iglesias, Ana; Álvaro-Fuentes, Jorge;handle: 10261/121802 , 10459.1/57674
38 Pags.- 3 Figs. The definitive version is available at: http://link.springer.com/journal/13593 Dryland areas cover about 41 % of the Earth’s surface and sustain over 2 billion inhabitants. Soil carbon (C) in dryland areas is of crucial importance to maintain soil quality and productivity and a range of ecosystem services. Soil mismanagement has led to a significant loss of carbon in these areas, which in many of them entailed several land degradation processes such as soil erosion, reduction in crop productivity, lower soil water holding capacity, a decline in soil biodiversity, and, ultimately, desertification, hunger and poverty in developing countries. As a consequence, in dryland areas proper management practices and land use policies need to be implemented to increase the amount of C sequestered in the soil. When properly managed, dryland soils have a great potential to sequester carbon if financial incentives for implementation are provided. Dryland soils contain the largest pool of inorganic C. However, contrasting results are found in the literature on the magnitude of inorganic C sequestration under different management regimes. The rise of atmospheric carbon dioxide (CO2) levels will greatly affect dryland soils, since the positive effect of CO2 on crop productivity will be offset by a decrease of precipitation, thus increasing the susceptibility to soil erosion and crop failure. In dryland agriculture, any removal of crop residues implies a loss of soil organic carbon (SOC). Therefore, the adoption of no-tillage practices in field crops and growing cover crops in tree crops have a great potential in dryland areas due to the associated benefits of maintaining the soil surface covered by crop residues. Up to 80 % reduction in soil erosion has been reported when using no-tillage compared with conventional tillage. However, no-tillage must be maintained over the long term to enhance soil macroporosity and offset the emission of nitrous oxide (N2O) associated to the greater amount of water stored in the soil when no-tillage is used. Furthermore, the use of long fallow periods appears to be an inefficient practice for water conservation, since only 10–35 % of the rainfall received is available for the next crop when fallow is included in the rotation. Nevertheless, conservation agriculture practices are unlikely to be adopted in some developing countries where the need of crop residues for soil protection competes with other uses. Crop rotations, cover crops, crop residue retention, and conservation agriculture have a direct positive impact on biodiversity and other ecosystem services such as weed seed predation, abundance and distribution of a broad range of soil organisms, and bird nesting density and success. The objective of sequestering a significant amount of C in dryland soils is attainable and will result in social and environmental benefits. This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (grants AGL 2013-49062-C4-1-R and AGL 2013-49062-C4-4-R). Peer reviewed
Hyper Article en Lig... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1007/s135...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-015-0326-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 127 citations 127 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 127 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1007/s135...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-015-0326-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Spain, ItalyPublisher:Elsevier BV Funded by:UKRI | UK Centre for Research on..., EC | SWS-HEATINGUKRI| UK Centre for Research on Energy Demand ,EC| SWS-HEATINGAuthors: Benjamin K. Sovacool; Benjamin K. Sovacool; Anna Laura Pisello; Hatef Madani Larijani; +4 AuthorsBenjamin K. Sovacool; Benjamin K. Sovacool; Anna Laura Pisello; Hatef Madani Larijani; Mari Martiskainen; Belal Dawoud; Andrea Fronzetti Colladon; Luisa F. Cabeza;handle: 11590/491018 , 11391/1481220
What commonalities are there in sustainable or unsustainable heating practices in five high-income, high-emitting western European countries? What preferences do a nationally representative sample of the public in these countries hold towards low-carbon options? It is imperative that climate policy researchers and practitioners grapple with the difficulty of decarbonizing heat, which remains the largest single end-use service worldwide and which accounts about half of total final energy consumption. Based on a comparative assessment of five representative national surveys in Germany (N = 2009), Italy (N = 2039), Spain (N = 2038), Sweden (N = 2023), and the United Kingdom (N = 2000), this study explores the demographics and geography of household heat decarbonisation in Europe. By analyzing our country level data as well as our combined sample of 10,109 respondents, it investigates how people conceive of the purposes of low-carbon heat, their preferences for particular forms of heat supply, and their (at times odd) practices of heat consumption and temperature settings. Grounded in its original data, the study organizes its findings inductively across the five themes of literacy (heating knowledge, awareness and control), sustainability (heating practices, dynamics and conflicts), temperature (heating satisfaction and preferences), desirability of change (low-carbon heating priorities, business models and trust), and culture (country and national variation). The study also explores intersections between these dimensions, using multivariate analysis, as well as how preferences differ according to varying types of actors as well as geography and space. The authors gratefully acknowledge support from UK Research and Innovation through the Centre for Research into Energy Demand Solutions (CREDS), grant reference number EP/R035288/1. This paper has also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 764025.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: Saborío González, Maricruz; Svelic, Petra; Casanovas Salas, Jordi; Ruano Torres, Guillem; +5 AuthorsSaborío González, Maricruz; Svelic, Petra; Casanovas Salas, Jordi; Ruano Torres, Guillem; Pérez Madrigal, María del Mar; Franco García, María Lourdes; Torras Costa, Juan; Estrany Coda, Francesc; Alemán Llansó, Carlos;handle: 2117/168352
Cellulose-based supercapacitors display important advantages in comparison with devices fabricated with other materials, regarding environmental friendliness, flexibility, cost and versatility. Recent progress in the field has been mainly focused on the utilization of cellulose fibres as: structural mechanical reinforcement of electrodes; precursors of electrically active carbon-based materials; or primary electrolytes that act as reservoirs of secondary electrolytes. In this work, a flexible, lightweight, robust, portable and manageable all-carboxymethyl cellulose symmetric supercapacitor has been obtained by assembling two electrodes based on carboxymethyl cellulose hydrogels to a solid electrolytic medium formulated with the same material. Hydrogels, which were made by cross-linking carboxymethyl cellulose paste with citric acid in water, rendered not only effective solid electrolytic media by simply loading NaCl but also electroactive electrodes. For the latter, conducting polymer microparticles, which were loaded into the hydrogel network during the physical cross-linking step, were appropriately connected through the in situ anodic polymerization of a similar conducting polymer in aqueous medium, thus creating conduction paths. The performance of the assembled supercapacitors has been proved by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. This design opens a new window for the green and mass production of flexible cellulose-based supercapacitors Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eurpolymj.2019.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 42visibility views 42 download downloads 112 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eurpolymj.2019.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors: Laia Miró; Russell McKenna; Tobias Jäger; Luisa F. Cabeza;handle: 10459.1/62706
Industrial waste heat (IWH) is a key strategy to improve energy efficiency and reduce CO2 emissions in the industry. But its potential for different countries remains unclear due to a non-existent or inconsistent data basis. The objective of this paper is to assess the IWH potential of the European non-metallic mineral industry, using databases which comprise CO2 emissions of more than 400 industrial sites as well as country- and sector-specific parameters. This sector is selected because of its homogenous nature, meaning that most sites carry out similar or the same processes, which facilitates site-level modelling with subsector-level assumptions. The bottom-up approach is employed to derive the IWH potential for this industry over the period 2007–2012. Average results in this period show an IWH potential per site of 0.33 PJ/a and a potential for the whole sector of 134 PJ/a. The countries with the largest IWH potentials are Germany, Italy, France and Spain with yearly average potentials of 23, 19, 17 and 16 PJ, respectively. The subsector with the most IWH potential is cement. Further work should focus on the improvement of methodologies to assess the IWH potential, in particular through a techno-economic assessment of links between IWH sources and potential sinks. The work is partially funded by the Spanish Government (ENE2015-64117-C5-1-R (MINECO/FEDER)). This project has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under Grant Agreement No PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 657466 (INPATH-TES).
Energy Efficiency arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-017-9575-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Efficiency arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-017-9575-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors: Saffari, Mohammad; de Gracia, Alvaro; Fernández, Cèsar; Cabeza, Luisa F.;handle: 10459.1/59645
Globally, a considerable amount of energy is consumed by the building sector. The building envelope can highly influence the energy consumption in buildings. In this regard, innovative technologies such as thermal energy storage (TES) can help to boost the energy efficiency and to reduce the CO2 emissions in this sector. The use of phase change materials (PCM), due to its high heat capacity, has been the centre of attention of many researchers. A considerable number of papers have been published on the application of PCM as passive system in building envelopes. Researches have shown that choosing the PCM melting temperature in different climate conditions is a key factor to improve the energy performance in buildings. In the present paper, a simulation-based optimization methodology will be presented by coupling EnergyPlus and GenOpt with an innovative enthalpy-temperature (h-T) function to define the optimum PCM peak melting temperature to enhance the cooling, heating, and the annual total heating and cooling energy performance of a residential building in various climate conditions based on Köppen-Geiger classification. Results show that in a cooling dominant climate the best PCM melting temperature to reduce the annual energy consumption is close to the maximum of 26ºC (melting range of 24ºC-28ºC), whereas in heating dominant climates PCM with lower melting temperature of 20ºC (melting range of 18ºC-22ºC) yields higher annual energy benefits. Moreover, it was found that the proper selection of PCM melting temperature in each climate zone can lead to notable energy savings for cooling energy consumption, heating energy consumption, and total annual energy consumption. The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-3-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group GREA (2014 SGR 123). GREA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This project has received funding from the European Commission Seventh Framework Program (FP/2007-2013) under Grant agreement Nº PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement No 657466 (INPATH-TES). Alvaro de Gracia would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-19940.
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 266 citations 266 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Spain, ItalyPublisher:Elsevier BV Funded by:EC | INNOSTORAGE, EC | INPATH-TESEC| INNOSTORAGE ,EC| INPATH-TESDomenico Mazzeo; Giuseppe Oliveti; Alvaro de Gracia; Julià Coma; Aran Solé; Luisa F. Cabeza;handle: 10459.1/60248 , 20.500.11770/270333 , 2117/112028
Phase change materials (PCM) are used in many industrial and residential applications for their advantageous characteristic of high capacity of latent thermal storage by means of an isothermal process. In this context, it is very useful to have predictive mathematical models for the analysis of the thermal performance and for the thermal design of these layers. In this work, an experimental validation of an analytical model that resolves the steady periodic heat transfer problem in a finite layer of PCM is presented. The experimental investigation was conducted employing a PCM with thermophysical and thermochemical behavior very close to those hypothesized in the formulation of the analytical model. For the evaluation of the thermophysical properties of the PCM sample used, an experimental procedure created by the authors was employed. In all tests realized in a sinusoidal and non-sinusoidal periodic regime, the comparison between the measured and calculated trends of the temperature at different sample heights and of the surface heat fluxes show an excellent agreement. Moreover, also having verified the analytical total stored energy, the analytical model constitutes a valid instrument for the evaluation of the latent and sensible contribution and the trend in time of the position of the bi-phase interface. Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/112028Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IArchivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 42visibility views 42 download downloads 131 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2017License: CC BY NC NDFull-Text: http://hdl.handle.net/2117/112028Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2017License: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaRepositori Institucional de la Universitat Jaume IArticle . 2017Data sources: Repositori Institucional de la Universitat Jaume IArchivio Istituzionale dell'Università della CalabriaArticle . 2017Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.08.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors: Cabeza, Luisa F.; de Gracia, Alvaro; Fernández, A. Inés; Farid, Mohammed M.;handle: 10459.1/60022
This paper presents a comprehensive review of all correlations and experimental studies available in the literature to determine the heat transfer coefficient of supercritical CO2 flowing in heat exchangers. The different applications in which it is used are also reviewed and discussed. The correlations obtained from extensive experimental measurements are presented for different geometries (horizontal, vertical and inclined tubes, closed-loop circular pipes, and mini-channels) and dimensions. The review shows that there is a lack of a unique universal correlation for each geometry, suggesting the need for more work in this area. The work partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-3-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group (2014 SGR 123). This project has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under Grant agreement N°PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 657466 (INPATH-TES), and the funds received by the Royal Society of New Zealand. Alvaro de Gracia would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-19940.
Applied Thermal Engi... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaApplied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 245 citations 245 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of CataloniaApplied Thermal EngineeringArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefApplied Thermal EngineeringArticle . 2017 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2017.07.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 SpainPublisher:MDPI AG Gabriel Zsembinszki; Aran Solé; Camila Barreneche; Cristina Prieto; A. Inés Fernández; Luisa F. Cabeza;doi: 10.3390/en11092358
handle: 10459.1/64733
The aim of this study is to perform a review of the state-of-the-art of the reactors available in the literature, which are used for solid–gas reactions or thermal decomposition processes around 1000 °C that could be further implemented for thermochemical energy storage in CSP (concentrated solar power) plants, specifically for SPT (solar power tower) technology. Both direct and indirect systems can be implemented, with direct and closed systems being the most studied ones. Among direct and closed systems, the most used configuration is the stacked bed reactor, with the fixed bed reactor being the most frequent option. Out of all of the reactors studied, almost 70% are used for solid–gas chemical reactions. Few data are available regarding solar efficiency in most of the processes, and the available information indicates relatively low values. Chemical reaction efficiencies show better values, especially in the case of a fluidized bed reactor for solid–gas chemical reactions, and fixed bed and rotary reactors for thermal decompositions.
Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2018License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 87visibility views 87 download downloads 84 Powered bymore_vert Energies arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2018License: CC BY SAData sources: Repositori Institucional de la Universitat Jaume IidUS. Depósito de Investigación Universidad de SevillaArticle . 2018License: CC BY NC NDData sources: idUS. Depósito de Investigación Universidad de SevillaResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaDiposit Digital de la Universitat de BarcelonaArticle . 2018License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11092358&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Authors: Eduard Cristobal-Fransi; Natalia Daries; Berta Ferrer-Rosell; Estela Marine-Roig; +1 AuthorsEduard Cristobal-Fransi; Natalia Daries; Berta Ferrer-Rosell; Estela Marine-Roig; Eva Martin-Fuentes;doi: 10.3390/su12051865
In this article, we introduce the themes and approaches covered in this special issue on Sustainable Tourism Marketing. Its objective has been to analyze the main contributions made as a result of research related to sustainable tourism-marketing management and current trends in this field. This issue has gathered articles about the marketing of destinations and the marketing and communication management of companies and tourism organizations from a sustainable tourism perspective. This editorial piece provides a useful introduction to the relationship between tourism and sustainable marketing management that can be used by researchers and practitioners to develop tourism marketing strategies from a sustainable perspective.
Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12051865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12051865&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 Spain, Spain, Spain, Spain, Spain, Spain, ItalyPublisher:Elsevier BV Marta Chàfer; Marta Chàfer; Anna Laura Pisello; Ilaria Pigliautile; Gabriel Pérez; Luisa F. Cabeza;handle: 10459.1/66801 , 11391/1458806 , 20.500.12251/1930
Large scale mitigation strategies showed to represent promising solutions for enhancing liveability in dense urban contexts. Therefore, most of the researches are focused on assessing the effect of high albedo surfaces and greenery. The paper deals with a numerical and experimental analysis of these evapotranspiration and high-reflectance surfaces in a full scale experimental set-up where more than 20 cubicles are monitored in a Mediterranean continental climate. The experimental set-up itself covers an intermediate inter-building perspective between the lab scale and the real urban contexts, which compromises the possibility to generalize final results. This scale is able to better control geometry of area, but allows real microclimate monitoring and calibration of CFD models. Starting from a validated model, this study simulated alternative scenarios with gradually varying the presence of common mitigation strategies with the scope to evaluate their effect to this aim. Results showed that high albedo solutions best mitigate summer overheating reducing the air temperature, while greenery was more effective in the densest configurations with low albedo envelopes, showing how geometry related variables may play a key role in determining the optima configurations of microclimate mitigation strategies, also important for the best exploitation of renewables in the built environment. © 2019 Elsevier Ltd
Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2019.09.082&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Spain, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | BASEEC| BASEAuthors: Plaza-Bonilla, Daniel; Arrúe, José Luis; Cantero-Martínez, Carlos; Fanlo, Rosario; +2 AuthorsPlaza-Bonilla, Daniel; Arrúe, José Luis; Cantero-Martínez, Carlos; Fanlo, Rosario; Iglesias, Ana; Álvaro-Fuentes, Jorge;handle: 10261/121802 , 10459.1/57674
38 Pags.- 3 Figs. The definitive version is available at: http://link.springer.com/journal/13593 Dryland areas cover about 41 % of the Earth’s surface and sustain over 2 billion inhabitants. Soil carbon (C) in dryland areas is of crucial importance to maintain soil quality and productivity and a range of ecosystem services. Soil mismanagement has led to a significant loss of carbon in these areas, which in many of them entailed several land degradation processes such as soil erosion, reduction in crop productivity, lower soil water holding capacity, a decline in soil biodiversity, and, ultimately, desertification, hunger and poverty in developing countries. As a consequence, in dryland areas proper management practices and land use policies need to be implemented to increase the amount of C sequestered in the soil. When properly managed, dryland soils have a great potential to sequester carbon if financial incentives for implementation are provided. Dryland soils contain the largest pool of inorganic C. However, contrasting results are found in the literature on the magnitude of inorganic C sequestration under different management regimes. The rise of atmospheric carbon dioxide (CO2) levels will greatly affect dryland soils, since the positive effect of CO2 on crop productivity will be offset by a decrease of precipitation, thus increasing the susceptibility to soil erosion and crop failure. In dryland agriculture, any removal of crop residues implies a loss of soil organic carbon (SOC). Therefore, the adoption of no-tillage practices in field crops and growing cover crops in tree crops have a great potential in dryland areas due to the associated benefits of maintaining the soil surface covered by crop residues. Up to 80 % reduction in soil erosion has been reported when using no-tillage compared with conventional tillage. However, no-tillage must be maintained over the long term to enhance soil macroporosity and offset the emission of nitrous oxide (N2O) associated to the greater amount of water stored in the soil when no-tillage is used. Furthermore, the use of long fallow periods appears to be an inefficient practice for water conservation, since only 10–35 % of the rainfall received is available for the next crop when fallow is included in the rotation. Nevertheless, conservation agriculture practices are unlikely to be adopted in some developing countries where the need of crop residues for soil protection competes with other uses. Crop rotations, cover crops, crop residue retention, and conservation agriculture have a direct positive impact on biodiversity and other ecosystem services such as weed seed predation, abundance and distribution of a broad range of soil organisms, and bird nesting density and success. The objective of sequestering a significant amount of C in dryland soils is attainable and will result in social and environmental benefits. This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (grants AGL 2013-49062-C4-1-R and AGL 2013-49062-C4-4-R). Peer reviewed
Hyper Article en Lig... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1007/s135...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-015-0326-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 127 citations 127 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 61visibility views 61 download downloads 127 Powered bymore_vert Hyper Article en Lig... arrow_drop_down Agronomy for Sustainable DevelopmentArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2015 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAINRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serverResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaInstitut National de la Recherche Agronomique: ProdINRAArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)http://dx.doi.org/10.1007/s135...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13593-015-0326-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Spain, Spain, ItalyPublisher:Elsevier BV Funded by:UKRI | UK Centre for Research on..., EC | SWS-HEATINGUKRI| UK Centre for Research on Energy Demand ,EC| SWS-HEATINGAuthors: Benjamin K. Sovacool; Benjamin K. Sovacool; Anna Laura Pisello; Hatef Madani Larijani; +4 AuthorsBenjamin K. Sovacool; Benjamin K. Sovacool; Anna Laura Pisello; Hatef Madani Larijani; Mari Martiskainen; Belal Dawoud; Andrea Fronzetti Colladon; Luisa F. Cabeza;handle: 11590/491018 , 11391/1481220
What commonalities are there in sustainable or unsustainable heating practices in five high-income, high-emitting western European countries? What preferences do a nationally representative sample of the public in these countries hold towards low-carbon options? It is imperative that climate policy researchers and practitioners grapple with the difficulty of decarbonizing heat, which remains the largest single end-use service worldwide and which accounts about half of total final energy consumption. Based on a comparative assessment of five representative national surveys in Germany (N = 2009), Italy (N = 2039), Spain (N = 2038), Sweden (N = 2023), and the United Kingdom (N = 2000), this study explores the demographics and geography of household heat decarbonisation in Europe. By analyzing our country level data as well as our combined sample of 10,109 respondents, it investigates how people conceive of the purposes of low-carbon heat, their preferences for particular forms of heat supply, and their (at times odd) practices of heat consumption and temperature settings. Grounded in its original data, the study organizes its findings inductively across the five themes of literacy (heating knowledge, awareness and control), sustainability (heating practices, dynamics and conflicts), temperature (heating satisfaction and preferences), desirability of change (low-carbon heating priorities, business models and trust), and culture (country and national variation). The study also explores intersections between these dimensions, using multivariate analysis, as well as how preferences differ according to varying types of actors as well as geography and space. The authors gratefully acknowledge support from UK Research and Innovation through the Centre for Research into Energy Demand Solutions (CREDS), grant reference number EP/R035288/1. This paper has also received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 764025.
CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BYData sources: Research Repository of CataloniaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2021Data sources: Archivio della Ricerca - Università degli Studi Roma TreRenewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2020.110703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 SpainPublisher:Elsevier BV Authors: Saborío González, Maricruz; Svelic, Petra; Casanovas Salas, Jordi; Ruano Torres, Guillem; +5 AuthorsSaborío González, Maricruz; Svelic, Petra; Casanovas Salas, Jordi; Ruano Torres, Guillem; Pérez Madrigal, María del Mar; Franco García, María Lourdes; Torras Costa, Juan; Estrany Coda, Francesc; Alemán Llansó, Carlos;handle: 2117/168352
Cellulose-based supercapacitors display important advantages in comparison with devices fabricated with other materials, regarding environmental friendliness, flexibility, cost and versatility. Recent progress in the field has been mainly focused on the utilization of cellulose fibres as: structural mechanical reinforcement of electrodes; precursors of electrically active carbon-based materials; or primary electrolytes that act as reservoirs of secondary electrolytes. In this work, a flexible, lightweight, robust, portable and manageable all-carboxymethyl cellulose symmetric supercapacitor has been obtained by assembling two electrodes based on carboxymethyl cellulose hydrogels to a solid electrolytic medium formulated with the same material. Hydrogels, which were made by cross-linking carboxymethyl cellulose paste with citric acid in water, rendered not only effective solid electrolytic media by simply loading NaCl but also electroactive electrodes. For the latter, conducting polymer microparticles, which were loaded into the hydrogel network during the physical cross-linking step, were appropriately connected through the in situ anodic polymerization of a similar conducting polymer in aqueous medium, thus creating conduction paths. The performance of the assembled supercapacitors has been proved by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. This design opens a new window for the green and mass production of flexible cellulose-based supercapacitors Peer Reviewed
Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eurpolymj.2019.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 42visibility views 42 download downloads 112 Powered bymore_vert Universitat Politècn... arrow_drop_down Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledgeArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eurpolymj.2019.06.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Springer Science and Business Media LLC Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors: Laia Miró; Russell McKenna; Tobias Jäger; Luisa F. Cabeza;handle: 10459.1/62706
Industrial waste heat (IWH) is a key strategy to improve energy efficiency and reduce CO2 emissions in the industry. But its potential for different countries remains unclear due to a non-existent or inconsistent data basis. The objective of this paper is to assess the IWH potential of the European non-metallic mineral industry, using databases which comprise CO2 emissions of more than 400 industrial sites as well as country- and sector-specific parameters. This sector is selected because of its homogenous nature, meaning that most sites carry out similar or the same processes, which facilitates site-level modelling with subsector-level assumptions. The bottom-up approach is employed to derive the IWH potential for this industry over the period 2007–2012. Average results in this period show an IWH potential per site of 0.33 PJ/a and a potential for the whole sector of 134 PJ/a. The countries with the largest IWH potentials are Germany, Italy, France and Spain with yearly average potentials of 23, 19, 17 and 16 PJ, respectively. The subsector with the most IWH potential is cement. Further work should focus on the improvement of methodologies to assess the IWH potential, in particular through a techno-economic assessment of links between IWH sources and potential sinks. The work is partially funded by the Spanish Government (ENE2015-64117-C5-1-R (MINECO/FEDER)). This project has received funding from the European Commission Seventh Framework Programme (FP/2007-2013) under Grant Agreement No PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 657466 (INPATH-TES).
Energy Efficiency arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-017-9575-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Efficiency arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12053-017-9575-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 SpainPublisher:Elsevier BV Funded by:EC | INPATH-TES, EC | INNOSTORAGEEC| INPATH-TES ,EC| INNOSTORAGEAuthors: Saffari, Mohammad; de Gracia, Alvaro; Fernández, Cèsar; Cabeza, Luisa F.;handle: 10459.1/59645
Globally, a considerable amount of energy is consumed by the building sector. The building envelope can highly influence the energy consumption in buildings. In this regard, innovative technologies such as thermal energy storage (TES) can help to boost the energy efficiency and to reduce the CO2 emissions in this sector. The use of phase change materials (PCM), due to its high heat capacity, has been the centre of attention of many researchers. A considerable number of papers have been published on the application of PCM as passive system in building envelopes. Researches have shown that choosing the PCM melting temperature in different climate conditions is a key factor to improve the energy performance in buildings. In the present paper, a simulation-based optimization methodology will be presented by coupling EnergyPlus and GenOpt with an innovative enthalpy-temperature (h-T) function to define the optimum PCM peak melting temperature to enhance the cooling, heating, and the annual total heating and cooling energy performance of a residential building in various climate conditions based on Köppen-Geiger classification. Results show that in a cooling dominant climate the best PCM melting temperature to reduce the annual energy consumption is close to the maximum of 26ºC (melting range of 24ºC-28ºC), whereas in heating dominant climates PCM with lower melting temperature of 20ºC (melting range of 18ºC-22ºC) yields higher annual energy benefits. Moreover, it was found that the proper selection of PCM melting temperature in each climate zone can lead to notable energy savings for cooling energy consumption, heating energy consumption, and total annual energy consumption. The work is partially funded by the Spanish government (ENE2015-64117-C5-1-R (MINECO/FEDER) and ENE2015-64117-C5-3-R (MINECO/FEDER)). The authors would like to thank the Catalan Government for the quality accreditation given to their research group GREA (2014 SGR 123). GREA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This project has received funding from the European Commission Seventh Framework Program (FP/2007-2013) under Grant agreement Nº PIRSES-GA-2013-610692 (INNOSTORAGE) and from the European Union’s Horizon 2020 research and innovation program under grant agreement No 657466 (INPATH-TES). Alvaro de Gracia would like to thank Ministerio de Economia y Competitividad de España for Grant Juan de la Cierva, FJCI-2014-19940.
Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 266 citations 266 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2017License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAResearch Repository of CataloniaArticleLicense: CC BY NC NDData sources: Research Repository of Cataloniaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.05.107&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu