- home
- Advanced Search
- Energy Research
- 2016-2025
- Closed Access
- Open Source
- Embargo
- 7. Clean energy
- 12. Responsible consumption
- 6. Clean water
- Energy Research
- 2016-2025
- Closed Access
- Open Source
- Embargo
- 7. Clean energy
- 12. Responsible consumption
- 6. Clean water
description Publicationkeyboard_double_arrow_right Article 2023Publisher:ASME International Authors: Balram Sahu; Dhananjay Kumar Srivastava;doi: 10.1115/1.4056449
Abstract Dimethyl ether appears to be a better choice among various diesel alternatives due to its high cetane number and sootless combustion. However, the physical and chemical properties of dimethyl ether are very different from those of diesel. The physical properties influence spray formation and atomization characteristics, while chemical properties determine combustion and emission formation characteristics. Thus, fuel's physical and chemical properties significantly determine engine performance and emissions. In the present work, spray combustion and emission formation characteristics of n-heptane, dimethyl ether, and their blends (10, 25, and 50% dimethyl ether in n-heptane) were numerically studied in a constant volume chamber. Results show that the n-heptane spray combustion has the highest heat release rate with an intense premix combustion phase, whereas dimethyl ether spray combustion has the lowest heat release rate and shortest premix combustion phase. The magnitude of the premixed phase and heat release rate decreases with the increase in dimethyl ether mass fraction in the blends. Soot, carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO) emissions decreased with the increase in the dimethyl ether mass fraction in the blends and were lowest for the dimethyl ether.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:ASME International Authors: Balram Sahu; Dhananjay Kumar Srivastava;doi: 10.1115/1.4056449
Abstract Dimethyl ether appears to be a better choice among various diesel alternatives due to its high cetane number and sootless combustion. However, the physical and chemical properties of dimethyl ether are very different from those of diesel. The physical properties influence spray formation and atomization characteristics, while chemical properties determine combustion and emission formation characteristics. Thus, fuel's physical and chemical properties significantly determine engine performance and emissions. In the present work, spray combustion and emission formation characteristics of n-heptane, dimethyl ether, and their blends (10, 25, and 50% dimethyl ether in n-heptane) were numerically studied in a constant volume chamber. Results show that the n-heptane spray combustion has the highest heat release rate with an intense premix combustion phase, whereas dimethyl ether spray combustion has the lowest heat release rate and shortest premix combustion phase. The magnitude of the premixed phase and heat release rate decreases with the increase in dimethyl ether mass fraction in the blends. Soot, carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO) emissions decreased with the increase in the dimethyl ether mass fraction in the blends and were lowest for the dimethyl ether.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rafia Zaman; Rafia Zaman; S. Kumar; Nazrul Islam; Thomas Brudermann;Abstract Socio-technical transformations towards low-carbon energy systems are on the way in developed countries. Conversely, developing countries tend to be locked in fossil fuels and foster coal-based energy structures, emphasizing reliable and cost-effective energy provision and sidelining environmental concerns. In this study, we identified and analysed the predominant factors related to coal-based power generation in Bangladesh. We applied a mixed-method approach, initially conducting a systematic literature review and, subsequently, semi-structured expert interviews to identify and validate relevant factors. We then assessed their relative importance using an Analytical Hierarchy Process based on expert judgments. The results of this assessment reveal that socio-economic aspects and environmental issues scored highest, while technological aspects and sector regulations were considered to be less relevant for large-scale coal power implementation. We conclude that future energy policies created in Bangladesh will need to use appropriate legal instruments and address issues such as human displacement and resettlement, low levels of public acceptance, health hazards and environmental pollution. Participative policy frameworks should be deployed in coal plant projects, and active monitoring systems are necessary to reduce the negative consequences associated with increased electrification and energy consumption. To address foreseeable structural challenges, it furthermore will be crucial to explore sustainable alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rafia Zaman; Rafia Zaman; S. Kumar; Nazrul Islam; Thomas Brudermann;Abstract Socio-technical transformations towards low-carbon energy systems are on the way in developed countries. Conversely, developing countries tend to be locked in fossil fuels and foster coal-based energy structures, emphasizing reliable and cost-effective energy provision and sidelining environmental concerns. In this study, we identified and analysed the predominant factors related to coal-based power generation in Bangladesh. We applied a mixed-method approach, initially conducting a systematic literature review and, subsequently, semi-structured expert interviews to identify and validate relevant factors. We then assessed their relative importance using an Analytical Hierarchy Process based on expert judgments. The results of this assessment reveal that socio-economic aspects and environmental issues scored highest, while technological aspects and sector regulations were considered to be less relevant for large-scale coal power implementation. We conclude that future energy policies created in Bangladesh will need to use appropriate legal instruments and address issues such as human displacement and resettlement, low levels of public acceptance, health hazards and environmental pollution. Participative policy frameworks should be deployed in coal plant projects, and active monitoring systems are necessary to reduce the negative consequences associated with increased electrification and energy consumption. To address foreseeable structural challenges, it furthermore will be crucial to explore sustainable alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Wei Jiang; Jinming Chen; Haibo Tang; Shu Cheng; Qinran Hu; Mengmeng Cai; Saifur Rahman;Given the considerable scale of distribution networks in urban and rural areas, as well as the lack of management records, adjustments of switches during the distribution system operation are poorly documented. Such deficiency results in the inaccuracy of models stored in the distribution network automation system, and thus misleads the state estimation. With the emergence of information and communication technology, a large number of the feeder and residential smart meter data are accumulated. Such data can help recognize the operation modes of distribution networks by analyzing the relationships between the on/off states of switches and the voltage correlations among buses. However, the limited quantity and quality of the sampling data restrict the implementation of data-driven recognition. In this paper, a physical-probabilistic-network (PPN) model applied for inferring overall operation mode of distribution networks is proposed. Based on which, a belief propagation-based algorithm is proposed for the inference even under situations when there are only partial bus voltages data available. Meanwhile, the required variable for inference can be reduced from the active trail analysis. Experiment results are used to compare its performance with classic methods and to prove its effectiveness and advantages.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Wei Jiang; Jinming Chen; Haibo Tang; Shu Cheng; Qinran Hu; Mengmeng Cai; Saifur Rahman;Given the considerable scale of distribution networks in urban and rural areas, as well as the lack of management records, adjustments of switches during the distribution system operation are poorly documented. Such deficiency results in the inaccuracy of models stored in the distribution network automation system, and thus misleads the state estimation. With the emergence of information and communication technology, a large number of the feeder and residential smart meter data are accumulated. Such data can help recognize the operation modes of distribution networks by analyzing the relationships between the on/off states of switches and the voltage correlations among buses. However, the limited quantity and quality of the sampling data restrict the implementation of data-driven recognition. In this paper, a physical-probabilistic-network (PPN) model applied for inferring overall operation mode of distribution networks is proposed. Based on which, a belief propagation-based algorithm is proposed for the inference even under situations when there are only partial bus voltages data available. Meanwhile, the required variable for inference can be reduced from the active trail analysis. Experiment results are used to compare its performance with classic methods and to prove its effectiveness and advantages.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zhanping Hu;Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zhanping Hu;Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Marcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; +1 AuthorsMarcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; T. Z. Macedo;pmid: 31175437
The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L-1 to 66.9 mg L-1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L-1 and 18.9 mg LAS L-1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L-1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Marcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; +1 AuthorsMarcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; T. Z. Macedo;pmid: 31175437
The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L-1 to 66.9 mg L-1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L-1 and 18.9 mg LAS L-1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L-1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:ASME International Authors: Balram Sahu; Dhananjay Kumar Srivastava;doi: 10.1115/1.4056449
Abstract Dimethyl ether appears to be a better choice among various diesel alternatives due to its high cetane number and sootless combustion. However, the physical and chemical properties of dimethyl ether are very different from those of diesel. The physical properties influence spray formation and atomization characteristics, while chemical properties determine combustion and emission formation characteristics. Thus, fuel's physical and chemical properties significantly determine engine performance and emissions. In the present work, spray combustion and emission formation characteristics of n-heptane, dimethyl ether, and their blends (10, 25, and 50% dimethyl ether in n-heptane) were numerically studied in a constant volume chamber. Results show that the n-heptane spray combustion has the highest heat release rate with an intense premix combustion phase, whereas dimethyl ether spray combustion has the lowest heat release rate and shortest premix combustion phase. The magnitude of the premixed phase and heat release rate decreases with the increase in dimethyl ether mass fraction in the blends. Soot, carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO) emissions decreased with the increase in the dimethyl ether mass fraction in the blends and were lowest for the dimethyl ether.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:ASME International Authors: Balram Sahu; Dhananjay Kumar Srivastava;doi: 10.1115/1.4056449
Abstract Dimethyl ether appears to be a better choice among various diesel alternatives due to its high cetane number and sootless combustion. However, the physical and chemical properties of dimethyl ether are very different from those of diesel. The physical properties influence spray formation and atomization characteristics, while chemical properties determine combustion and emission formation characteristics. Thus, fuel's physical and chemical properties significantly determine engine performance and emissions. In the present work, spray combustion and emission formation characteristics of n-heptane, dimethyl ether, and their blends (10, 25, and 50% dimethyl ether in n-heptane) were numerically studied in a constant volume chamber. Results show that the n-heptane spray combustion has the highest heat release rate with an intense premix combustion phase, whereas dimethyl ether spray combustion has the lowest heat release rate and shortest premix combustion phase. The magnitude of the premixed phase and heat release rate decreases with the increase in dimethyl ether mass fraction in the blends. Soot, carbon monoxide (CO), unburned hydrocarbon (UHC), and nitric oxide (NO) emissions decreased with the increase in the dimethyl ether mass fraction in the blends and were lowest for the dimethyl ether.
Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Energy Re... arrow_drop_down Journal of Energy Resources TechnologyArticle . 2023 . Peer-reviewedLicense: ASME Site License AgreemenData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4056449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Yasir Habib; Shujahat Haider Hashmi; Adeel Riaz; Hongzhong Fan;Abstract This study investigates the non-linear relationship between urbanization paths and CO2 emissions in selected South, South-East, and East Asian countries over the period 1971–2014. Based on the STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and Technology) framework, we applied the advanced and robust methods of dynamic seemingly unrelated regression (DSUR), dynamic OLS (DOLS), and fully modified OLS (FMOLS) to estimate the long-term effects. The empirical findings revealed the inverted U-shaped effects of urbanization and urban agglomeration and the U-shaped impact of the largest city ratio on CO2 emissions. Urbanization and urban agglomerations improve environmental quality in the long-run and support ecological modernization theory. However, excessive concentration in the largest cities have severely affected the environmental quality and violates the notion of compact-city efficiencies. Moreover, energy intensity and economic growth positively affect CO2 emissions, while trade openness negatively influences CO2 emissions. Our robustness analysis at the country-level applies the augmented mean group (AMG) panel ARDL technique, which further supports the non-linear effect of urbanization paths on CO2 emissions except for a few countries. The results of the panel Granger non-causality approach unveil bidirectional causality of energy efficiency, economic growth, urbanization, and largest city ratio with CO2 emissions. In contrast, unidirectional causality runs from urban agglomeration to CO2 emissions. Our findings have important policy implications as we suggest green urban infrastructures, eco-friendly dwellings, smart cities, country-specific trade policies, and renewable energy options to improve the environmental quality.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu87 citations 87 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.uclim.2021.100814&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rafia Zaman; Rafia Zaman; S. Kumar; Nazrul Islam; Thomas Brudermann;Abstract Socio-technical transformations towards low-carbon energy systems are on the way in developed countries. Conversely, developing countries tend to be locked in fossil fuels and foster coal-based energy structures, emphasizing reliable and cost-effective energy provision and sidelining environmental concerns. In this study, we identified and analysed the predominant factors related to coal-based power generation in Bangladesh. We applied a mixed-method approach, initially conducting a systematic literature review and, subsequently, semi-structured expert interviews to identify and validate relevant factors. We then assessed their relative importance using an Analytical Hierarchy Process based on expert judgments. The results of this assessment reveal that socio-economic aspects and environmental issues scored highest, while technological aspects and sector regulations were considered to be less relevant for large-scale coal power implementation. We conclude that future energy policies created in Bangladesh will need to use appropriate legal instruments and address issues such as human displacement and resettlement, low levels of public acceptance, health hazards and environmental pollution. Participative policy frameworks should be deployed in coal plant projects, and active monitoring systems are necessary to reduce the negative consequences associated with increased electrification and energy consumption. To address foreseeable structural challenges, it furthermore will be crucial to explore sustainable alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rafia Zaman; Rafia Zaman; S. Kumar; Nazrul Islam; Thomas Brudermann;Abstract Socio-technical transformations towards low-carbon energy systems are on the way in developed countries. Conversely, developing countries tend to be locked in fossil fuels and foster coal-based energy structures, emphasizing reliable and cost-effective energy provision and sidelining environmental concerns. In this study, we identified and analysed the predominant factors related to coal-based power generation in Bangladesh. We applied a mixed-method approach, initially conducting a systematic literature review and, subsequently, semi-structured expert interviews to identify and validate relevant factors. We then assessed their relative importance using an Analytical Hierarchy Process based on expert judgments. The results of this assessment reveal that socio-economic aspects and environmental issues scored highest, while technological aspects and sector regulations were considered to be less relevant for large-scale coal power implementation. We conclude that future energy policies created in Bangladesh will need to use appropriate legal instruments and address issues such as human displacement and resettlement, low levels of public acceptance, health hazards and environmental pollution. Participative policy frameworks should be deployed in coal plant projects, and active monitoring systems are necessary to reduce the negative consequences associated with increased electrification and energy consumption. To address foreseeable structural challenges, it furthermore will be crucial to explore sustainable alternatives.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.01.053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Tae-Woo Lim; Yong-Seok Choi; Da-Hye Hwang;Abstract Double and added double stage organic Rankine cycle systems are configured to recover exhaust gas waste heat of dual fuel engines. To evaluate the performance of the models proposed here, energy, exergy and economic analyses are performed. Several working fluids are evaluated for recommendation for double and added double stage organic Rankine cycle systems. In the double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in parallel. Working fluids R123, R141b, and R601 are used in cycle 1, and R245fa, R236ea, and R1233zd in cycle 2. In the double stage organic Rankine cycle, the working fluid combinations of R601-R1233zd, R601-R245fa and R123-R245fa show better performance when considering power, heat transfer area and payback period, which are 1760 kW, 2108.9 m2 and 4.21 year, respectively for R601-R245fa. In the added double stage organic Rankine cycle, cycle 1 and cycle 2 are connected in two stages and cycle 1 and cycle 3 in parallel. The net power of the working fluid combinations of R123-R245fa and R123-R1233zd are 1799 kW and 1782 kW, respectively, which are higher than those of the others. Further, for R123-R245fa, the heat transfer area and payback period are 3352 m2 and 6.20 year, respectively, which is better compared to those of other working fluid combinations.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2021.114323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Rajender S. Sangwan; Sushil Kumar Kansal; Sandeep Kumar; Pranati Kundu; Troy Runge; Vivek Ahluwalia; Sasikumar Elumalai;pmid: 29274853
In this study, levulinic acid (LA) was produced from rice straw biomass in co-solvent biphasic reactor system consisting of hydrochloric acid and dichloromethane organic solvent. The modified protocol achieved a 15% wt LA yield through the synergistic effect of acid and acidic products (auto-catalysis) and the designed system allowed facile recovery of LA to the organic phase. Further purification of the resulting extractant was achieved through traditional column chromatography, which yielded a high purity LA product while recovering ∼85% wt. Upon charcoal treatment of the resultant fraction generated an industrial grade target molecule of ∼99% purity with ∼95% wt recovery. The system allows the solvent to be easily recovered, in excess of 90%, which was shown to be able to be recycled up to 5 runs without significant loss of final product concentrations. Overall, this system points to a method to significantly reduce manufacturing cost during large-scale LA preparation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu48 citations 48 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2017.12.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Wei Jiang; Jinming Chen; Haibo Tang; Shu Cheng; Qinran Hu; Mengmeng Cai; Saifur Rahman;Given the considerable scale of distribution networks in urban and rural areas, as well as the lack of management records, adjustments of switches during the distribution system operation are poorly documented. Such deficiency results in the inaccuracy of models stored in the distribution network automation system, and thus misleads the state estimation. With the emergence of information and communication technology, a large number of the feeder and residential smart meter data are accumulated. Such data can help recognize the operation modes of distribution networks by analyzing the relationships between the on/off states of switches and the voltage correlations among buses. However, the limited quantity and quality of the sampling data restrict the implementation of data-driven recognition. In this paper, a physical-probabilistic-network (PPN) model applied for inferring overall operation mode of distribution networks is proposed. Based on which, a belief propagation-based algorithm is proposed for the inference even under situations when there are only partial bus voltages data available. Meanwhile, the required variable for inference can be reduced from the active trail analysis. Experiment results are used to compare its performance with classic methods and to prove its effectiveness and advantages.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Institute of Electrical and Electronics Engineers (IEEE) Wei Jiang; Jinming Chen; Haibo Tang; Shu Cheng; Qinran Hu; Mengmeng Cai; Saifur Rahman;Given the considerable scale of distribution networks in urban and rural areas, as well as the lack of management records, adjustments of switches during the distribution system operation are poorly documented. Such deficiency results in the inaccuracy of models stored in the distribution network automation system, and thus misleads the state estimation. With the emergence of information and communication technology, a large number of the feeder and residential smart meter data are accumulated. Such data can help recognize the operation modes of distribution networks by analyzing the relationships between the on/off states of switches and the voltage correlations among buses. However, the limited quantity and quality of the sampling data restrict the implementation of data-driven recognition. In this paper, a physical-probabilistic-network (PPN) model applied for inferring overall operation mode of distribution networks is proposed. Based on which, a belief propagation-based algorithm is proposed for the inference even under situations when there are only partial bus voltages data available. Meanwhile, the required variable for inference can be reduced from the active trail analysis. Experiment results are used to compare its performance with classic methods and to prove its effectiveness and advantages.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2019.2936148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zhanping Hu;Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Zhanping Hu;Abstract As a burgeoning theoretical framework, energy justice has been mostly focused on the energy transition in Western countries, where socio-political settings are largely featured by liberalism and democracy, leaving an obvious gap in its application in other socio-political contexts. As a major energy consumer and a leader of the global low-carbon transition, China is characterized by a distinctive socio-political regime. An array of grand strategies to transform its coal-dominant energy structure have been initiated to ameliorate deteriorating environmental crises in particular and materialize a low-carbon transition in general. Based on extensive evidence, this article incorporates the energy justice framework into the analysis of an ongoing energy transition project in rural Northern China. It contributes to the related research in three dimensions. First, empirically, it demonstrates that the coal-to-gas heating transition project has been swamped with social injustices; the absence of measures to address these would lead this mega-project to profound failure. Second, theoretically, it illustrates that the concerns of justice are even more paramount in an authoritarian context where policy processes are characterized by strong political-administrative intervention and the pursuit of efficiency at all cost. In light of this, it stresses the indispensable role of restorative justice as a core tenet in achieving energy justice in authoritarian socio-political contexts, such as China. Third, this study advocates expanding the evaluation parameters of authoritarian environmentalism to include social consequences.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2020.101771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Marcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; +1 AuthorsMarcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; T. Z. Macedo;pmid: 31175437
The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L-1 to 66.9 mg L-1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L-1 and 18.9 mg LAS L-1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L-1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Authors: Marcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; +1 AuthorsMarcelo Zaiat; Maria Bernadete Amâncio Varesche; Edson Luiz Silva; Isabel Kimiko Sakamoto; T. Z. Macedo;pmid: 31175437
The influence of ethanol on the degradation kinetics of linear alkyl benzene sulfonate (LAS) and organic matter was investigated using batch experiments with different initial LAS concentrations (8.3 mg L-1 to 66.9 mg L-1) and biomass immobilized on sand. Data were fitted with a substrate inhibition model. Concentrations of 2.4 mg LAS L-1 and 18.9 mg LAS L-1 (without and with ethanol) provided the maximum LAS utilization rate by the biomass (Sbm). For LAS degradation, ethanol addition favored a lower decrease in the specific substrate utilization rate (robs), even at the LAS concentration usually reported as inhibitory (> 14.4 mg L-1). For organic matter degradation, robs was higher with ethanol. Higher biomass differentiation was observed at higher LAS concentrations. With ethanol, microbial selection occurred at LAS concentrations near Sbm. At higher LAS concentrations, the dominance and diversity values did not change significantly with ethanol, whereas without ethanol, their behaviors were irregular.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00449-019-02152-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022Publisher:Elsevier BV Authors: Piyush Sabharwall; Yang Liu; Ilyas Yilgor; Shanbin Shi;Abstract Heat pipes and two-phase thermosyphons are highly efficient heat transfer devices utilizing continuous evaporation and condensation of working fluid for two-phase heat transport in closed systems. Because of the nearly isothermal and fully passive phase-change heat transfer mechanism, heat pipes and thermosyphons have found many applications in nuclear engineering, space technologies, and other energy systems. High-temperature heat pipes are used in nuclear microreactors to remove fission power from the primary system and are coupled with power conversion systems or process heat applications. Modeling of the two-phase flow phenomena inside a heat pipe is essential to its design and safety analysis. In this study, a comprehensive one-dimensional two-phase three-field flow model has been developed for the analysis of heat pipes in normal operation conditions and transients. The conservation or field equations of mass, momentum, and energy were developed for the liquid film, vapor, and droplet. In addition, constitutive models or correlations were reviewed thoroughly and provided for the closure of the three-field equations. Specific constitutive equations regarding interfacial mass and heat transfer at two interfaces, namely film-gas interface and gas-droplet interface, were reviewed for droplet entrainment and deposition rates as well as film and droplet evaporation rates. Additionally, mechanistic correlations of annular flow film thickness were recommended for the modeling of the thermosyphons without a wick as a critical constitutive correlation. Furthermore, experimental data needs from new experiments using a prototype working fluid or surrogate fluids for the model validation of high-temperature heat pipes in microreactors were recommended for future research.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2021.108770&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Antonio R. Cuesta; Chunshan Song;Abstract Adsorbent-based carbon capture is only feasible if adsorption-desorption cycles are both fully regenerating and efficient. This work proposes a regenerative pH swing process and a pH swing regenerative adsorbent that are inspired by natural CO2 conversion by carbonic anhydrase biocatalysts found in mammalian red blood cells. The main objective is to develop, test and analyze a synthetic pH Swing Adsorption (pHSA) system as well as a pHSA compatible solid adsorbent to capture CO2 from a simulated ambient air gas stream. The lead developed adsorbent is a carbon black co-activated with potassium carbonate and nitrogenous copolymer that is impregnated with immobilized bovine carbonic anhydrase and thereby deemed “BCA/KN-CB”. BCA/KN-CB has preliminarily demonstrated both competitive CO2 adsorption capacity and limited regenerative ability under experimental pHSA conditions. In addition, BCA-based adsorbents achieved higher adsorption capacities than non-BCA adsorbent counterparts. The BCA/KN-CB adsorbent displayed both large point of zero charge (PZC) swings and regenerative stability. The proposed pHSA system requires essentially zero energy expenditure to achieve intended environments for capture and regeneration. With 1 kg of adsorbent, pHSA has the ability to capture 1 kg CO2 in less than 4 h of cycling. The tested pHSA adsorbent can also capture more than 96% of total CO2 in a given raw gas stream flowing through the capture chamber. This proof-of-concept study of a pH swing adsorption/biocatalytic adsorbent system suggests the potential to effectively operate under ambient conditions and exhibit advantageous operational efficiencies to other high-profile CO2 capture systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.116003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu