- home
- Advanced Search
- Energy Research
- Open Source
- Embargo
- 12. Responsible consumption
- Energy
- Energy Research
- Open Source
- Embargo
- 12. Responsible consumption
- Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV H.M. Junginger; Wouter Schakel; Bothwell Batidzirai; André Faaij; A.P.R. Mignot; A.P.R. Mignot;Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 279 citations 279 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV H.M. Junginger; Wouter Schakel; Bothwell Batidzirai; André Faaij; A.P.R. Mignot; A.P.R. Mignot;Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 279 citations 279 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Authors: Saygin, D.; Worrell, E.; Patel, M.K.; Gielen, D.J.;The Lower Silurian Longmaxi Formation is an organic-rich (black) mudrock that is widely considered to be a potential shale gas reservoir in the southern Sichuan Basin (the Yangtze plate) in Southwest China. A case study is presented to characterise the shale gas reservoir using a workflow to evaluate its characteristics. A typical characterisation of a gas shale reservoir was determined using basset sample analysis (geochemical, petrographical, mineralogical, and petrophysical) through a series of tests. The results show that the Lower Silurian Longmaxi Formation shale reservoir is characterised by organic geochemistry and mineralogical, petrophysical and gas adsorption. Analysis of the data demonstrates that the reservoir properties of the rock in this region are rich and that the bottom group of the Longmaxi Formation has the greatest potential for gas production due to higher thermal maturity, total organic carbon (TOC) enrichment, better porosity and improved fracture potential. These results will provide a basis for further evaluation of the hydrocarbon potential of the Longmaxi Formation shale in the Sichuan Basin and for identifying areas with exploration potential.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Authors: Saygin, D.; Worrell, E.; Patel, M.K.; Gielen, D.J.;The Lower Silurian Longmaxi Formation is an organic-rich (black) mudrock that is widely considered to be a potential shale gas reservoir in the southern Sichuan Basin (the Yangtze plate) in Southwest China. A case study is presented to characterise the shale gas reservoir using a workflow to evaluate its characteristics. A typical characterisation of a gas shale reservoir was determined using basset sample analysis (geochemical, petrographical, mineralogical, and petrophysical) through a series of tests. The results show that the Lower Silurian Longmaxi Formation shale reservoir is characterised by organic geochemistry and mineralogical, petrophysical and gas adsorption. Analysis of the data demonstrates that the reservoir properties of the rock in this region are rich and that the bottom group of the Longmaxi Formation has the greatest potential for gas production due to higher thermal maturity, total organic carbon (TOC) enrichment, better porosity and improved fracture potential. These results will provide a basis for further evaluation of the hydrocarbon potential of the Longmaxi Formation shale in the Sichuan Basin and for identifying areas with exploration potential.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV Authors: Ates, S.A.;handle: 20.500.12511/2339
With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO2 in BAU (business-as-usual scenario), 32.5 MtCO2 in SEI, 24.6 MtCO2 in AEI and 14.5 MtCO2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV Authors: Ates, S.A.;handle: 20.500.12511/2339
With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO2 in BAU (business-as-usual scenario), 32.5 MtCO2 in SEI, 24.6 MtCO2 in AEI and 14.5 MtCO2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Shaohui Zhang; Ernst Worrell; Wina Crijns-Graus; Fabian Wagner; Janusz Cofala;In 2010, China was responsible for 45% of global steel production, while consuming 15.8EJ of final energy and emitting 1344Mt CO2eq, 8.4Mt of PM (particulate matter) emissions, and 5.3Mt of SO2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM_S3 scenario would be reduce 27% CO2eq, 3% of PM, and 22% of SO2, compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Shaohui Zhang; Ernst Worrell; Wina Crijns-Graus; Fabian Wagner; Janusz Cofala;In 2010, China was responsible for 45% of global steel production, while consuming 15.8EJ of final energy and emitting 1344Mt CO2eq, 8.4Mt of PM (particulate matter) emissions, and 5.3Mt of SO2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM_S3 scenario would be reduce 27% CO2eq, 3% of PM, and 22% of SO2, compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Ozgur Balli; T. Hikmet Karakoc;handle: 11467/6197
This study presents a detailed exergy, exergoeconomic, environmental damage cost and impact analyses about the aircraft engine turbofan (ATFE) in the aerospace industry. According to the results of investigation, exergy efficiency of ATFE is estimated as 20.32% when the fuel exergy waste ratio is obtained as 79.68%. According to exergy based environmental performance analysis, the ecological effect factor is estimated to be 4.92, while the ecological objective function is found as 38.06 GJ/h. In the exergy based sustainability analysis, the exergetic sustainability index and sustainable efficiency factor of ATFE are obtained to 0.003 and 1.26. These results indicate that waste exergy rate should be reduce to increase exergy efficiency, exergetic sustainability index and sustainable efficiency factor. In the exergoeconomic analysis which is used the specific exergy costing (SPECO) method, the specific cost of fuel and product for ATFE are estimated as 12.56 $/GJ and 85.56 $/GJ while exergoeconomic factor of engine is found as 32.535%. According to Eco-cost and Eco-Indicator 99 methods, the AFTE generates 674.24 $/h-total emission cost rate and 68584.94 mPts/h-environmental impact rate. Besides, the specific environmental impact is determined as 5264.77 mPts/GJ whilst the specific environmental impact cost is obtained to be 0.03 $/mPts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Ozgur Balli; T. Hikmet Karakoc;handle: 11467/6197
This study presents a detailed exergy, exergoeconomic, environmental damage cost and impact analyses about the aircraft engine turbofan (ATFE) in the aerospace industry. According to the results of investigation, exergy efficiency of ATFE is estimated as 20.32% when the fuel exergy waste ratio is obtained as 79.68%. According to exergy based environmental performance analysis, the ecological effect factor is estimated to be 4.92, while the ecological objective function is found as 38.06 GJ/h. In the exergy based sustainability analysis, the exergetic sustainability index and sustainable efficiency factor of ATFE are obtained to 0.003 and 1.26. These results indicate that waste exergy rate should be reduce to increase exergy efficiency, exergetic sustainability index and sustainable efficiency factor. In the exergoeconomic analysis which is used the specific exergy costing (SPECO) method, the specific cost of fuel and product for ATFE are estimated as 12.56 $/GJ and 85.56 $/GJ while exergoeconomic factor of engine is found as 32.535%. According to Eco-cost and Eco-Indicator 99 methods, the AFTE generates 674.24 $/h-total emission cost rate and 68584.94 mPts/h-environmental impact rate. Besides, the specific environmental impact is determined as 5264.77 mPts/GJ whilst the specific environmental impact cost is obtained to be 0.03 $/mPts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Kiss, Anton; Smith, Robin;Abstract The need for greater sustainability for the production of fuels and chemicals has spurred significant research to rethink energy use in the chemical industry, and eventually substitute fossil fuel sources by renewable sources. Nowadays, the chemical industry is responsible for about one third of the total energy used - and the associated CO2 emissions - in the industrial sector. Among the energy intensive operations, distillation alone is responsible for about 40% of the energy used in the chemical industry, but there is clearly much room for improvement. This paper aims to provide an informative perspective on the current energy use in the chemical industry, with a focus on distillation – the undisputed king of industrial separation processes – and potential improvements for a more sustainable future. There is clearly an increasing need and scope for advanced distillation technologies (e.g. reactive distillation, dividing-wall columns, thermal coupling, cyclic distillation, heat pump assisted distillation, and heat integrated distillation columns) that can significantly reduce the energy usage and the carbon footprint of modern chemical plants. However, these advanced distillation technologies must be considered, along with conventional distillation operations, in the context of the process as a whole. Based on the overview provided, several challenges and opportunities for research directions are highlighted towards rethinking the energy use in distillation processes, for a more sustainable chemical industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Kiss, Anton; Smith, Robin;Abstract The need for greater sustainability for the production of fuels and chemicals has spurred significant research to rethink energy use in the chemical industry, and eventually substitute fossil fuel sources by renewable sources. Nowadays, the chemical industry is responsible for about one third of the total energy used - and the associated CO2 emissions - in the industrial sector. Among the energy intensive operations, distillation alone is responsible for about 40% of the energy used in the chemical industry, but there is clearly much room for improvement. This paper aims to provide an informative perspective on the current energy use in the chemical industry, with a focus on distillation – the undisputed king of industrial separation processes – and potential improvements for a more sustainable future. There is clearly an increasing need and scope for advanced distillation technologies (e.g. reactive distillation, dividing-wall columns, thermal coupling, cyclic distillation, heat pump assisted distillation, and heat integrated distillation columns) that can significantly reduce the energy usage and the carbon footprint of modern chemical plants. However, these advanced distillation technologies must be considered, along with conventional distillation operations, in the context of the process as a whole. Based on the overview provided, several challenges and opportunities for research directions are highlighted towards rethinking the energy use in distillation processes, for a more sustainable chemical industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 TurkeyPublisher:Elsevier BV Authors: Karakoc, T. Hikmet; Yu, Zhibin; Ekici, Selcuk; Zhao, Jian;handle: 11467/7008
The overarching objective of the Glasgow Climate Pact, a bold and ambitious undertaking, is to lay the groundwork for all the world’s economies, without exception, to decisively and irreversibly achieve the remarkable feat of hitting the net zero greenhouse gas emissions mark by the year 2050. The rationale behind this audacious goal is to arrest and neutralize the increasingly dire, ominous and pervasive impact of global warming on a planetary scale, and ensure that the rise in temperatures does not exceed the precarious 1.5◦ Celsius threshold above pre industrial levels. As such, it becomes crystal clear that it is a matter of utmost urgency that we, as a collective, wholeheartedly embrace and fervently pursue the adoption of green energy technologies, in all their multifarious and sundry forms, to enable us to inexorably advance to wards a state of civilization that leaves no carbon footprint, net or otherwise. However, this formidable challenge can only be surmounted through the vigorous and concerted efforts of the scientific and engi neering communities, who must endeavor to both invent and engineer innovative, cutting-edge low- or zero-carbon energy technologies, while also seeking to optimize and augment the efficiency and efficacy of our current energy systems, all while being mindful of the imperative to optimize cost-effectiveness in the process.
Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 TurkeyPublisher:Elsevier BV Authors: Karakoc, T. Hikmet; Yu, Zhibin; Ekici, Selcuk; Zhao, Jian;handle: 11467/7008
The overarching objective of the Glasgow Climate Pact, a bold and ambitious undertaking, is to lay the groundwork for all the world’s economies, without exception, to decisively and irreversibly achieve the remarkable feat of hitting the net zero greenhouse gas emissions mark by the year 2050. The rationale behind this audacious goal is to arrest and neutralize the increasingly dire, ominous and pervasive impact of global warming on a planetary scale, and ensure that the rise in temperatures does not exceed the precarious 1.5◦ Celsius threshold above pre industrial levels. As such, it becomes crystal clear that it is a matter of utmost urgency that we, as a collective, wholeheartedly embrace and fervently pursue the adoption of green energy technologies, in all their multifarious and sundry forms, to enable us to inexorably advance to wards a state of civilization that leaves no carbon footprint, net or otherwise. However, this formidable challenge can only be surmounted through the vigorous and concerted efforts of the scientific and engi neering communities, who must endeavor to both invent and engineer innovative, cutting-edge low- or zero-carbon energy technologies, while also seeking to optimize and augment the efficiency and efficacy of our current energy systems, all while being mindful of the imperative to optimize cost-effectiveness in the process.
Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 TurkeyPublisher:Elsevier BV Li, Xiangrong; Zhu, Shaoying; Yüksel, Serhat; Dinçer, Hasan; Ubay, Gözde Gülseven;handle: 20.500.12511/6079
Abstract In this study, it is aimed to identify innovative strategies for different renewable energy alternatives. In this context, the criteria that affect the effectiveness of renewable energy investments are first analyzed with the IT2 fuzzy DEMATEL. Then, 16 different strategies based on the Kano model are created. Also, appropriate innovative strategies have been determined for 5 different renewable energy types with IT2 fuzzy TOPSIS. Additionally, these alternatives are also ranked by using IT2 fuzzy VIKOR to make a comparative evaluation. Moreover, Monte Carlo simulation technique has been implemented to check and understand the objectiveness of the evaluation results. It is concluded that all results are quite coherent. The findings indicate that for the technical requirement dimension, the most important criteria are the availability of equipment and technological infrastructure. Regarding the customer satisfaction, it is identified that the possibility of sustainable consumption and competitive price play a key role. It is also determined that wind and solar energy alternatives are quite appropriate for all kinds of market conditions to create innovative strategies. For the biomass energy investments, new products should be developed by making radical innovations. In addition, it is seen that the hydroelectric energy alternative is not very suitable for its current form due to the low efficiency. Therefore, a detailed financial analysis should be carried out to solve this problem. Finally, as for geothermal energy investments, technical requirements should be satisfied to make more effective investments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 TurkeyPublisher:Elsevier BV Li, Xiangrong; Zhu, Shaoying; Yüksel, Serhat; Dinçer, Hasan; Ubay, Gözde Gülseven;handle: 20.500.12511/6079
Abstract In this study, it is aimed to identify innovative strategies for different renewable energy alternatives. In this context, the criteria that affect the effectiveness of renewable energy investments are first analyzed with the IT2 fuzzy DEMATEL. Then, 16 different strategies based on the Kano model are created. Also, appropriate innovative strategies have been determined for 5 different renewable energy types with IT2 fuzzy TOPSIS. Additionally, these alternatives are also ranked by using IT2 fuzzy VIKOR to make a comparative evaluation. Moreover, Monte Carlo simulation technique has been implemented to check and understand the objectiveness of the evaluation results. It is concluded that all results are quite coherent. The findings indicate that for the technical requirement dimension, the most important criteria are the availability of equipment and technological infrastructure. Regarding the customer satisfaction, it is identified that the possibility of sustainable consumption and competitive price play a key role. It is also determined that wind and solar energy alternatives are quite appropriate for all kinds of market conditions to create innovative strategies. For the biomass energy investments, new products should be developed by making radical innovations. In addition, it is seen that the hydroelectric energy alternative is not very suitable for its current form due to the low efficiency. Therefore, a detailed financial analysis should be carried out to solve this problem. Finally, as for geothermal energy investments, technical requirements should be satisfied to make more effective investments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Lina Meng; Wina Graus; Ernst Worrell; Bo Huang;The role of urban carbon dioxide (CO2) emissions has attracted city authorities' attention. Several entities face challenges when developing inventory method for local communities, due to limited data. This study proposes a top-down method to estimate CO2 emissions at an urban scale, using nighttime light imagery and statistical energy data. We find that nighttime light imagery is appropriate in CO2 estimations at an urban scale. The proposed method is particularly significant for the developing countries, of which CO2 emissions increase rapidly but lack in energy data at an urban scale. It also contains some limitations due to the inherent shortcomings of the data sources and methodological errors. It has very limited value when applying in urban areas with rare population. A case study is implemented in urban China. The results show that the share of urban emissions increases over the period of 1995-2010. Meanwhile, per capita CO2 emissions in China continuously grow, the values of which are much higher than the national averages. In a spatiotemporal perspective, per capita CO2 emissions in eastern coastal China are lower than that in inland China. These results have significant implications for local authorities to guide their policies in carbon reduction and climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Lina Meng; Wina Graus; Ernst Worrell; Bo Huang;The role of urban carbon dioxide (CO2) emissions has attracted city authorities' attention. Several entities face challenges when developing inventory method for local communities, due to limited data. This study proposes a top-down method to estimate CO2 emissions at an urban scale, using nighttime light imagery and statistical energy data. We find that nighttime light imagery is appropriate in CO2 estimations at an urban scale. The proposed method is particularly significant for the developing countries, of which CO2 emissions increase rapidly but lack in energy data at an urban scale. It also contains some limitations due to the inherent shortcomings of the data sources and methodological errors. It has very limited value when applying in urban areas with rare population. A case study is implemented in urban China. The results show that the share of urban emissions increases over the period of 1995-2010. Meanwhile, per capita CO2 emissions in China continuously grow, the values of which are much higher than the national averages. In a spatiotemporal perspective, per capita CO2 emissions in eastern coastal China are lower than that in inland China. These results have significant implications for local authorities to guide their policies in carbon reduction and climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Saygin, D.; Patel, M.K.; Worrell, E.; Tam, C.; Gielen, D.J.;The chemical and petrochemical sector is by far the largest industrial energy user, accounting for 30% of the industry's total final energy use. However, due to its complexity its energy efficiency potential is not well understood. This article analyses the energy efficiency potential on a country level if Best Practice Technologies (BPT) were implemented in chemical processes. Two approaches are applied and an improved dataset referring to Europe has been developed for BPT energy use. This methodology has been applied to 66 products in fifteen countries that represent 70% of chemical and petrochemical sector's energy use worldwide. The results suggest a global energy efficiency potential of 16% for this sector, excluding savings in electricity use and by higher levels of process integration, combined heat and power (CHP) and post-consumer plastic waste treatment. The results are more accurate than previous estimates. The results suggest significant differences between countries, but a cross-check based on two different methods shows that important methodological and data issues remain to be resolved. Further refinement is needed for target setting, monitoring and informing energy and climate negotiation processes. For the short and medium term, a combination of benchmarking and country level analysis is recommended.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 82 citations 82 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV H.M. Junginger; Wouter Schakel; Bothwell Batidzirai; André Faaij; A.P.R. Mignot; A.P.R. Mignot;Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 279 citations 279 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV H.M. Junginger; Wouter Schakel; Bothwell Batidzirai; André Faaij; A.P.R. Mignot; A.P.R. Mignot;Torrefaction is a promising bioenergy pre-treatment technology, with potential to make a major contribution to the commodification of biomass. However, there is limited scientific knowledge on the techno-economic performance of torrefaction. This study therefore improves available knowledge on torrefaction by providing detailed insights into state of the art prospects of the commercial utilisation of torrefaction technology over time. Focussing on and based on the current status of the compact moving bed reactor, we identify process performance characteristics such as thermal efficiency and mass yield and discuss their determining factors through analysis of mass and energy balances. This study has shown that woody biomass can be torrefied with a thermal and mass efficiency of 94% and 48% respectively (on a dry ash free basis). For straw, the corresponding theoretical energetic efficiency is 96% and mass efficiency is 65%. In the long term, the technical performance of torrefaction processes is expected to improve and energy efficiencies are expected to be at least 97% as optimal torgas use and efficient heat transfer are realised. Short term production costs for woody biomass TOPs (torrefied pellets) are estimated to be between 3.3 and 4.8 US$/GJLHV, falling to 2.1–5.1 US$/GJLHV in the long term. At such cost levels, torrefied pellets would become competitive with traditional pellets. For full commercialisation, torrefaction reactors still require to be optimised. Of importance to torrefaction system performance is the achievement of consistent and homogeneous, fully hydrophobic and stable product, capable of utilising different feedstocks, at desired end-use energy densities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 279 citations 279 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2013.09.035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Authors: Saygin, D.; Worrell, E.; Patel, M.K.; Gielen, D.J.;The Lower Silurian Longmaxi Formation is an organic-rich (black) mudrock that is widely considered to be a potential shale gas reservoir in the southern Sichuan Basin (the Yangtze plate) in Southwest China. A case study is presented to characterise the shale gas reservoir using a workflow to evaluate its characteristics. A typical characterisation of a gas shale reservoir was determined using basset sample analysis (geochemical, petrographical, mineralogical, and petrophysical) through a series of tests. The results show that the Lower Silurian Longmaxi Formation shale reservoir is characterised by organic geochemistry and mineralogical, petrophysical and gas adsorption. Analysis of the data demonstrates that the reservoir properties of the rock in this region are rich and that the bottom group of the Longmaxi Formation has the greatest potential for gas production due to higher thermal maturity, total organic carbon (TOC) enrichment, better porosity and improved fracture potential. These results will provide a basis for further evaluation of the hydrocarbon potential of the Longmaxi Formation shale in the Sichuan Basin and for identifying areas with exploration potential.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 Switzerland, NetherlandsPublisher:Elsevier BV Authors: Saygin, D.; Worrell, E.; Patel, M.K.; Gielen, D.J.;The Lower Silurian Longmaxi Formation is an organic-rich (black) mudrock that is widely considered to be a potential shale gas reservoir in the southern Sichuan Basin (the Yangtze plate) in Southwest China. A case study is presented to characterise the shale gas reservoir using a workflow to evaluate its characteristics. A typical characterisation of a gas shale reservoir was determined using basset sample analysis (geochemical, petrographical, mineralogical, and petrophysical) through a series of tests. The results show that the Lower Silurian Longmaxi Formation shale reservoir is characterised by organic geochemistry and mineralogical, petrophysical and gas adsorption. Analysis of the data demonstrates that the reservoir properties of the rock in this region are rich and that the bottom group of the Longmaxi Formation has the greatest potential for gas production due to higher thermal maturity, total organic carbon (TOC) enrichment, better porosity and improved fracture potential. These results will provide a basis for further evaluation of the hydrocarbon potential of the Longmaxi Formation shale in the Sichuan Basin and for identifying areas with exploration potential.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 107 citations 107 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2011.08.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV Authors: Ates, S.A.;handle: 20.500.12511/2339
With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO2 in BAU (business-as-usual scenario), 32.5 MtCO2 in SEI, 24.6 MtCO2 in AEI and 14.5 MtCO2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 TurkeyPublisher:Elsevier BV Authors: Ates, S.A.;handle: 20.500.12511/2339
With the assistance of the LEAP (long-range energy alternatives planning) energy modeling tool, this study explores the energy efficiency and CO2 emission reduction potential of the iron and steel industry in Turkey. With a share of 35%, the steel and iron industry is considered as the most energy-consuming sector in Turkey. The study explores that the energy intensity rate can be lowered by 13%, 38% and 51% in SEI (slow-speed energy efficiency improvement), AEI (accelerating energy efficiency improvement) and CPT (cleaner production and technology scenario) scenarios, respectively. Particularly the projected aggregated energy savings of the scenarios CPT and AES are very promising with saving rates of 33.7% and 23% respectively. Compared to baseline scenarios, energy efficiency improvements correspond to economic potential of 0.1 billion dollars for SEI, 1.25 dollars for AEI and 1.8 billion dollars for CPT scenarios annually. Concerning GHG (greenhouse gas) emissions, in 2030 the iron and steel industry in Turkey is estimated to produce 34.9 MtCO2 in BAU (business-as-usual scenario), 32.5 MtCO2 in SEI, 24.6 MtCO2 in AEI and 14.5 MtCO2 in CPT a scenario which corresponds to savings of 9%–39%. The study reveals that energy consumption and GHG emissions of the iron and steel industry can be lowered significantly if the necessary measures are implemented. It is expected that this study will fill knowledge gaps pertaining to energy efficiency potential in Turkish energy intensive industries and help stakeholders in energy intensive industries to realize the potential for energy efficiency and GHG mitigation.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 93 citations 93 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2015.07.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Shaohui Zhang; Ernst Worrell; Wina Crijns-Graus; Fabian Wagner; Janusz Cofala;In 2010, China was responsible for 45% of global steel production, while consuming 15.8EJ of final energy and emitting 1344Mt CO2eq, 8.4Mt of PM (particulate matter) emissions, and 5.3Mt of SO2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM_S3 scenario would be reduce 27% CO2eq, 3% of PM, and 22% of SO2, compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Shaohui Zhang; Ernst Worrell; Wina Crijns-Graus; Fabian Wagner; Janusz Cofala;In 2010, China was responsible for 45% of global steel production, while consuming 15.8EJ of final energy and emitting 1344Mt CO2eq, 8.4Mt of PM (particulate matter) emissions, and 5.3Mt of SO2 emissions. In this paper we analyse the co-benefits of implementing energy efficiency measures that jointly reduce greenhouse gas emissions and air pollutants, in comparison to applying only air pollution control (end-of-pipe technology). For this purpose we construct ECSC (energy conservation supply curves) that contain potentials and costs of energy efficiency measures and implement these in the GAINS (greenhouse gas and air pollution interactions and synergies) model. Findings show that the technical energy saving potential for the Chinese iron and steel industry for 2030 is around 5.7EJ. This is equivalent to 28% of reference energy use in 2030. The emissions mitigation of GHGs (greenhouse gases) and air pollutants in BAEEM_S3 scenario would be reduce 27% CO2eq, 3% of PM, and 22% of SO2, compared to the BL scenario in 2030. Investments and cost savings were calculated for different scenarios, showing that energy efficiency investments will result in significant reductions in air pollution control costs. Hence, Energy efficiency measures should be integrated in air quality policy in China.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 162 citations 162 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.10.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Ozgur Balli; T. Hikmet Karakoc;handle: 11467/6197
This study presents a detailed exergy, exergoeconomic, environmental damage cost and impact analyses about the aircraft engine turbofan (ATFE) in the aerospace industry. According to the results of investigation, exergy efficiency of ATFE is estimated as 20.32% when the fuel exergy waste ratio is obtained as 79.68%. According to exergy based environmental performance analysis, the ecological effect factor is estimated to be 4.92, while the ecological objective function is found as 38.06 GJ/h. In the exergy based sustainability analysis, the exergetic sustainability index and sustainable efficiency factor of ATFE are obtained to 0.003 and 1.26. These results indicate that waste exergy rate should be reduce to increase exergy efficiency, exergetic sustainability index and sustainable efficiency factor. In the exergoeconomic analysis which is used the specific exergy costing (SPECO) method, the specific cost of fuel and product for ATFE are estimated as 12.56 $/GJ and 85.56 $/GJ while exergoeconomic factor of engine is found as 32.535%. According to Eco-cost and Eco-Indicator 99 methods, the AFTE generates 674.24 $/h-total emission cost rate and 68584.94 mPts/h-environmental impact rate. Besides, the specific environmental impact is determined as 5264.77 mPts/GJ whilst the specific environmental impact cost is obtained to be 0.03 $/mPts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 TurkeyPublisher:Elsevier BV Authors: Ozgur Balli; T. Hikmet Karakoc;handle: 11467/6197
This study presents a detailed exergy, exergoeconomic, environmental damage cost and impact analyses about the aircraft engine turbofan (ATFE) in the aerospace industry. According to the results of investigation, exergy efficiency of ATFE is estimated as 20.32% when the fuel exergy waste ratio is obtained as 79.68%. According to exergy based environmental performance analysis, the ecological effect factor is estimated to be 4.92, while the ecological objective function is found as 38.06 GJ/h. In the exergy based sustainability analysis, the exergetic sustainability index and sustainable efficiency factor of ATFE are obtained to 0.003 and 1.26. These results indicate that waste exergy rate should be reduce to increase exergy efficiency, exergetic sustainability index and sustainable efficiency factor. In the exergoeconomic analysis which is used the specific exergy costing (SPECO) method, the specific cost of fuel and product for ATFE are estimated as 12.56 $/GJ and 85.56 $/GJ while exergoeconomic factor of engine is found as 32.535%. According to Eco-cost and Eco-Indicator 99 methods, the AFTE generates 674.24 $/h-total emission cost rate and 68584.94 mPts/h-environmental impact rate. Besides, the specific environmental impact is determined as 5264.77 mPts/GJ whilst the specific environmental impact cost is obtained to be 0.03 $/mPts.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2022.124620&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Kiss, Anton; Smith, Robin;Abstract The need for greater sustainability for the production of fuels and chemicals has spurred significant research to rethink energy use in the chemical industry, and eventually substitute fossil fuel sources by renewable sources. Nowadays, the chemical industry is responsible for about one third of the total energy used - and the associated CO2 emissions - in the industrial sector. Among the energy intensive operations, distillation alone is responsible for about 40% of the energy used in the chemical industry, but there is clearly much room for improvement. This paper aims to provide an informative perspective on the current energy use in the chemical industry, with a focus on distillation – the undisputed king of industrial separation processes – and potential improvements for a more sustainable future. There is clearly an increasing need and scope for advanced distillation technologies (e.g. reactive distillation, dividing-wall columns, thermal coupling, cyclic distillation, heat pump assisted distillation, and heat integrated distillation columns) that can significantly reduce the energy usage and the carbon footprint of modern chemical plants. However, these advanced distillation technologies must be considered, along with conventional distillation operations, in the context of the process as a whole. Based on the overview provided, several challenges and opportunities for research directions are highlighted towards rethinking the energy use in distillation processes, for a more sustainable chemical industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Kiss, Anton; Smith, Robin;Abstract The need for greater sustainability for the production of fuels and chemicals has spurred significant research to rethink energy use in the chemical industry, and eventually substitute fossil fuel sources by renewable sources. Nowadays, the chemical industry is responsible for about one third of the total energy used - and the associated CO2 emissions - in the industrial sector. Among the energy intensive operations, distillation alone is responsible for about 40% of the energy used in the chemical industry, but there is clearly much room for improvement. This paper aims to provide an informative perspective on the current energy use in the chemical industry, with a focus on distillation – the undisputed king of industrial separation processes – and potential improvements for a more sustainable future. There is clearly an increasing need and scope for advanced distillation technologies (e.g. reactive distillation, dividing-wall columns, thermal coupling, cyclic distillation, heat pump assisted distillation, and heat integrated distillation columns) that can significantly reduce the energy usage and the carbon footprint of modern chemical plants. However, these advanced distillation technologies must be considered, along with conventional distillation operations, in the context of the process as a whole. Based on the overview provided, several challenges and opportunities for research directions are highlighted towards rethinking the energy use in distillation processes, for a more sustainable chemical industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 132 citations 132 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.117788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 TurkeyPublisher:Elsevier BV Authors: Karakoc, T. Hikmet; Yu, Zhibin; Ekici, Selcuk; Zhao, Jian;handle: 11467/7008
The overarching objective of the Glasgow Climate Pact, a bold and ambitious undertaking, is to lay the groundwork for all the world’s economies, without exception, to decisively and irreversibly achieve the remarkable feat of hitting the net zero greenhouse gas emissions mark by the year 2050. The rationale behind this audacious goal is to arrest and neutralize the increasingly dire, ominous and pervasive impact of global warming on a planetary scale, and ensure that the rise in temperatures does not exceed the precarious 1.5◦ Celsius threshold above pre industrial levels. As such, it becomes crystal clear that it is a matter of utmost urgency that we, as a collective, wholeheartedly embrace and fervently pursue the adoption of green energy technologies, in all their multifarious and sundry forms, to enable us to inexorably advance to wards a state of civilization that leaves no carbon footprint, net or otherwise. However, this formidable challenge can only be surmounted through the vigorous and concerted efforts of the scientific and engi neering communities, who must endeavor to both invent and engineer innovative, cutting-edge low- or zero-carbon energy technologies, while also seeking to optimize and augment the efficiency and efficacy of our current energy systems, all while being mindful of the imperative to optimize cost-effectiveness in the process.
Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 TurkeyPublisher:Elsevier BV Authors: Karakoc, T. Hikmet; Yu, Zhibin; Ekici, Selcuk; Zhao, Jian;handle: 11467/7008
The overarching objective of the Glasgow Climate Pact, a bold and ambitious undertaking, is to lay the groundwork for all the world’s economies, without exception, to decisively and irreversibly achieve the remarkable feat of hitting the net zero greenhouse gas emissions mark by the year 2050. The rationale behind this audacious goal is to arrest and neutralize the increasingly dire, ominous and pervasive impact of global warming on a planetary scale, and ensure that the rise in temperatures does not exceed the precarious 1.5◦ Celsius threshold above pre industrial levels. As such, it becomes crystal clear that it is a matter of utmost urgency that we, as a collective, wholeheartedly embrace and fervently pursue the adoption of green energy technologies, in all their multifarious and sundry forms, to enable us to inexorably advance to wards a state of civilization that leaves no carbon footprint, net or otherwise. However, this formidable challenge can only be surmounted through the vigorous and concerted efforts of the scientific and engi neering communities, who must endeavor to both invent and engineer innovative, cutting-edge low- or zero-carbon energy technologies, while also seeking to optimize and augment the efficiency and efficacy of our current energy systems, all while being mindful of the imperative to optimize cost-effectiveness in the process.
Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Istanbul Ticaret Uni... arrow_drop_down Istanbul Ticaret University Institutional RepositoryOther literature type . 2023Data sources: Istanbul Ticaret University Institutional RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2023.129115&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 TurkeyPublisher:Elsevier BV Li, Xiangrong; Zhu, Shaoying; Yüksel, Serhat; Dinçer, Hasan; Ubay, Gözde Gülseven;handle: 20.500.12511/6079
Abstract In this study, it is aimed to identify innovative strategies for different renewable energy alternatives. In this context, the criteria that affect the effectiveness of renewable energy investments are first analyzed with the IT2 fuzzy DEMATEL. Then, 16 different strategies based on the Kano model are created. Also, appropriate innovative strategies have been determined for 5 different renewable energy types with IT2 fuzzy TOPSIS. Additionally, these alternatives are also ranked by using IT2 fuzzy VIKOR to make a comparative evaluation. Moreover, Monte Carlo simulation technique has been implemented to check and understand the objectiveness of the evaluation results. It is concluded that all results are quite coherent. The findings indicate that for the technical requirement dimension, the most important criteria are the availability of equipment and technological infrastructure. Regarding the customer satisfaction, it is identified that the possibility of sustainable consumption and competitive price play a key role. It is also determined that wind and solar energy alternatives are quite appropriate for all kinds of market conditions to create innovative strategies. For the biomass energy investments, new products should be developed by making radical innovations. In addition, it is seen that the hydroelectric energy alternative is not very suitable for its current form due to the low efficiency. Therefore, a detailed financial analysis should be carried out to solve this problem. Finally, as for geothermal energy investments, technical requirements should be satisfied to make more effective investments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 TurkeyPublisher:Elsevier BV Li, Xiangrong; Zhu, Shaoying; Yüksel, Serhat; Dinçer, Hasan; Ubay, Gözde Gülseven;handle: 20.500.12511/6079
Abstract In this study, it is aimed to identify innovative strategies for different renewable energy alternatives. In this context, the criteria that affect the effectiveness of renewable energy investments are first analyzed with the IT2 fuzzy DEMATEL. Then, 16 different strategies based on the Kano model are created. Also, appropriate innovative strategies have been determined for 5 different renewable energy types with IT2 fuzzy TOPSIS. Additionally, these alternatives are also ranked by using IT2 fuzzy VIKOR to make a comparative evaluation. Moreover, Monte Carlo simulation technique has been implemented to check and understand the objectiveness of the evaluation results. It is concluded that all results are quite coherent. The findings indicate that for the technical requirement dimension, the most important criteria are the availability of equipment and technological infrastructure. Regarding the customer satisfaction, it is identified that the possibility of sustainable consumption and competitive price play a key role. It is also determined that wind and solar energy alternatives are quite appropriate for all kinds of market conditions to create innovative strategies. For the biomass energy investments, new products should be developed by making radical innovations. In addition, it is seen that the hydroelectric energy alternative is not very suitable for its current form due to the low efficiency. Therefore, a detailed financial analysis should be carried out to solve this problem. Finally, as for geothermal energy investments, technical requirements should be satisfied to make more effective investments.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 91 citations 91 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2020.118679&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Lina Meng; Wina Graus; Ernst Worrell; Bo Huang;The role of urban carbon dioxide (CO2) emissions has attracted city authorities' attention. Several entities face challenges when developing inventory method for local communities, due to limited data. This study proposes a top-down method to estimate CO2 emissions at an urban scale, using nighttime light imagery and statistical energy data. We find that nighttime light imagery is appropriate in CO2 estimations at an urban scale. The proposed method is particularly significant for the developing countries, of which CO2 emissions increase rapidly but lack in energy data at an urban scale. It also contains some limitations due to the inherent shortcomings of the data sources and methodological errors. It has very limited value when applying in urban areas with rare population. A case study is implemented in urban China. The results show that the share of urban emissions increases over the period of 1995-2010. Meanwhile, per capita CO2 emissions in China continuously grow, the values of which are much higher than the national averages. In a spatiotemporal perspective, per capita CO2 emissions in eastern coastal China are lower than that in inland China. These results have significant implications for local authorities to guide their policies in carbon reduction and climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 NetherlandsPublisher:Elsevier BV Authors: Lina Meng; Wina Graus; Ernst Worrell; Bo Huang;The role of urban carbon dioxide (CO2) emissions has attracted city authorities' attention. Several entities face challenges when developing inventory method for local communities, due to limited data. This study proposes a top-down method to estimate CO2 emissions at an urban scale, using nighttime light imagery and statistical energy data. We find that nighttime light imagery is appropriate in CO2 estimations at an urban scale. The proposed method is particularly significant for the developing countries, of which CO2 emissions increase rapidly but lack in energy data at an urban scale. It also contains some limitations due to the inherent shortcomings of the data sources and methodological errors. It has very limited value when applying in urban areas with rare population. A case study is implemented in urban China. The results show that the share of urban emissions increases over the period of 1995-2010. Meanwhile, per capita CO2 emissions in China continuously grow, the values of which are much higher than the national averages. In a spatiotemporal perspective, per capita CO2 emissions in eastern coastal China are lower than that in inland China. These results have significant implications for local authorities to guide their policies in carbon reduction and climate change.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 198 citations 198 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2014.04.103&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu