Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
88 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • Restricted
  • Open Source
  • Embargo
  • 9. Industry and infrastructure

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Festus Victor Bekun; Bright Akwasi Gyamfi; Cihat Köksal; Amjad Taha;

    The present study is motivated by the need to decouple economic growth from environmental degradation given the new wave of chase for higher economic growth trajectories comes with its environmental cost implications, especially among developing blocs like the Emerging 7 (E7) countries. There is a consistent trade-off between economic growth versus environmental quality. Government apparatus are perpetually on the chase for low-carbon emission policies via the pursuit for green economy. To this end, this present study extends the conventional environmental Kuznets curve (EKC) argument by incorporating the role of institution in emerging industrialized economies (E7) and using second-generation panel analysis methods like mean group (MG), augmented mean group (AMG), common correlated effects mean group (CCEMG), and the Dumitrescu and Hurlin causality test for more robust estimates and inferences. To this end, we explore the long-run and causality relationship between economic growth, quadratic form of economic growth, institutional quality, trade flow, investment in energy sector, and financial development in an EKC environment. Empirical analysis established a long-run equilibrium relationship among the outlined variables over the study period. The long-run regression shows the presence of EKC in the E7. Thus, suggesting the preference for GDP growth over environmental quality at the earlier stage of growth curve. Interestingly, investment in energy, trade flow dynamics across the blocs, and financial development dampens the detrimental effect of environmental pollution as we observed negative relationship with the ecological footprint. On the contrary, quality of institution is weak as institutional quality increase (worsen) the quality of environment in the E7 economies. From a policy perspective, this current study proposed the need for more stringent environmental treaties and regulations and promotion of green economy without compromising economic growth. In the conclusion part of the study, more details and specifics about the policy blueprint are presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rodrigues, Jeziel Lima;

    Esta dissertação oferece contribuições para o campo da energia eólica, e fornece um roteiro claro para a tomada de decisão baseada em dados, bem como orientações práticas para otimizar a operação e manutenção. No contexto atual da transformação digital e crescente demanda energética surge a necessidade de soluções inovadores e sustentáveis em larga escala, como a energia eólica offshore. A energia eólica é uma fonte de energia renovável que tem o potencial de contribuir significativamente para a matriz energética global. A implementação e operação de projetos eólicos offshore são desafiadores devido aos custos elevados e à natureza intrínseca dos riscos no ambiente marítimo, por isso necessitam operar em sua máxima eficiência e desempenho, tendo em vista a viabilidade económica. Este trabalho tem como objetivo a compreensão dos fatores principais que influenciam o desempenho energético dos aerogeradores através dos dados que revelam as interrupções e falhas de sistemas. Os resultados obtidos nesta pesquisa destacam a necessidade de uma abordagem integrada, buscando o conhecimento técnico especializado com a aplicação de tecnologias de monitoramento em tempo real e análise de dados. Ao reconhecer os padrões de falhas e as lacunas de eficiência, os gestores podem direcionar seus esforços para aprimorar a fiabilidade, a disponibilidade e a performance geral dessas unidades geradoras de energia elétrica. Através da implementação das recomendações resultantes deste estudo, espera-se que as instituições possam alcançar uma expressiva rentabilidade e sustentabilidade, alinhando-se de forma eficaz com as demandas atuais, garantindo uma posição sólida no ambiente empresarial e contribuindo para um futuro energético mais equilibrado.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tarican, Ayşe;

    SUMMARY SOLAR CELL POWER PLANTS Extensive research and development activities are currently being conducted ali över the world in the area of utilizing renewable energy resources. The interest of the utilization of local renewable energy resources for devoloping countries has been enhanced by the dramatic increase of oil prices in the early seventies. Öne of the most promising renewable resources is the solar energy. The recent developments in the solid state industry accompanied by a parallel increase in energy prices and the environmental restrictions as well as the need for reliable sources of energy lead to the consideration and assessment of new sources of energy which can secure the needs of public with a minimum impact on the environment. An important candidate is the photovoltaic (PV) source of energy, where the solar radiation is directly converted into electricity that can either be residentially used as a local self-sufficient source such as telecommunication, vaccine refrigeration, lighting, battery charging and water pumping applications ör interconnected to available AÇ public grid. in this work about the photovoltaic systems that are connected to the grid, the voltage obtained from the array is converted to three phase sinusoidal voltage by a static inverter vvhich supplies the public grid and the system is simulated. A utility - interactive PV system (Figüre 1) consists of a variety of subsystems: a PV array subsystem, a power conditioning subsystem, a utility interconnection subsystem, and control subsystem. The PV array subsystem converts solar energy into direct current (DC) electrical povver and delivers it to the power conditioning subsystem (PCS) through the DC interface. The array subsystem also provides protection and necessary electrical isolation between the PCS and the array, and may include experimental instrumentation for monitoring the performance of the array. The utility interconnection subsystem, through the alternating current (AÇ) interface with the PCS, provides synchronization with the utility and, if necessary, acts to electrically isolate the PV system from the utility. The control subsystem, operating through the PCS, oversees the performance of the entire PV system. it also enables overall coordination of the system protection, communicates status information to the utility dispatch center, and, if desired, provides an information and tracking VIIfeedback loop with the PV array. in central PV stations, the PCS may also processes operational commands from the utility dispatch center. in operation, the PCS converts DC power from the array into AÇ povver, provides optimum amount of power to be extracted from the PV array for any given insolation and environmental conditions, matches frequency and phase of the voltage desired by the utility, and provides. protection not only for its internal components but also for the equipment external to the PCS..i, UTILITYCONTROL AND rı^MTi,TINFORMATION SIGNALS CONTKOL ^ SUBSYSTEM rJ^IS PVPOWER CON-UTILITY^- ARRAY-*- DITIONING -+.INTERCON.*~ SOLAR l SUBSYSTEMSUBSYSTEM SUBSYSTEM UTILITY ENERGY4 4 Figüre 1. Block Diagram of a Utility-Interactive Photovoltaic System To achieve a compatible integration of the PV system with the utility, it is essential that the design of the PCS accommodate the dynamic range of interactions between the PV system and the utility grid. These arise from changes in both grid conditions and the output of the PV array. The proper and safe interconnections of PV subsystems require not only the identifications of their mutual functional constraints, but also a knovvledge of how to select ör design the PV subsystems vvithin such constraints. These constraints, therefore, are important in the selection ör evaluation of a PCS that is suitable for central station PV systems. A solar celi (SC) generator possesses a line of maximum povver, and it is most desirable that the operation of the load line should be close to the maximum povver line of the generator. in such a case, good matching exists between the generator and the load for the best performance of the system and maximum utilization of the solar cells. The VIII-Toperating points of the photovoltaic system can generally be accomplished by either carefully selecting the I-V characteristics of the load to be connected to the SC generator, ör incorporating an electronic control device (a maximum-power- point-tracker (MPPT)), which provides the necessary impedance matching the SC generator and the inclusion of a MPPT in PV systems depends on several factors: load type and profile; climatic conditions; the fractional cost of the MPPT and its efficiency; and the gain in energy. An electrical circuit design can be simulated before it is actually built, and necessary changes may be done without touching any hardvvare. Any design that is thought to be complete can be checked easily. Building an electrical circuit is the most practical way to check it, but it is expensive and time consuming. it is useful to simulate the design carefully by using a computer program. Figüre 2 shows the PV system simulated by using PSpice which is a member of the Spice (Simulation Program with Integrated Circuit Emphasis) family of circuit simulators. The solar celi is a semiconductor device that converts the solar radiation directly to electrical energy. The celi is a nonlinear device and can be represented by the I-V terminal characteristics, Figüre 3, ör by an approximate electrical equivalent circuit as shown in Figüre 4. The solar celi is an electrical celi of low level voltage and power, therefore the cells are in series and in parallel combinations in order to form an array of the desired voltage and power levels. The I-V equation of a single celi is given by: I = İL - Is [exp[(q/nkT). (V + RsI) - l] ] where İL is the light generated current, Is is the saturation current, kT/q is the thermal voltage, n is the perfection factor, Rs is the series resistance of the celi. For each characteristic curve there is an optimum operating point with respect to the power. Proper load selection allows the maximum power to be transferred. in this work, to convert the DC voltage into three phase sinusoidal voltage, a three-phase bridge inverter is used. The power circuit of a three-phase bridge inverter using thyristors is shown in Figüre 5, where commutation and snubber circuits are omitted for simplicity. The inverter consists of three half bridge units where the upper and lower thyristors of each unit are switched on and off alternately for 180° intervals. The three half-bridges are phase-shifted by 120°. The inverter output voltage wave shapes are determined by the circuit configuration and switching pattern. These waves are rich in harmonics. IX-T* *T`U_ -mrrru. rv» <D-^ PU ARRAY INUERTER UT ILIT V QRID INPUT FILTER OUTPUT FILTER Figure 2. Block diagram of the PV system simulated by using PSpice Figure 3. Characteristics of a solar cellRs I î I * * l IU<2pİ İDippSRCLoad) iii»»l Figüre 4. Solar celi equivalent circuit The inverter is provided with a filter, to make the output voltage (nearly) sinusoidal. in this study, a band-pass filter is chosen, as it is a simple and economical solution for the system. The transformer coupling to the grid supplies the filtered output voltage of the inverter into the grid. The model of ali components of the system is constituted by using their equivalent circuits and the system is simulated completely step by step. 178

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao YÖK Açık Bilim - CoH...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao YÖK Açık Bilim - CoH...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Laura Silvia Valente de Macedo; Marc Eric Barda Picavet; José Antonio Puppim de Oliveira; Wan-Yu Shih;

    Abstract This article reviews the current status of research on urban green and blue infrastructure (GBI) in developing countries. We critically analyzed a total of 283 papers addressing urban GBI in selected developing countries in Africa, Asia, Latin America and the Caribbean (LAC), published between 2015 and 2019. The review aimed to a) analyze publication trends and typologies of urban GBI; b) identify innovative problem-solving measures using urban GBI, and c) understand priorities, differences and similarities in the deployment of urban GBI between the regions. The article identifies a growing interest in the urban GBI concept in the Global South, with a focus on local sustainable development. Urban GBI aims to address issues of urban greenery, land use policies, food security and poverty alleviation. There is a large variation in the number of articles across regions, with Asia, and particularly China, as the subject having a much larger number of publications when compared to LAC and Africa. We found that the focus of research topics varied between regions, reflecting regional development needs, so that urban agriculture research predominated in Africa, and green spaces and parks in Asia and LAC. GBI is still not implemented as a low-impact development or innovative strategy, except in China, where researchers have examined several cases of systemic GBI use for addressing urban issues. More recently, studies began exploring the linkages between nature and cities in light of global environmental issues such as biodiversity loss and climate change. We conclude with recommendations to further examine empirical evidence of urban GBI deployment and its outcomes in the Global South, that could contribute toward conceptualizing natural resource management in a multi-scalar, multi-dimensional, and multidisciplinary framework.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    74
    citations74
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hofbauer, Elisabeth;

    With the rise of omni-channel retailing and globalization, the number of goods being shipped worldwide on a daily basis has grown year-over-year. Hand in hand, the negative externalities caused by the last mile, the last leg of the supply chain, have also increased, including air and noise pollution, congestion, infrastructure wear-and-tear, and an overall lack of efficiency. To tackle these issues while finding a way to make a profit, sustainable innovations are required. Coincident with the increasing need for companies to rethink their last mile concepts, the academic interest around the last mile has significantly grown. However, there is a lack of research in connection with sustainability practices in the last mile. To provide guidance for the development of a more sustainable last mile, the thesis identifies opportunities for innovation by exploring the SBMI process and then uses the Sustainable Business Model Archetypes by Bocken et al. (2014) as a basis to conceptualize the findings. The result are the Sustainable Business Model Archetypes for the last mile, which are based on a secondary literature review and are complemented with empirical research, in the form of expert interviews. Based on the findings of this thesis, sustainable innovations can be subdivided into three dimensions: environmental, social, and economic. The Sustainable Business Model archetypes summarize the possibilities for companies to become more sustainable and reveal opportunities for synergies when implementing multiple innovations simultaneously. However, it is unsettled who of the various relevant stakeholders carries the responsibility to drive the innovation process. While it became clear that consumer behavior has a great power to drive the developments of the last mile, the findings reveal that the ultimate key for a sustainable transformation in the last mile is the interplay of all different stakeholders.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao JKU ePubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    JKU ePub
    Master thesis . 2022
    Data sources: JKU ePub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao JKU ePubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      JKU ePub
      Master thesis . 2022
      Data sources: JKU ePub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: AYRANCI, AHMET AYTUĞ; İlhan, Hacı;

    Electrical Grid Systems transmit power produced from various facilities to end-users. Supply and demand must be in balance to achieve secure and stable use in the power grid. To ensure this stability, the amount of electricity fed into the system must always be the same as the amount of demand. High demand makes electrical grid systems' stability more important than ever. Current electrical infrastructures are hard to adapt to these needs. A smart grid system enables two-way electricity flow according to the demand from end-users. Digital communication in smart grid systems enables the system to detect demands, problems, and changes. Also collects information to ensure stability in the system. This study is using the Electrical Grid Stability data set shared at UC Irvine (UCI) Machine Learning repository. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) Network, K-Nearest Neighbors (K-NN), and Naïve Bayes (NB) Machine Learning (ML) algorithms were used to examine the stability performance of the Smart Grid system. Acquired performance metrics compared using Accuracy, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and F-Score. According to the results obtained, the system and its performance are interpreted. © 2022 IEEE. IEEE Turkey Section Istanbul Atlas University

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OpenAccess@IKUarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    OpenAccess@IKU
    Conference object . 2023
    Data sources: OpenAccess@IKU
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icmi55...
    Conference object . 2022 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OpenAccess@IKUarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      OpenAccess@IKU
      Conference object . 2023
      Data sources: OpenAccess@IKU
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icmi55...
      Conference object . 2022 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    It is increasingly evident that the direction of technological change responds to economic incentives. We review the literature on directed technical change in the context of environmental economics and labor economics, and we show that these fields have much in common both theoretically and empirically. We emphasize the importance of a balanced growth path and show that the lack of such a path is closely related to the slow development of green technologies in environmental economics and to growing inequality in labor economics. We discuss whether the direction of innovation is efficient.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annual Review of Economics
    Article . 2021 . Peer-reviewed
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2021 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2021
    Data sources: Datacite
    Annual Review of Economics
    Article . 2021 . Peer-reviewed
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    The objective of this research is to analyze the implementation of eco-innovation as a tool to improve the quality of products, in order to comprehend the benefits deriving from its application. In particular, this research is aimed at exploring the way eco-innovation can be implemented in small- and medium-sized enterprises (SMEs). In other words, the aim of this paper is to study environmental innovation as a paradigm for modern companies that are aware of the necessity to better amalgamate social responsibility with economic performance. The case study methodology has been applied. Specifically, an Italian enterprise, Ecobabydesign, has been studied, because its activity is totally inspired by green principles, from materials to recyclability. Information has been provided directly by the founder. The analysis highlights that the case of Ecobabydesign embodies the total application of ecological innovation. It is an example of innovation which is generated firstly in its mission and then in its high-quality products, whose characteristics derive from its green choice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Knowledge Economy
    Article . 2021 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Federica Caffaro; Eugenio De Gregorio; Giorgio Capello; Lucia Vigoroso; +3 Authors

    The study aimed at investigating drivers of adoption of good practices and technological innovations for soil protection in a group of winegrowers in Piedmont region, North west of Italy. Many previous studies addressed soil conservation and degradation, but the points of view of land operators have not been frequently addressed. Understanding farmers' perceptions, intentions and needs could help in a better suited implementation of measures for soil protection in vineyards. Four focus groups has been conducted with winegrowers (N=17) in Piedmont region, North-west Italy. Topics addressed in the focus groups were related to: perception of soil erosion and the role of the human factor in preventing/causing it, adoption and intention to adopt good practices and technological innovations for soil protection and, finally, barriers and drivers for their adoption. A questionnaire assessing participants' socio demographic characteristics and operation, vineyard management practices and perceived causes of soil erosion was administered to the respondents and the responses were used to encourage the discussion. Preliminary results showed that soil erosion was perceived as a relevant issue by the majority of the participants. Wide use of machinery during vineyard plantation and management was acknowledged as affecting soil and water conservation. Cost-benefit ratio did not sufficiently capture the complexity of farmers' decision making and behaviours, since the adoption of sustainable practices and technological innovations was more often related to place attachment and landscape protection. Social norms and peer pressures were not perceived as critical drivers for good practices adoption, whereas tradition and habits appeared to play a role in hindering the adoption of soil protection practices and technologies. Some recommendations arise from the present study: to encourage the adoption of soil protection practices and technologies, access to economic support should be spread but it does not seem to be enough. Personal values and habitual processes emerged as critical variables which could be targeted with awareness raising and education interventions. To maximize the fit between farmers' needs and sustainable innovation, these interventions should be based on a participatory approach and the co-creation of tailor-made solutions to better support the transition toward a more sustainable farming paradigm.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2022
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2023
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2023 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2022
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2023
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2022
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2023
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2023 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2022
      Data sources: IRIS Cnr
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2023
      Data sources: IRIS Cnr
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Meng, Yue; Dinçer, Hasan; Yüksel, Serhat;

    Abstract The aim of this study is to evaluate the incremental innovation performance of nuclear energy projects. Within this context, a novel model is generated which consists of two different stages, and large nuclear reactors are taken into consideration. Firstly, the Pythagorean fuzzy DEMATEL is used to weight the phases of technology S-Curve for nuclear energy projects. Moreover, the second stage includes the ranking two-generation technology S-curve with integer patterns for nuclear energy projects. In this framework, the best combinations are selected for innovation life cycle pattern with the integer code series. The findings demonstrate that the nuclear energy companies need to consider the two-generation technology S-Curve because continuous technological developments are occurring for nuclear power generation. It is also determined that aging in the first generation is the most significant period of two-generation technology S-Curve for nuclear energy projects. In this process, critical decisions should be made regarding future technological investments. In addition, the growth phase in the second generation is also important for the effectiveness of the nuclear energy technology. Conducting effective evaluations in these processes will contribute to increasing the efficiency of companies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Nuclear Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Nuclear Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
88 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Festus Victor Bekun; Bright Akwasi Gyamfi; Cihat Köksal; Amjad Taha;

    The present study is motivated by the need to decouple economic growth from environmental degradation given the new wave of chase for higher economic growth trajectories comes with its environmental cost implications, especially among developing blocs like the Emerging 7 (E7) countries. There is a consistent trade-off between economic growth versus environmental quality. Government apparatus are perpetually on the chase for low-carbon emission policies via the pursuit for green economy. To this end, this present study extends the conventional environmental Kuznets curve (EKC) argument by incorporating the role of institution in emerging industrialized economies (E7) and using second-generation panel analysis methods like mean group (MG), augmented mean group (AMG), common correlated effects mean group (CCEMG), and the Dumitrescu and Hurlin causality test for more robust estimates and inferences. To this end, we explore the long-run and causality relationship between economic growth, quadratic form of economic growth, institutional quality, trade flow, investment in energy sector, and financial development in an EKC environment. Empirical analysis established a long-run equilibrium relationship among the outlined variables over the study period. The long-run regression shows the presence of EKC in the E7. Thus, suggesting the preference for GDP growth over environmental quality at the earlier stage of growth curve. Interestingly, investment in energy, trade flow dynamics across the blocs, and financial development dampens the detrimental effect of environmental pollution as we observed negative relationship with the ecological footprint. On the contrary, quality of institution is weak as institutional quality increase (worsen) the quality of environment in the E7 economies. From a policy perspective, this current study proposed the need for more stringent environmental treaties and regulations and promotion of green economy without compromising economic growth. In the conclusion part of the study, more details and specifics about the policy blueprint are presented.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Istanbul Ticaret Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rodrigues, Jeziel Lima;

    Esta dissertação oferece contribuições para o campo da energia eólica, e fornece um roteiro claro para a tomada de decisão baseada em dados, bem como orientações práticas para otimizar a operação e manutenção. No contexto atual da transformação digital e crescente demanda energética surge a necessidade de soluções inovadores e sustentáveis em larga escala, como a energia eólica offshore. A energia eólica é uma fonte de energia renovável que tem o potencial de contribuir significativamente para a matriz energética global. A implementação e operação de projetos eólicos offshore são desafiadores devido aos custos elevados e à natureza intrínseca dos riscos no ambiente marítimo, por isso necessitam operar em sua máxima eficiência e desempenho, tendo em vista a viabilidade económica. Este trabalho tem como objetivo a compreensão dos fatores principais que influenciam o desempenho energético dos aerogeradores através dos dados que revelam as interrupções e falhas de sistemas. Os resultados obtidos nesta pesquisa destacam a necessidade de uma abordagem integrada, buscando o conhecimento técnico especializado com a aplicação de tecnologias de monitoramento em tempo real e análise de dados. Ao reconhecer os padrões de falhas e as lacunas de eficiência, os gestores podem direcionar seus esforços para aprimorar a fiabilidade, a disponibilidade e a performance geral dessas unidades geradoras de energia elétrica. Através da implementação das recomendações resultantes deste estudo, espera-se que as instituições possam alcançar uma expressiva rentabilidade e sustentabilidade, alinhando-se de forma eficaz com as demandas atuais, garantindo uma posição sólida no ambiente empresarial e contribuindo para um futuro energético mais equilibrado.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads4
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tarican, Ayşe;

    SUMMARY SOLAR CELL POWER PLANTS Extensive research and development activities are currently being conducted ali över the world in the area of utilizing renewable energy resources. The interest of the utilization of local renewable energy resources for devoloping countries has been enhanced by the dramatic increase of oil prices in the early seventies. Öne of the most promising renewable resources is the solar energy. The recent developments in the solid state industry accompanied by a parallel increase in energy prices and the environmental restrictions as well as the need for reliable sources of energy lead to the consideration and assessment of new sources of energy which can secure the needs of public with a minimum impact on the environment. An important candidate is the photovoltaic (PV) source of energy, where the solar radiation is directly converted into electricity that can either be residentially used as a local self-sufficient source such as telecommunication, vaccine refrigeration, lighting, battery charging and water pumping applications ör interconnected to available AÇ public grid. in this work about the photovoltaic systems that are connected to the grid, the voltage obtained from the array is converted to three phase sinusoidal voltage by a static inverter vvhich supplies the public grid and the system is simulated. A utility - interactive PV system (Figüre 1) consists of a variety of subsystems: a PV array subsystem, a power conditioning subsystem, a utility interconnection subsystem, and control subsystem. The PV array subsystem converts solar energy into direct current (DC) electrical povver and delivers it to the power conditioning subsystem (PCS) through the DC interface. The array subsystem also provides protection and necessary electrical isolation between the PCS and the array, and may include experimental instrumentation for monitoring the performance of the array. The utility interconnection subsystem, through the alternating current (AÇ) interface with the PCS, provides synchronization with the utility and, if necessary, acts to electrically isolate the PV system from the utility. The control subsystem, operating through the PCS, oversees the performance of the entire PV system. it also enables overall coordination of the system protection, communicates status information to the utility dispatch center, and, if desired, provides an information and tracking VIIfeedback loop with the PV array. in central PV stations, the PCS may also processes operational commands from the utility dispatch center. in operation, the PCS converts DC power from the array into AÇ povver, provides optimum amount of power to be extracted from the PV array for any given insolation and environmental conditions, matches frequency and phase of the voltage desired by the utility, and provides. protection not only for its internal components but also for the equipment external to the PCS..i, UTILITYCONTROL AND rı^MTi,TINFORMATION SIGNALS CONTKOL ^ SUBSYSTEM rJ^IS PVPOWER CON-UTILITY^- ARRAY-*- DITIONING -+.INTERCON.*~ SOLAR l SUBSYSTEMSUBSYSTEM SUBSYSTEM UTILITY ENERGY4 4 Figüre 1. Block Diagram of a Utility-Interactive Photovoltaic System To achieve a compatible integration of the PV system with the utility, it is essential that the design of the PCS accommodate the dynamic range of interactions between the PV system and the utility grid. These arise from changes in both grid conditions and the output of the PV array. The proper and safe interconnections of PV subsystems require not only the identifications of their mutual functional constraints, but also a knovvledge of how to select ör design the PV subsystems vvithin such constraints. These constraints, therefore, are important in the selection ör evaluation of a PCS that is suitable for central station PV systems. A solar celi (SC) generator possesses a line of maximum povver, and it is most desirable that the operation of the load line should be close to the maximum povver line of the generator. in such a case, good matching exists between the generator and the load for the best performance of the system and maximum utilization of the solar cells. The VIII-Toperating points of the photovoltaic system can generally be accomplished by either carefully selecting the I-V characteristics of the load to be connected to the SC generator, ör incorporating an electronic control device (a maximum-power- point-tracker (MPPT)), which provides the necessary impedance matching the SC generator and the inclusion of a MPPT in PV systems depends on several factors: load type and profile; climatic conditions; the fractional cost of the MPPT and its efficiency; and the gain in energy. An electrical circuit design can be simulated before it is actually built, and necessary changes may be done without touching any hardvvare. Any design that is thought to be complete can be checked easily. Building an electrical circuit is the most practical way to check it, but it is expensive and time consuming. it is useful to simulate the design carefully by using a computer program. Figüre 2 shows the PV system simulated by using PSpice which is a member of the Spice (Simulation Program with Integrated Circuit Emphasis) family of circuit simulators. The solar celi is a semiconductor device that converts the solar radiation directly to electrical energy. The celi is a nonlinear device and can be represented by the I-V terminal characteristics, Figüre 3, ör by an approximate electrical equivalent circuit as shown in Figüre 4. The solar celi is an electrical celi of low level voltage and power, therefore the cells are in series and in parallel combinations in order to form an array of the desired voltage and power levels. The I-V equation of a single celi is given by: I = İL - Is [exp[(q/nkT). (V + RsI) - l] ] where İL is the light generated current, Is is the saturation current, kT/q is the thermal voltage, n is the perfection factor, Rs is the series resistance of the celi. For each characteristic curve there is an optimum operating point with respect to the power. Proper load selection allows the maximum power to be transferred. in this work, to convert the DC voltage into three phase sinusoidal voltage, a three-phase bridge inverter is used. The power circuit of a three-phase bridge inverter using thyristors is shown in Figüre 5, where commutation and snubber circuits are omitted for simplicity. The inverter consists of three half bridge units where the upper and lower thyristors of each unit are switched on and off alternately for 180° intervals. The three half-bridges are phase-shifted by 120°. The inverter output voltage wave shapes are determined by the circuit configuration and switching pattern. These waves are rich in harmonics. IX-T* *T`U_ -mrrru. rv» <D-^ PU ARRAY INUERTER UT ILIT V QRID INPUT FILTER OUTPUT FILTER Figure 2. Block diagram of the PV system simulated by using PSpice Figure 3. Characteristics of a solar cellRs I î I * * l IU<2pİ İDippSRCLoad) iii»»l Figüre 4. Solar celi equivalent circuit The inverter is provided with a filter, to make the output voltage (nearly) sinusoidal. in this study, a band-pass filter is chosen, as it is a simple and economical solution for the system. The transformer coupling to the grid supplies the filtered output voltage of the inverter into the grid. The model of ali components of the system is constituted by using their equivalent circuits and the system is simulated completely step by step. 178

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao YÖK Açık Bilim - CoH...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao YÖK Açık Bilim - CoH...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Laura Silvia Valente de Macedo; Marc Eric Barda Picavet; José Antonio Puppim de Oliveira; Wan-Yu Shih;

    Abstract This article reviews the current status of research on urban green and blue infrastructure (GBI) in developing countries. We critically analyzed a total of 283 papers addressing urban GBI in selected developing countries in Africa, Asia, Latin America and the Caribbean (LAC), published between 2015 and 2019. The review aimed to a) analyze publication trends and typologies of urban GBI; b) identify innovative problem-solving measures using urban GBI, and c) understand priorities, differences and similarities in the deployment of urban GBI between the regions. The article identifies a growing interest in the urban GBI concept in the Global South, with a focus on local sustainable development. Urban GBI aims to address issues of urban greenery, land use policies, food security and poverty alleviation. There is a large variation in the number of articles across regions, with Asia, and particularly China, as the subject having a much larger number of publications when compared to LAC and Africa. We found that the focus of research topics varied between regions, reflecting regional development needs, so that urban agriculture research predominated in Africa, and green spaces and parks in Asia and LAC. GBI is still not implemented as a low-impact development or innovative strategy, except in China, where researchers have examined several cases of systemic GBI use for addressing urban issues. More recently, studies began exploring the linkages between nature and cities in light of global environmental issues such as biodiversity loss and climate change. We conclude with recommendations to further examine empirical evidence of urban GBI deployment and its outcomes in the Global South, that could contribute toward conceptualizing natural resource management in a multi-scalar, multi-dimensional, and multidisciplinary framework.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    74
    citations74
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hofbauer, Elisabeth;

    With the rise of omni-channel retailing and globalization, the number of goods being shipped worldwide on a daily basis has grown year-over-year. Hand in hand, the negative externalities caused by the last mile, the last leg of the supply chain, have also increased, including air and noise pollution, congestion, infrastructure wear-and-tear, and an overall lack of efficiency. To tackle these issues while finding a way to make a profit, sustainable innovations are required. Coincident with the increasing need for companies to rethink their last mile concepts, the academic interest around the last mile has significantly grown. However, there is a lack of research in connection with sustainability practices in the last mile. To provide guidance for the development of a more sustainable last mile, the thesis identifies opportunities for innovation by exploring the SBMI process and then uses the Sustainable Business Model Archetypes by Bocken et al. (2014) as a basis to conceptualize the findings. The result are the Sustainable Business Model Archetypes for the last mile, which are based on a secondary literature review and are complemented with empirical research, in the form of expert interviews. Based on the findings of this thesis, sustainable innovations can be subdivided into three dimensions: environmental, social, and economic. The Sustainable Business Model archetypes summarize the possibilities for companies to become more sustainable and reveal opportunities for synergies when implementing multiple innovations simultaneously. However, it is unsettled who of the various relevant stakeholders carries the responsibility to drive the innovation process. While it became clear that consumer behavior has a great power to drive the developments of the last mile, the findings reveal that the ultimate key for a sustainable transformation in the last mile is the interplay of all different stakeholders.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao JKU ePubarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    JKU ePub
    Master thesis . 2022
    Data sources: JKU ePub
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao JKU ePubarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      JKU ePub
      Master thesis . 2022
      Data sources: JKU ePub
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: AYRANCI, AHMET AYTUĞ; İlhan, Hacı;

    Electrical Grid Systems transmit power produced from various facilities to end-users. Supply and demand must be in balance to achieve secure and stable use in the power grid. To ensure this stability, the amount of electricity fed into the system must always be the same as the amount of demand. High demand makes electrical grid systems' stability more important than ever. Current electrical infrastructures are hard to adapt to these needs. A smart grid system enables two-way electricity flow according to the demand from end-users. Digital communication in smart grid systems enables the system to detect demands, problems, and changes. Also collects information to ensure stability in the system. This study is using the Electrical Grid Stability data set shared at UC Irvine (UCI) Machine Learning repository. Multi-Layer Perceptron (MLP), Radial Basis Function (RBF) Network, K-Nearest Neighbors (K-NN), and Naïve Bayes (NB) Machine Learning (ML) algorithms were used to examine the stability performance of the Smart Grid system. Acquired performance metrics compared using Accuracy, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and F-Score. According to the results obtained, the system and its performance are interpreted. © 2022 IEEE. IEEE Turkey Section Istanbul Atlas University

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OpenAccess@IKUarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    OpenAccess@IKU
    Conference object . 2023
    Data sources: OpenAccess@IKU
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1109/icmi55...
    Conference object . 2022 . Peer-reviewed
    License: STM Policy #29
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao OpenAccess@IKUarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      OpenAccess@IKU
      Conference object . 2023
      Data sources: OpenAccess@IKU
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1109/icmi55...
      Conference object . 2022 . Peer-reviewed
      License: STM Policy #29
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    It is increasingly evident that the direction of technological change responds to economic incentives. We review the literature on directed technical change in the context of environmental economics and labor economics, and we show that these fields have much in common both theoretically and empirically. We emphasize the importance of a balanced growth path and show that the lack of such a path is closely related to the slow development of green technologies in environmental economics and to growing inequality in labor economics. We discuss whether the direction of innovation is efficient.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Zurich Open Reposito...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Annual Review of Economics
    Article . 2021 . Peer-reviewed
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2021 . Peer-reviewed
    Data sources: Crossref
    https://dx.doi.org/10.5167/uzh...
    Other literature type . 2021
    Data sources: Datacite
    Annual Review of Economics
    Article . 2021 . Peer-reviewed
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    The objective of this research is to analyze the implementation of eco-innovation as a tool to improve the quality of products, in order to comprehend the benefits deriving from its application. In particular, this research is aimed at exploring the way eco-innovation can be implemented in small- and medium-sized enterprises (SMEs). In other words, the aim of this paper is to study environmental innovation as a paradigm for modern companies that are aware of the necessity to better amalgamate social responsibility with economic performance. The case study methodology has been applied. Specifically, an Italian enterprise, Ecobabydesign, has been studied, because its activity is totally inspired by green principles, from materials to recyclability. Information has been provided directly by the founder. The analysis highlights that the case of Ecobabydesign embodies the total application of ecological innovation. It is an example of innovation which is generated firstly in its mission and then in its high-quality products, whose characteristics derive from its green choice.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio Istituziona...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of the Knowledge Economy
    Article . 2021 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Federica Caffaro; Eugenio De Gregorio; Giorgio Capello; Lucia Vigoroso; +3 Authors

    The study aimed at investigating drivers of adoption of good practices and technological innovations for soil protection in a group of winegrowers in Piedmont region, North west of Italy. Many previous studies addressed soil conservation and degradation, but the points of view of land operators have not been frequently addressed. Understanding farmers' perceptions, intentions and needs could help in a better suited implementation of measures for soil protection in vineyards. Four focus groups has been conducted with winegrowers (N=17) in Piedmont region, North-west Italy. Topics addressed in the focus groups were related to: perception of soil erosion and the role of the human factor in preventing/causing it, adoption and intention to adopt good practices and technological innovations for soil protection and, finally, barriers and drivers for their adoption. A questionnaire assessing participants' socio demographic characteristics and operation, vineyard management practices and perceived causes of soil erosion was administered to the respondents and the responses were used to encourage the discussion. Preliminary results showed that soil erosion was perceived as a relevant issue by the majority of the participants. Wide use of machinery during vineyard plantation and management was acknowledged as affecting soil and water conservation. Cost-benefit ratio did not sufficiently capture the complexity of farmers' decision making and behaviours, since the adoption of sustainable practices and technological innovations was more often related to place attachment and landscape protection. Social norms and peer pressures were not perceived as critical drivers for good practices adoption, whereas tradition and habits appeared to play a role in hindering the adoption of soil protection practices and technologies. Some recommendations arise from the present study: to encourage the adoption of soil protection practices and technologies, access to economic support should be spread but it does not seem to be enough. Personal values and habitual processes emerged as critical variables which could be targeted with awareness raising and education interventions. To maximize the fit between farmers' needs and sustainable innovation, these interventions should be based on a participatory approach and the co-creation of tailor-made solutions to better support the transition toward a more sustainable farming paradigm.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2022
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2023
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://doi.org/10.1007/978-3-...
    Part of book or chapter of book . 2023 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2022
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IRIS Cnr
    Conference object . 2023
    Data sources: IRIS Cnr
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2022
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2023
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://doi.org/10.1007/978-3-...
      Part of book or chapter of book . 2023 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2022
      Data sources: IRIS Cnr
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IRIS Cnr
      Conference object . 2023
      Data sources: IRIS Cnr
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Meng, Yue; Dinçer, Hasan; Yüksel, Serhat;

    Abstract The aim of this study is to evaluate the incremental innovation performance of nuclear energy projects. Within this context, a novel model is generated which consists of two different stages, and large nuclear reactors are taken into consideration. Firstly, the Pythagorean fuzzy DEMATEL is used to weight the phases of technology S-Curve for nuclear energy projects. Moreover, the second stage includes the ranking two-generation technology S-curve with integer patterns for nuclear energy projects. In this framework, the best combinations are selected for innovation life cycle pattern with the integer code series. The findings demonstrate that the nuclear energy companies need to consider the two-generation technology S-Curve because continuous technological developments are occurring for nuclear power generation. It is also determined that aging in the first generation is the most significant period of two-generation technology S-Curve for nuclear energy projects. In this process, critical decisions should be made regarding future technological investments. In addition, the growth phase in the second generation is also important for the effectiveness of the nuclear energy technology. Conducting effective evaluations in these processes will contribute to increasing the efficiency of companies.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Progress in Nuclear Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao İstanbul Medipol Uni...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Progress in Nuclear Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph