- home
- Advanced Search
- Energy Research
- Restricted
- Open Source
- 11. Sustainability
- Agritrop
- Energy Research
- Restricted
- Open Source
- 11. Sustainability
- Agritrop
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Nanthiya Hansupalak; Thierry Tran; Thierry Tran; Klanarong Sriroth; Apisit Manitsorasak; Palotai Piromkraipak; Phakamas Tamthirat;Abstract In the past 10 years, 90% of cassava starch factories in Thailand have switched from fuel oil to renewable biogas, to cover part of their energy needs. The environmental benefits of switching to biogas have not been assessed quantitatively. To alleviate this, this study assessed 100-year greenhouse gas (GHG) emissions, or carbon footprint (CF), of cassava starch production for four factories in Thailand. Key results demonstrate that biogas reduces the carbon footprint of the Thai cassava starch industry as a whole by 0.9–1.0 million tons CO2eq/year, and highlight methodological precautions to collect LCI data and allocate GHG emissions between co-products with high moisture contents. The system boundaries included farm stage (production of cassava roots), transportation to factory and processing into native starch. The functional unit (FU) was one ton of native cassava starch at 13% water content. Biogas produced from the factory wastewater (95–200 m3/FU) was the main source of thermal energy for starch drying, and for on-site electricity production when excess biogas was available. The total CF of cassava starch was in the range 609–966 kg CO2eq/FU. Agricultural production contributed 60% of the carbon footprint, mainly from the use of nitrogen fertilizers. GHG emissions of root production varied widely due to (1) the diversity of farming practices even within a small radius (50 km), and (2) different agricultural yields in different regions. The contribution of the factory stage to the carbon footprint depended on the use of electricity, biogas and other fuels, ranging from 217 to 342 kg CO2eq/FU. Allocation rules such as wet weight or dry weight basis allocations affected the results markedly.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Nanthiya Hansupalak; Thierry Tran; Thierry Tran; Klanarong Sriroth; Apisit Manitsorasak; Palotai Piromkraipak; Phakamas Tamthirat;Abstract In the past 10 years, 90% of cassava starch factories in Thailand have switched from fuel oil to renewable biogas, to cover part of their energy needs. The environmental benefits of switching to biogas have not been assessed quantitatively. To alleviate this, this study assessed 100-year greenhouse gas (GHG) emissions, or carbon footprint (CF), of cassava starch production for four factories in Thailand. Key results demonstrate that biogas reduces the carbon footprint of the Thai cassava starch industry as a whole by 0.9–1.0 million tons CO2eq/year, and highlight methodological precautions to collect LCI data and allocate GHG emissions between co-products with high moisture contents. The system boundaries included farm stage (production of cassava roots), transportation to factory and processing into native starch. The functional unit (FU) was one ton of native cassava starch at 13% water content. Biogas produced from the factory wastewater (95–200 m3/FU) was the main source of thermal energy for starch drying, and for on-site electricity production when excess biogas was available. The total CF of cassava starch was in the range 609–966 kg CO2eq/FU. Agricultural production contributed 60% of the carbon footprint, mainly from the use of nitrogen fertilizers. GHG emissions of root production varied widely due to (1) the diversity of farming practices even within a small radius (50 km), and (2) different agricultural yields in different regions. The contribution of the factory stage to the carbon footprint depended on the use of electricity, biogas and other fuels, ranging from 217 to 342 kg CO2eq/FU. Allocation rules such as wet weight or dry weight basis allocations affected the results markedly.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV Authors: Tatsidjodoung, Parfait; Dabat, Marie Hélène; Blin, Joël;Abstract In many African countries, the upswing in oil prices is one factor that favours the adoption and implementation of a national biofuel policy. This trend has a major impact on state budgets and domestic trade balances, while also limiting the access of rural inhabitants to modern energy services. Contribution of biofuels in stabilizing the energy sector, influences ongoing negotiations on the global dynamics of climate change, the reduction in greenhouse gas (GHG) emissions and sustainable development. The question of biofuels as an alternative energy thus depends on international, national and local considerations. Biofuels represent opportunities, e.g., energy independence and security, new national income and employment sources, as well as potential food security problems. African policy makers therefore need to make the right choices to guide the development of biofuel production and use. This article aims to support the development of a biofuel policy by reviewing the latest technical, economic, environmental and social knowledge so as to be able to evaluate the potential and limits of biofuels in Burkina Faso.
Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV Authors: Tatsidjodoung, Parfait; Dabat, Marie Hélène; Blin, Joël;Abstract In many African countries, the upswing in oil prices is one factor that favours the adoption and implementation of a national biofuel policy. This trend has a major impact on state budgets and domestic trade balances, while also limiting the access of rural inhabitants to modern energy services. Contribution of biofuels in stabilizing the energy sector, influences ongoing negotiations on the global dynamics of climate change, the reduction in greenhouse gas (GHG) emissions and sustainable development. The question of biofuels as an alternative energy thus depends on international, national and local considerations. Biofuels represent opportunities, e.g., energy independence and security, new national income and employment sources, as well as potential food security problems. African policy makers therefore need to make the right choices to guide the development of biofuel production and use. This article aims to support the development of a biofuel policy by reviewing the latest technical, economic, environmental and social knowledge so as to be able to evaluate the potential and limits of biofuels in Burkina Faso.
Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Elsevier BV Azoumah, Yao; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, Philippe;Abstract Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original “flexy-energy” concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Elsevier BV Azoumah, Yao; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, Philippe;Abstract Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original “flexy-energy” concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Authors: Bicalho, Tereza; Bessou, Cécile; Pacca, Sergio A.;This paper discusses the oil palm expansion in the State of Para, located in the Brazilian Amazon. It focuses on land use change aspects put in perspective with the sustainability criteria for biofuels of the European Renewable Energy Directive (RED). The study shows that palm oil production for energy purposes appears very promising in Brazil. In parallel to local targets, the mandatory European biofuel targets represent an important market potential for the country. It seems too early to know whether the export of palm oil biodiesel from Brazil to Europe will be significant or not. However, it is likely that palm oil exports for biodiesel production in Europe occur in the coming years. Although the RED includes some essential conditions for sustainable production of biofuels, we argue that the values imposed for calculating carbon stocks do not reflect diversity of pastureland where oil palm expansion occurs in the Brazilian Amazon. The use of certain land areas authorised within the RED may also represent a significant limit in terms of biodiversity protection. This study provides new insights that may be used to improve life cycle assessment of biodiesel from palm oil in order to avoid unintended policy consequences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Authors: Bicalho, Tereza; Bessou, Cécile; Pacca, Sergio A.;This paper discusses the oil palm expansion in the State of Para, located in the Brazilian Amazon. It focuses on land use change aspects put in perspective with the sustainability criteria for biofuels of the European Renewable Energy Directive (RED). The study shows that palm oil production for energy purposes appears very promising in Brazil. In parallel to local targets, the mandatory European biofuel targets represent an important market potential for the country. It seems too early to know whether the export of palm oil biodiesel from Brazil to Europe will be significant or not. However, it is likely that palm oil exports for biodiesel production in Europe occur in the coming years. Although the RED includes some essential conditions for sustainable production of biofuels, we argue that the values imposed for calculating carbon stocks do not reflect diversity of pastureland where oil palm expansion occurs in the Brazilian Amazon. The use of certain land areas authorised within the RED may also represent a significant limit in terms of biodiversity protection. This study provides new insights that may be used to improve life cycle assessment of biodiesel from palm oil in order to avoid unintended policy consequences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2016 France, GermanyPublisher:ETA-Florence Renewable Energies Pelletier, Chloé; François, Jessica; Bosc, Alexandre; Picart, D.; Moisy, Christophe; Loustau, Denis; Fortin, Mathieu; Rogaume, Yann; Dieckhoff, Léa; Brunelle, Thierry; Dumas, Patrice; Pons, M.-N.; Dufour, Anthony;In this work, several models have been coupled in order to represent the whole forest-to-energy production chain: the growth phase, the primary transformation, and the ultimate conversion to heat and/or electricity. Combined with literature data for wood transportation, they gave a complete balance of emissions to compare with fossil-based alternatives. An economic analysis completes the work. The results show that wood-based scenarios do perform better than their fossil counterparts, but also that the primary transformation and transportation items can greatly diminish this advantage. Further work will focus on determining the best metric to assess the climate change impact of forestry scenarios based on the timing of carbo dioxide emissions as well as geophysical effects such as albedo and evapotranspiration. Proceedings of the 24th European Biomass Conference and Exhibition, 6-9 June 2016, Amsterdam, The Netherlands, pp. 1402-1404
Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2016 France, GermanyPublisher:ETA-Florence Renewable Energies Pelletier, Chloé; François, Jessica; Bosc, Alexandre; Picart, D.; Moisy, Christophe; Loustau, Denis; Fortin, Mathieu; Rogaume, Yann; Dieckhoff, Léa; Brunelle, Thierry; Dumas, Patrice; Pons, M.-N.; Dufour, Anthony;In this work, several models have been coupled in order to represent the whole forest-to-energy production chain: the growth phase, the primary transformation, and the ultimate conversion to heat and/or electricity. Combined with literature data for wood transportation, they gave a complete balance of emissions to compare with fossil-based alternatives. An economic analysis completes the work. The results show that wood-based scenarios do perform better than their fossil counterparts, but also that the primary transformation and transportation items can greatly diminish this advantage. Further work will focus on determining the best metric to assess the climate change impact of forestry scenarios based on the timing of carbo dioxide emissions as well as geophysical effects such as albedo and evapotranspiration. Proceedings of the 24th European Biomass Conference and Exhibition, 6-9 June 2016, Amsterdam, The Netherlands, pp. 1402-1404
Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017 FrancePublisher:ETA-Florence Renewable Energies Gabrielle, Benoît; Bispo, Antonio; El Akkari, Monia; Makowski, David; Réchauchère, Olivier; Bamiere, Laure; Barbottin, Aude; Bellassen, Valentin; Bessou, Cécile; Dumas, Patrice; Gaba, Sabrina; Wohlfahrt, Julie;Non-food biomass production has developed significantly in the latest decades to meet the needs of the bio-economy, and should expand in the future. Concerns around the consequences on land-use prompted a surge in scientific publications over the past 10 years. Attributing LUC to biomass production and ultimately the rising demand for its end-products (eg, biofuels) requires the elicitation of mechanisms relating feedstock production to land use or management changes, and their impacts on the environment. They may be analysed as a three-step causal chain starting with the identification of factors driving feedstock production, the assessment of LUC occurring in response to this demand, and the associated environmental impacts. A key question is whether or not the inclusion of LUC effects in this balance may negate their potential benefits over fossile-based products. Here we surveyed the scientific literature on LUC in general between 1975 and 2014, and retrieved a body of about 240 references which were analysed in details in terms of scope, LUC types, methodologies employed, and overall outcomes. Liquid biofuels accounted for 75% of the bio-based end-products analysed, the remaining 25% being dominated by combustion applications and a marginal contribution of biomaterials and chemicals. The predominant types of LUC included the conversion of annual crops or grassland to perennial crops and grassland to annual crops, followed by the conversion of forests. Although it was difficult to separate between direct and indirect LUC, it was surprising to note that the majority of these changes (60%) occurred in Europe and North America, whereas South America only accounted for 19% of those. In terms of methodologies economic and biophysical models dominated for LUC assessment, and so did life-cycle assessment for the environmental impacts. However, a large fraction of studies relied on much simpler methods. The emissions of greenhouse gases was the first impact category studied, while the impact on biodiversity was rarely evaluated (only 5% of the articles dealt with it), as was the impact on air quality or human health. Overall, the substitution of fossile fuels by biofuels was deemed beneficial even when factoring in LUC effects, but a significant fraction of the studies concluded to the opposite, or to variable outcomes depending on the characteristics of the bio-based value-chain assessed. Some clear-cut trends emerged, such an adverse impact of biomass development on biodiversity or an increase in water consumption. Establishing perennial species presented a more favorable profile than other types of feedstocks. There is a need to widen the scope of LUC studies beyond liquid biofuels, to assess multiple criteria simultaneously, and to improve and harmonize the assessment methodologies. Proceedings of the 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden, pp. 1471-1475
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017 FrancePublisher:ETA-Florence Renewable Energies Gabrielle, Benoît; Bispo, Antonio; El Akkari, Monia; Makowski, David; Réchauchère, Olivier; Bamiere, Laure; Barbottin, Aude; Bellassen, Valentin; Bessou, Cécile; Dumas, Patrice; Gaba, Sabrina; Wohlfahrt, Julie;Non-food biomass production has developed significantly in the latest decades to meet the needs of the bio-economy, and should expand in the future. Concerns around the consequences on land-use prompted a surge in scientific publications over the past 10 years. Attributing LUC to biomass production and ultimately the rising demand for its end-products (eg, biofuels) requires the elicitation of mechanisms relating feedstock production to land use or management changes, and their impacts on the environment. They may be analysed as a three-step causal chain starting with the identification of factors driving feedstock production, the assessment of LUC occurring in response to this demand, and the associated environmental impacts. A key question is whether or not the inclusion of LUC effects in this balance may negate their potential benefits over fossile-based products. Here we surveyed the scientific literature on LUC in general between 1975 and 2014, and retrieved a body of about 240 references which were analysed in details in terms of scope, LUC types, methodologies employed, and overall outcomes. Liquid biofuels accounted for 75% of the bio-based end-products analysed, the remaining 25% being dominated by combustion applications and a marginal contribution of biomaterials and chemicals. The predominant types of LUC included the conversion of annual crops or grassland to perennial crops and grassland to annual crops, followed by the conversion of forests. Although it was difficult to separate between direct and indirect LUC, it was surprising to note that the majority of these changes (60%) occurred in Europe and North America, whereas South America only accounted for 19% of those. In terms of methodologies economic and biophysical models dominated for LUC assessment, and so did life-cycle assessment for the environmental impacts. However, a large fraction of studies relied on much simpler methods. The emissions of greenhouse gases was the first impact category studied, while the impact on biodiversity was rarely evaluated (only 5% of the articles dealt with it), as was the impact on air quality or human health. Overall, the substitution of fossile fuels by biofuels was deemed beneficial even when factoring in LUC effects, but a significant fraction of the studies concluded to the opposite, or to variable outcomes depending on the characteristics of the bio-based value-chain assessed. Some clear-cut trends emerged, such an adverse impact of biomass development on biodiversity or an increase in water consumption. Establishing perennial species presented a more favorable profile than other types of feedstocks. There is a need to widen the scope of LUC studies beyond liquid biofuels, to assess multiple criteria simultaneously, and to improve and harmonize the assessment methodologies. Proceedings of the 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden, pp. 1471-1475
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010 FrancePublisher:ETA-Florence Renewable Energies Authors: Rodrigues, Thiago Oliveira; Rousset, Patrick; Caldeira-Pires, Armando;The Amazonian region is the most important timber producer from native’s forest exploitation in Brazil. In 2004 there were 82 timber centers, municipalities or micro regions that process at least 100 thousand m³/year of wood logs for industrial purposes. Since the overthrow of the tree to the wood processing, no more than 50% is used, so at least 50% is in a waste form. Most of this waste has no use. Moreover, the region has a strong demand for charcoal to supply the iron industry needs. The residual biomass should be considered as a byproduct of the production chain of wood and its use is a practice to mitigate the environmental impacts of this chain. However, the use of this energy source would also result in impacts to the environment that must be evaluated to verify the sustainability of this proposal. The objective of this research is to assess the impacts associated with a supply chain of renewable energy based on forest residues through the Life Cycle Assessment (LCA). The research is focused on the state of Pará, the greater producer of timber in Brazil. There were identified the main processing centers of timber and therefore the main points of waste generation. The residues were classified according to their origin in exploitation waste (harvest) and processing waste (sawmills). Thus, it was possible to determine an average potential and a logistics structure for the actual use of these. For the LCA there were measured the mass and energy flows involved since the generation of waste until its discharge at the courtyards of charcoal kilns. The research revealed that there is a significant amount of waste that could be used to produce energy in the region. Such use has important impacts, mainly due to intensive use of fossil fuels in transporting the waste. But there are also positive impacts relating to methane emissions avoided by the removal of waste from the forest and the replacement of wood from deforestation for charcoal production. Therefore the use of forest residues for charcoal production is presented as a major initiative to regulate the energy matrix and improve the production chain of wood in the state of Pará. Proceedings of the 18th European Biomass Conference and Exhibition, 3-7 May 2010, Lyon, France, pp. 292-295
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010 FrancePublisher:ETA-Florence Renewable Energies Authors: Rodrigues, Thiago Oliveira; Rousset, Patrick; Caldeira-Pires, Armando;The Amazonian region is the most important timber producer from native’s forest exploitation in Brazil. In 2004 there were 82 timber centers, municipalities or micro regions that process at least 100 thousand m³/year of wood logs for industrial purposes. Since the overthrow of the tree to the wood processing, no more than 50% is used, so at least 50% is in a waste form. Most of this waste has no use. Moreover, the region has a strong demand for charcoal to supply the iron industry needs. The residual biomass should be considered as a byproduct of the production chain of wood and its use is a practice to mitigate the environmental impacts of this chain. However, the use of this energy source would also result in impacts to the environment that must be evaluated to verify the sustainability of this proposal. The objective of this research is to assess the impacts associated with a supply chain of renewable energy based on forest residues through the Life Cycle Assessment (LCA). The research is focused on the state of Pará, the greater producer of timber in Brazil. There were identified the main processing centers of timber and therefore the main points of waste generation. The residues were classified according to their origin in exploitation waste (harvest) and processing waste (sawmills). Thus, it was possible to determine an average potential and a logistics structure for the actual use of these. For the LCA there were measured the mass and energy flows involved since the generation of waste until its discharge at the courtyards of charcoal kilns. The research revealed that there is a significant amount of waste that could be used to produce energy in the region. Such use has important impacts, mainly due to intensive use of fossil fuels in transporting the waste. But there are also positive impacts relating to methane emissions avoided by the removal of waste from the forest and the replacement of wood from deforestation for charcoal production. Therefore the use of forest residues for charcoal production is presented as a major initiative to regulate the energy matrix and improve the production chain of wood in the state of Pará. Proceedings of the 18th European Biomass Conference and Exhibition, 3-7 May 2010, Lyon, France, pp. 292-295
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Authors: Cécile Bessou; Shabbir H. Gheewala; Elias W. Gabisa; Elias W. Gabisa;Abstract The environmental sustainability of biofuel production is still a debated issue in the world bio-economy development. Therefore, different researches are undergoing to evaluate the sustainability of ethanol production in different countries. This study aimed at analyzing the environmental performance of ethanol production in Ethiopia, considering energy balance and emission reduction using a life cycle assessment approach. It is also intended to identify the environmental hotspots so that possible improvement option can be devised. The life cycle assessment methodology was applied considering three alternative scenarios: 1) Base Case, which is the current situation, 2) Alternative 1, which considers the utilization of biogas from vinasse and bioslurry, and 3) Alternative 2, which includes mechanical harvesting and avoids pre-harvest cane trash burning. The results show that agricultural stage is greatly contributing to the pollutant emissions. The contribution of cane trash burning was significant to all the impact categories considered and avoiding pre-harvest cane trash burning significantly reduced the emissions contributing to global warming, acidification, stratospheric ozone depletion, ozone formation, particulate matter and eutrophication. On the other hand, the introduction of mechanical harvesting to avoid pre-harvest cane trash burning increased ecotoxicity, human toxicity and resource consumption (land, water and mineral) impacts. The net energy balance is positive for all the alternatives considered. In addition to using by-products, proper management of fuel utilization at the agricultural stage can further enhance benefits from the sector. Sensitivity analysis revealed that the price of molasses highly influences both energy ratio and greenhouse gas emissions since it completely shifts the allocation of upstream emissions from sugar to molasses.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Authors: Cécile Bessou; Shabbir H. Gheewala; Elias W. Gabisa; Elias W. Gabisa;Abstract The environmental sustainability of biofuel production is still a debated issue in the world bio-economy development. Therefore, different researches are undergoing to evaluate the sustainability of ethanol production in different countries. This study aimed at analyzing the environmental performance of ethanol production in Ethiopia, considering energy balance and emission reduction using a life cycle assessment approach. It is also intended to identify the environmental hotspots so that possible improvement option can be devised. The life cycle assessment methodology was applied considering three alternative scenarios: 1) Base Case, which is the current situation, 2) Alternative 1, which considers the utilization of biogas from vinasse and bioslurry, and 3) Alternative 2, which includes mechanical harvesting and avoids pre-harvest cane trash burning. The results show that agricultural stage is greatly contributing to the pollutant emissions. The contribution of cane trash burning was significant to all the impact categories considered and avoiding pre-harvest cane trash burning significantly reduced the emissions contributing to global warming, acidification, stratospheric ozone depletion, ozone formation, particulate matter and eutrophication. On the other hand, the introduction of mechanical harvesting to avoid pre-harvest cane trash burning increased ecotoxicity, human toxicity and resource consumption (land, water and mineral) impacts. The net energy balance is positive for all the alternatives considered. In addition to using by-products, proper management of fuel utilization at the agricultural stage can further enhance benefits from the sector. Sensitivity analysis revealed that the price of molasses highly influences both energy ratio and greenhouse gas emissions since it completely shifts the allocation of upstream emissions from sugar to molasses.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley Authors: Perret, Sylvain; Payen, Sandra;doi: 10.1002/ird.2404
AbstractGlobal environmental degradation, and the diverse and intense interactions between irrigation and the environment, are prompting the sector to play a more active role towards sustainability. This paper builds on ICID's 2030 vision on a more sustainable irrigation sector. It recaps the various environmental impacts of irrigation systems and calls for a threefold paradigm shift: the objectives of irrigation, its practices, and the ways to assess its impacts must evolve. The paper critically analyses the Sustainable Development Goals (SDGs') framework, which provides a prompting set of orientations, yet with little consideration of the systemic nature of irrigation. The paper promotes more operational frameworks: nexus thinking and the ecosystem services' framework, since both allow for systemic approaches, and for developing trade‐offs. The paper also discusses the merits of life cycle analysis (LCA) for environmental impact assessment. The benefits gained through these alternative approaches are illustrated in two cases of environmental impacts: return flow and salinization. Finally, the paper suggests combining these approaches with three principles for fostering a true paradigm shift in agricultural water use: developing and using suitable metrics, combining models to reconnect economic concerns with environmental ones, and considering larger territories and ecosystems to cater for interactions with the environment. © 2020 John Wiley & Sons, Ltd.
Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley Authors: Perret, Sylvain; Payen, Sandra;doi: 10.1002/ird.2404
AbstractGlobal environmental degradation, and the diverse and intense interactions between irrigation and the environment, are prompting the sector to play a more active role towards sustainability. This paper builds on ICID's 2030 vision on a more sustainable irrigation sector. It recaps the various environmental impacts of irrigation systems and calls for a threefold paradigm shift: the objectives of irrigation, its practices, and the ways to assess its impacts must evolve. The paper critically analyses the Sustainable Development Goals (SDGs') framework, which provides a prompting set of orientations, yet with little consideration of the systemic nature of irrigation. The paper promotes more operational frameworks: nexus thinking and the ecosystem services' framework, since both allow for systemic approaches, and for developing trade‐offs. The paper also discusses the merits of life cycle analysis (LCA) for environmental impact assessment. The benefits gained through these alternative approaches are illustrated in two cases of environmental impacts: return flow and salinization. Finally, the paper suggests combining these approaches with three principles for fostering a true paradigm shift in agricultural water use: developing and using suitable metrics, combining models to reconnect economic concerns with environmental ones, and considering larger territories and ecosystems to cater for interactions with the environment. © 2020 John Wiley & Sons, Ltd.
Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Nanthiya Hansupalak; Thierry Tran; Thierry Tran; Klanarong Sriroth; Apisit Manitsorasak; Palotai Piromkraipak; Phakamas Tamthirat;Abstract In the past 10 years, 90% of cassava starch factories in Thailand have switched from fuel oil to renewable biogas, to cover part of their energy needs. The environmental benefits of switching to biogas have not been assessed quantitatively. To alleviate this, this study assessed 100-year greenhouse gas (GHG) emissions, or carbon footprint (CF), of cassava starch production for four factories in Thailand. Key results demonstrate that biogas reduces the carbon footprint of the Thai cassava starch industry as a whole by 0.9–1.0 million tons CO2eq/year, and highlight methodological precautions to collect LCI data and allocate GHG emissions between co-products with high moisture contents. The system boundaries included farm stage (production of cassava roots), transportation to factory and processing into native starch. The functional unit (FU) was one ton of native cassava starch at 13% water content. Biogas produced from the factory wastewater (95–200 m3/FU) was the main source of thermal energy for starch drying, and for on-site electricity production when excess biogas was available. The total CF of cassava starch was in the range 609–966 kg CO2eq/FU. Agricultural production contributed 60% of the carbon footprint, mainly from the use of nitrogen fertilizers. GHG emissions of root production varied widely due to (1) the diversity of farming practices even within a small radius (50 km), and (2) different agricultural yields in different regions. The contribution of the factory stage to the carbon footprint depended on the use of electricity, biogas and other fuels, ranging from 217 to 342 kg CO2eq/FU. Allocation rules such as wet weight or dry weight basis allocations affected the results markedly.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Nanthiya Hansupalak; Thierry Tran; Thierry Tran; Klanarong Sriroth; Apisit Manitsorasak; Palotai Piromkraipak; Phakamas Tamthirat;Abstract In the past 10 years, 90% of cassava starch factories in Thailand have switched from fuel oil to renewable biogas, to cover part of their energy needs. The environmental benefits of switching to biogas have not been assessed quantitatively. To alleviate this, this study assessed 100-year greenhouse gas (GHG) emissions, or carbon footprint (CF), of cassava starch production for four factories in Thailand. Key results demonstrate that biogas reduces the carbon footprint of the Thai cassava starch industry as a whole by 0.9–1.0 million tons CO2eq/year, and highlight methodological precautions to collect LCI data and allocate GHG emissions between co-products with high moisture contents. The system boundaries included farm stage (production of cassava roots), transportation to factory and processing into native starch. The functional unit (FU) was one ton of native cassava starch at 13% water content. Biogas produced from the factory wastewater (95–200 m3/FU) was the main source of thermal energy for starch drying, and for on-site electricity production when excess biogas was available. The total CF of cassava starch was in the range 609–966 kg CO2eq/FU. Agricultural production contributed 60% of the carbon footprint, mainly from the use of nitrogen fertilizers. GHG emissions of root production varied widely due to (1) the diversity of farming practices even within a small radius (50 km), and (2) different agricultural yields in different regions. The contribution of the factory stage to the carbon footprint depended on the use of electricity, biogas and other fuels, ranging from 217 to 342 kg CO2eq/FU. Allocation rules such as wet weight or dry weight basis allocations affected the results markedly.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2015.06.138&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV Authors: Tatsidjodoung, Parfait; Dabat, Marie Hélène; Blin, Joël;Abstract In many African countries, the upswing in oil prices is one factor that favours the adoption and implementation of a national biofuel policy. This trend has a major impact on state budgets and domestic trade balances, while also limiting the access of rural inhabitants to modern energy services. Contribution of biofuels in stabilizing the energy sector, influences ongoing negotiations on the global dynamics of climate change, the reduction in greenhouse gas (GHG) emissions and sustainable development. The question of biofuels as an alternative energy thus depends on international, national and local considerations. Biofuels represent opportunities, e.g., energy independence and security, new national income and employment sources, as well as potential food security problems. African policy makers therefore need to make the right choices to guide the development of biofuel production and use. This article aims to support the development of a biofuel policy by reviewing the latest technical, economic, environmental and social knowledge so as to be able to evaluate the potential and limits of biofuels in Burkina Faso.
Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV Authors: Tatsidjodoung, Parfait; Dabat, Marie Hélène; Blin, Joël;Abstract In many African countries, the upswing in oil prices is one factor that favours the adoption and implementation of a national biofuel policy. This trend has a major impact on state budgets and domestic trade balances, while also limiting the access of rural inhabitants to modern energy services. Contribution of biofuels in stabilizing the energy sector, influences ongoing negotiations on the global dynamics of climate change, the reduction in greenhouse gas (GHG) emissions and sustainable development. The question of biofuels as an alternative energy thus depends on international, national and local considerations. Biofuels represent opportunities, e.g., energy independence and security, new national income and employment sources, as well as potential food security problems. African policy makers therefore need to make the right choices to guide the development of biofuel production and use. This article aims to support the development of a biofuel policy by reviewing the latest technical, economic, environmental and social knowledge so as to be able to evaluate the potential and limits of biofuels in Burkina Faso.
Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2012.05.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Elsevier BV Azoumah, Yao; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, Philippe;Abstract Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original “flexy-energy” concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 FrancePublisher:Elsevier BV Azoumah, Yao; Yamegueu, D.; Ginies, P.; Coulibaly, Y.; Girard, Philippe;Abstract Access to energy is known as a key issue for poverty reduction. Electrification rate of sub-Saharan countries is one of the lowest among the developing countries. However, this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original “flexy-energy” concept of hybrid solar PV/diesel/biofuel power plant, without battery storage, is performed in this paper. This concept is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. For landlocked countries like Burkina Faso, this concept could help them reducing their electricity bill (then their fuel consumption) and accelerate their rural and peri-urban electrification coverage.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.09.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Authors: Bicalho, Tereza; Bessou, Cécile; Pacca, Sergio A.;This paper discusses the oil palm expansion in the State of Para, located in the Brazilian Amazon. It focuses on land use change aspects put in perspective with the sustainability criteria for biofuels of the European Renewable Energy Directive (RED). The study shows that palm oil production for energy purposes appears very promising in Brazil. In parallel to local targets, the mandatory European biofuel targets represent an important market potential for the country. It seems too early to know whether the export of palm oil biodiesel from Brazil to Europe will be significant or not. However, it is likely that palm oil exports for biodiesel production in Europe occur in the coming years. Although the RED includes some essential conditions for sustainable production of biofuels, we argue that the values imposed for calculating carbon stocks do not reflect diversity of pastureland where oil palm expansion occurs in the Brazilian Amazon. The use of certain land areas authorised within the RED may also represent a significant limit in terms of biodiversity protection. This study provides new insights that may be used to improve life cycle assessment of biodiesel from palm oil in order to avoid unintended policy consequences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 FrancePublisher:Elsevier BV Authors: Bicalho, Tereza; Bessou, Cécile; Pacca, Sergio A.;This paper discusses the oil palm expansion in the State of Para, located in the Brazilian Amazon. It focuses on land use change aspects put in perspective with the sustainability criteria for biofuels of the European Renewable Energy Directive (RED). The study shows that palm oil production for energy purposes appears very promising in Brazil. In parallel to local targets, the mandatory European biofuel targets represent an important market potential for the country. It seems too early to know whether the export of palm oil biodiesel from Brazil to Europe will be significant or not. However, it is likely that palm oil exports for biodiesel production in Europe occur in the coming years. Although the RED includes some essential conditions for sustainable production of biofuels, we argue that the values imposed for calculating carbon stocks do not reflect diversity of pastureland where oil palm expansion occurs in the Brazilian Amazon. The use of certain land areas authorised within the RED may also represent a significant limit in terms of biodiversity protection. This study provides new insights that may be used to improve life cycle assessment of biodiesel from palm oil in order to avoid unintended policy consequences.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.12.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2016 France, GermanyPublisher:ETA-Florence Renewable Energies Pelletier, Chloé; François, Jessica; Bosc, Alexandre; Picart, D.; Moisy, Christophe; Loustau, Denis; Fortin, Mathieu; Rogaume, Yann; Dieckhoff, Léa; Brunelle, Thierry; Dumas, Patrice; Pons, M.-N.; Dufour, Anthony;In this work, several models have been coupled in order to represent the whole forest-to-energy production chain: the growth phase, the primary transformation, and the ultimate conversion to heat and/or electricity. Combined with literature data for wood transportation, they gave a complete balance of emissions to compare with fossil-based alternatives. An economic analysis completes the work. The results show that wood-based scenarios do perform better than their fossil counterparts, but also that the primary transformation and transportation items can greatly diminish this advantage. Further work will focus on determining the best metric to assess the climate change impact of forestry scenarios based on the timing of carbo dioxide emissions as well as geophysical effects such as albedo and evapotranspiration. Proceedings of the 24th European Biomass Conference and Exhibition, 6-9 June 2016, Amsterdam, The Netherlands, pp. 1402-1404
Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type , Article 2016 France, GermanyPublisher:ETA-Florence Renewable Energies Pelletier, Chloé; François, Jessica; Bosc, Alexandre; Picart, D.; Moisy, Christophe; Loustau, Denis; Fortin, Mathieu; Rogaume, Yann; Dieckhoff, Léa; Brunelle, Thierry; Dumas, Patrice; Pons, M.-N.; Dufour, Anthony;In this work, several models have been coupled in order to represent the whole forest-to-energy production chain: the growth phase, the primary transformation, and the ultimate conversion to heat and/or electricity. Combined with literature data for wood transportation, they gave a complete balance of emissions to compare with fossil-based alternatives. An economic analysis completes the work. The results show that wood-based scenarios do perform better than their fossil counterparts, but also that the primary transformation and transportation items can greatly diminish this advantage. Further work will focus on determining the best metric to assess the climate change impact of forestry scenarios based on the timing of carbo dioxide emissions as well as geophysical effects such as albedo and evapotranspiration. Proceedings of the 24th European Biomass Conference and Exhibition, 6-9 June 2016, Amsterdam, The Netherlands, pp. 1402-1404
Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agritrop arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/24theubce2016-4do.5.5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017 FrancePublisher:ETA-Florence Renewable Energies Gabrielle, Benoît; Bispo, Antonio; El Akkari, Monia; Makowski, David; Réchauchère, Olivier; Bamiere, Laure; Barbottin, Aude; Bellassen, Valentin; Bessou, Cécile; Dumas, Patrice; Gaba, Sabrina; Wohlfahrt, Julie;Non-food biomass production has developed significantly in the latest decades to meet the needs of the bio-economy, and should expand in the future. Concerns around the consequences on land-use prompted a surge in scientific publications over the past 10 years. Attributing LUC to biomass production and ultimately the rising demand for its end-products (eg, biofuels) requires the elicitation of mechanisms relating feedstock production to land use or management changes, and their impacts on the environment. They may be analysed as a three-step causal chain starting with the identification of factors driving feedstock production, the assessment of LUC occurring in response to this demand, and the associated environmental impacts. A key question is whether or not the inclusion of LUC effects in this balance may negate their potential benefits over fossile-based products. Here we surveyed the scientific literature on LUC in general between 1975 and 2014, and retrieved a body of about 240 references which were analysed in details in terms of scope, LUC types, methodologies employed, and overall outcomes. Liquid biofuels accounted for 75% of the bio-based end-products analysed, the remaining 25% being dominated by combustion applications and a marginal contribution of biomaterials and chemicals. The predominant types of LUC included the conversion of annual crops or grassland to perennial crops and grassland to annual crops, followed by the conversion of forests. Although it was difficult to separate between direct and indirect LUC, it was surprising to note that the majority of these changes (60%) occurred in Europe and North America, whereas South America only accounted for 19% of those. In terms of methodologies economic and biophysical models dominated for LUC assessment, and so did life-cycle assessment for the environmental impacts. However, a large fraction of studies relied on much simpler methods. The emissions of greenhouse gases was the first impact category studied, while the impact on biodiversity was rarely evaluated (only 5% of the articles dealt with it), as was the impact on air quality or human health. Overall, the substitution of fossile fuels by biofuels was deemed beneficial even when factoring in LUC effects, but a significant fraction of the studies concluded to the opposite, or to variable outcomes depending on the characteristics of the bio-based value-chain assessed. Some clear-cut trends emerged, such an adverse impact of biomass development on biodiversity or an increase in water consumption. Establishing perennial species presented a more favorable profile than other types of feedstocks. There is a need to widen the scope of LUC studies beyond liquid biofuels, to assess multiple criteria simultaneously, and to improve and harmonize the assessment methodologies. Proceedings of the 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden, pp. 1471-1475
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2017 FrancePublisher:ETA-Florence Renewable Energies Gabrielle, Benoît; Bispo, Antonio; El Akkari, Monia; Makowski, David; Réchauchère, Olivier; Bamiere, Laure; Barbottin, Aude; Bellassen, Valentin; Bessou, Cécile; Dumas, Patrice; Gaba, Sabrina; Wohlfahrt, Julie;Non-food biomass production has developed significantly in the latest decades to meet the needs of the bio-economy, and should expand in the future. Concerns around the consequences on land-use prompted a surge in scientific publications over the past 10 years. Attributing LUC to biomass production and ultimately the rising demand for its end-products (eg, biofuels) requires the elicitation of mechanisms relating feedstock production to land use or management changes, and their impacts on the environment. They may be analysed as a three-step causal chain starting with the identification of factors driving feedstock production, the assessment of LUC occurring in response to this demand, and the associated environmental impacts. A key question is whether or not the inclusion of LUC effects in this balance may negate their potential benefits over fossile-based products. Here we surveyed the scientific literature on LUC in general between 1975 and 2014, and retrieved a body of about 240 references which were analysed in details in terms of scope, LUC types, methodologies employed, and overall outcomes. Liquid biofuels accounted for 75% of the bio-based end-products analysed, the remaining 25% being dominated by combustion applications and a marginal contribution of biomaterials and chemicals. The predominant types of LUC included the conversion of annual crops or grassland to perennial crops and grassland to annual crops, followed by the conversion of forests. Although it was difficult to separate between direct and indirect LUC, it was surprising to note that the majority of these changes (60%) occurred in Europe and North America, whereas South America only accounted for 19% of those. In terms of methodologies economic and biophysical models dominated for LUC assessment, and so did life-cycle assessment for the environmental impacts. However, a large fraction of studies relied on much simpler methods. The emissions of greenhouse gases was the first impact category studied, while the impact on biodiversity was rarely evaluated (only 5% of the articles dealt with it), as was the impact on air quality or human health. Overall, the substitution of fossile fuels by biofuels was deemed beneficial even when factoring in LUC effects, but a significant fraction of the studies concluded to the opposite, or to variable outcomes depending on the characteristics of the bio-based value-chain assessed. Some clear-cut trends emerged, such an adverse impact of biomass development on biodiversity or an increase in water consumption. Establishing perennial species presented a more favorable profile than other types of feedstocks. There is a need to widen the scope of LUC studies beyond liquid biofuels, to assess multiple criteria simultaneously, and to improve and harmonize the assessment methodologies. Proceedings of the 25th European Biomass Conference and Exhibition, 12-15 June 2017, Stockholm, Sweden, pp. 1471-1475
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/25theubce2017-4co.2.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010 FrancePublisher:ETA-Florence Renewable Energies Authors: Rodrigues, Thiago Oliveira; Rousset, Patrick; Caldeira-Pires, Armando;The Amazonian region is the most important timber producer from native’s forest exploitation in Brazil. In 2004 there were 82 timber centers, municipalities or micro regions that process at least 100 thousand m³/year of wood logs for industrial purposes. Since the overthrow of the tree to the wood processing, no more than 50% is used, so at least 50% is in a waste form. Most of this waste has no use. Moreover, the region has a strong demand for charcoal to supply the iron industry needs. The residual biomass should be considered as a byproduct of the production chain of wood and its use is a practice to mitigate the environmental impacts of this chain. However, the use of this energy source would also result in impacts to the environment that must be evaluated to verify the sustainability of this proposal. The objective of this research is to assess the impacts associated with a supply chain of renewable energy based on forest residues through the Life Cycle Assessment (LCA). The research is focused on the state of Pará, the greater producer of timber in Brazil. There were identified the main processing centers of timber and therefore the main points of waste generation. The residues were classified according to their origin in exploitation waste (harvest) and processing waste (sawmills). Thus, it was possible to determine an average potential and a logistics structure for the actual use of these. For the LCA there were measured the mass and energy flows involved since the generation of waste until its discharge at the courtyards of charcoal kilns. The research revealed that there is a significant amount of waste that could be used to produce energy in the region. Such use has important impacts, mainly due to intensive use of fossil fuels in transporting the waste. But there are also positive impacts relating to methane emissions avoided by the removal of waste from the forest and the replacement of wood from deforestation for charcoal production. Therefore the use of forest residues for charcoal production is presented as a major initiative to regulate the energy matrix and improve the production chain of wood in the state of Pará. Proceedings of the 18th European Biomass Conference and Exhibition, 3-7 May 2010, Lyon, France, pp. 292-295
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010 FrancePublisher:ETA-Florence Renewable Energies Authors: Rodrigues, Thiago Oliveira; Rousset, Patrick; Caldeira-Pires, Armando;The Amazonian region is the most important timber producer from native’s forest exploitation in Brazil. In 2004 there were 82 timber centers, municipalities or micro regions that process at least 100 thousand m³/year of wood logs for industrial purposes. Since the overthrow of the tree to the wood processing, no more than 50% is used, so at least 50% is in a waste form. Most of this waste has no use. Moreover, the region has a strong demand for charcoal to supply the iron industry needs. The residual biomass should be considered as a byproduct of the production chain of wood and its use is a practice to mitigate the environmental impacts of this chain. However, the use of this energy source would also result in impacts to the environment that must be evaluated to verify the sustainability of this proposal. The objective of this research is to assess the impacts associated with a supply chain of renewable energy based on forest residues through the Life Cycle Assessment (LCA). The research is focused on the state of Pará, the greater producer of timber in Brazil. There were identified the main processing centers of timber and therefore the main points of waste generation. The residues were classified according to their origin in exploitation waste (harvest) and processing waste (sawmills). Thus, it was possible to determine an average potential and a logistics structure for the actual use of these. For the LCA there were measured the mass and energy flows involved since the generation of waste until its discharge at the courtyards of charcoal kilns. The research revealed that there is a significant amount of waste that could be used to produce energy in the region. Such use has important impacts, mainly due to intensive use of fossil fuels in transporting the waste. But there are also positive impacts relating to methane emissions avoided by the removal of waste from the forest and the replacement of wood from deforestation for charcoal production. Therefore the use of forest residues for charcoal production is presented as a major initiative to regulate the energy matrix and improve the production chain of wood in the state of Pará. Proceedings of the 18th European Biomass Conference and Exhibition, 3-7 May 2010, Lyon, France, pp. 292-295
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5071/18theubce2010-vp1.1.13&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Authors: Cécile Bessou; Shabbir H. Gheewala; Elias W. Gabisa; Elias W. Gabisa;Abstract The environmental sustainability of biofuel production is still a debated issue in the world bio-economy development. Therefore, different researches are undergoing to evaluate the sustainability of ethanol production in different countries. This study aimed at analyzing the environmental performance of ethanol production in Ethiopia, considering energy balance and emission reduction using a life cycle assessment approach. It is also intended to identify the environmental hotspots so that possible improvement option can be devised. The life cycle assessment methodology was applied considering three alternative scenarios: 1) Base Case, which is the current situation, 2) Alternative 1, which considers the utilization of biogas from vinasse and bioslurry, and 3) Alternative 2, which includes mechanical harvesting and avoids pre-harvest cane trash burning. The results show that agricultural stage is greatly contributing to the pollutant emissions. The contribution of cane trash burning was significant to all the impact categories considered and avoiding pre-harvest cane trash burning significantly reduced the emissions contributing to global warming, acidification, stratospheric ozone depletion, ozone formation, particulate matter and eutrophication. On the other hand, the introduction of mechanical harvesting to avoid pre-harvest cane trash burning increased ecotoxicity, human toxicity and resource consumption (land, water and mineral) impacts. The net energy balance is positive for all the alternatives considered. In addition to using by-products, proper management of fuel utilization at the agricultural stage can further enhance benefits from the sector. Sensitivity analysis revealed that the price of molasses highly influences both energy ratio and greenhouse gas emissions since it completely shifts the allocation of upstream emissions from sugar to molasses.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 FrancePublisher:Elsevier BV Authors: Cécile Bessou; Shabbir H. Gheewala; Elias W. Gabisa; Elias W. Gabisa;Abstract The environmental sustainability of biofuel production is still a debated issue in the world bio-economy development. Therefore, different researches are undergoing to evaluate the sustainability of ethanol production in different countries. This study aimed at analyzing the environmental performance of ethanol production in Ethiopia, considering energy balance and emission reduction using a life cycle assessment approach. It is also intended to identify the environmental hotspots so that possible improvement option can be devised. The life cycle assessment methodology was applied considering three alternative scenarios: 1) Base Case, which is the current situation, 2) Alternative 1, which considers the utilization of biogas from vinasse and bioslurry, and 3) Alternative 2, which includes mechanical harvesting and avoids pre-harvest cane trash burning. The results show that agricultural stage is greatly contributing to the pollutant emissions. The contribution of cane trash burning was significant to all the impact categories considered and avoiding pre-harvest cane trash burning significantly reduced the emissions contributing to global warming, acidification, stratospheric ozone depletion, ozone formation, particulate matter and eutrophication. On the other hand, the introduction of mechanical harvesting to avoid pre-harvest cane trash burning increased ecotoxicity, human toxicity and resource consumption (land, water and mineral) impacts. The net energy balance is positive for all the alternatives considered. In addition to using by-products, proper management of fuel utilization at the agricultural stage can further enhance benefits from the sector. Sensitivity analysis revealed that the price of molasses highly influences both energy ratio and greenhouse gas emissions since it completely shifts the allocation of upstream emissions from sugar to molasses.
Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Journal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.06.199&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley Authors: Perret, Sylvain; Payen, Sandra;doi: 10.1002/ird.2404
AbstractGlobal environmental degradation, and the diverse and intense interactions between irrigation and the environment, are prompting the sector to play a more active role towards sustainability. This paper builds on ICID's 2030 vision on a more sustainable irrigation sector. It recaps the various environmental impacts of irrigation systems and calls for a threefold paradigm shift: the objectives of irrigation, its practices, and the ways to assess its impacts must evolve. The paper critically analyses the Sustainable Development Goals (SDGs') framework, which provides a prompting set of orientations, yet with little consideration of the systemic nature of irrigation. The paper promotes more operational frameworks: nexus thinking and the ecosystem services' framework, since both allow for systemic approaches, and for developing trade‐offs. The paper also discusses the merits of life cycle analysis (LCA) for environmental impact assessment. The benefits gained through these alternative approaches are illustrated in two cases of environmental impacts: return flow and salinization. Finally, the paper suggests combining these approaches with three principles for fostering a true paradigm shift in agricultural water use: developing and using suitable metrics, combining models to reconnect economic concerns with environmental ones, and considering larger territories and ecosystems to cater for interactions with the environment. © 2020 John Wiley & Sons, Ltd.
Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Wiley Authors: Perret, Sylvain; Payen, Sandra;doi: 10.1002/ird.2404
AbstractGlobal environmental degradation, and the diverse and intense interactions between irrigation and the environment, are prompting the sector to play a more active role towards sustainability. This paper builds on ICID's 2030 vision on a more sustainable irrigation sector. It recaps the various environmental impacts of irrigation systems and calls for a threefold paradigm shift: the objectives of irrigation, its practices, and the ways to assess its impacts must evolve. The paper critically analyses the Sustainable Development Goals (SDGs') framework, which provides a prompting set of orientations, yet with little consideration of the systemic nature of irrigation. The paper promotes more operational frameworks: nexus thinking and the ecosystem services' framework, since both allow for systemic approaches, and for developing trade‐offs. The paper also discusses the merits of life cycle analysis (LCA) for environmental impact assessment. The benefits gained through these alternative approaches are illustrated in two cases of environmental impacts: return flow and salinization. Finally, the paper suggests combining these approaches with three principles for fostering a true paradigm shift in agricultural water use: developing and using suitable metrics, combining models to reconnect economic concerns with environmental ones, and considering larger territories and ecosystems to cater for interactions with the environment. © 2020 John Wiley & Sons, Ltd.
Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down Irrigation and DrainageArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefCIRAD: HAL (Agricultural Research for Development)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ird.2404&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu