- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- Agronomy
- Energy Research
- 2. Zero hunger
- Agronomy
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | MAGICEC| MAGICSanta Celma; Marina Sanz; Pilar Ciria; Oksana Maliarenko; Oleh Prysiazhniuk; Mudrite Daugaviete; Dagnija Lazdina; Moritz von Cossel;Agricultural land abandonment due to biophysical and socioeconomic constraints is increasing across Europe. Meanwhile there is also an increase in bioenergy demand. This study assessed woody crop performance on several relevant types of marginal agricultural land in Europe, based on field experiments in Latvia, Spain and Ukraine. In Latvia, hybrid aspen was more productive than birch and alder species, and after eight years produced 4.8 Mg ha−1 y−1 on stony soil with sandy loam texture, when best clone and treatment combination was selected. In Spain, Siberian elm produced up to 7.1 Mg ha−1 y−1 on stony, sandy soil with low organic carbon content after three triennial rotations. In Ukraine, willow plantations produced a maximum of 10.8 Mg ha−1 y−1 on a soil with low soil organic carbon after second triennial rotation. The productivity was higher when management practices were optimized specifically to address the limiting factors of a site. Longer rotations and lower biomass yields compared to high-value land can be expected when woody crops are grown on similar marginal agricultural land shown in this study. Future studies should start here and investigate to what extent woody crops can contribute to rural development under these conditions.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | MAGICEC| MAGICSanta Celma; Marina Sanz; Pilar Ciria; Oksana Maliarenko; Oleh Prysiazhniuk; Mudrite Daugaviete; Dagnija Lazdina; Moritz von Cossel;Agricultural land abandonment due to biophysical and socioeconomic constraints is increasing across Europe. Meanwhile there is also an increase in bioenergy demand. This study assessed woody crop performance on several relevant types of marginal agricultural land in Europe, based on field experiments in Latvia, Spain and Ukraine. In Latvia, hybrid aspen was more productive than birch and alder species, and after eight years produced 4.8 Mg ha−1 y−1 on stony soil with sandy loam texture, when best clone and treatment combination was selected. In Spain, Siberian elm produced up to 7.1 Mg ha−1 y−1 on stony, sandy soil with low organic carbon content after three triennial rotations. In Ukraine, willow plantations produced a maximum of 10.8 Mg ha−1 y−1 on a soil with low soil organic carbon after second triennial rotation. The productivity was higher when management practices were optimized specifically to address the limiting factors of a site. Longer rotations and lower biomass yields compared to high-value land can be expected when woody crops are grown on similar marginal agricultural land shown in this study. Future studies should start here and investigate to what extent woody crops can contribute to rural development under these conditions.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Authors: Claudia A. Ochoa-Noriega; José A. Aznar-Sánchez; Juan F. Velasco-Muñoz; Alejandro Álvarez-Bejar;handle: 10835/9170
The development of agricultural activity in Mexico is generating environmental externalities that could compromise its future. One of the principal challenges facing the Mexican agricultural sector is to find a way to continue growing without jeopardising the availability and quality of its water resources. The objective of this article is to analyse the dynamics of the research on the use of water in agriculture in Mexico and its sustainable management. To do this, a review and a bibliometric analysis have been carried out on a sample of 1490 articles. The results show that the research has focused on the pollution of water bodies, climate change, the quality of water, the application of technology in order to make water use more efficient, biodiversity, erosion, agronomic practices that reduce water consumption, underground water sources, and conservation agriculture. Although research focusing on sustainability is still in its infancy, it has become a priority field. A gap in the research has been detected in terms of the economic and social dimensions of sustainability. There is also a lack of holistic studies that include all three of the pillars of sustainability (environmental, economic, and social).
Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Authors: Claudia A. Ochoa-Noriega; José A. Aznar-Sánchez; Juan F. Velasco-Muñoz; Alejandro Álvarez-Bejar;handle: 10835/9170
The development of agricultural activity in Mexico is generating environmental externalities that could compromise its future. One of the principal challenges facing the Mexican agricultural sector is to find a way to continue growing without jeopardising the availability and quality of its water resources. The objective of this article is to analyse the dynamics of the research on the use of water in agriculture in Mexico and its sustainable management. To do this, a review and a bibliometric analysis have been carried out on a sample of 1490 articles. The results show that the research has focused on the pollution of water bodies, climate change, the quality of water, the application of technology in order to make water use more efficient, biodiversity, erosion, agronomic practices that reduce water consumption, underground water sources, and conservation agriculture. Although research focusing on sustainability is still in its infancy, it has become a priority field. A gap in the research has been detected in terms of the economic and social dimensions of sustainability. There is also a lack of holistic studies that include all three of the pillars of sustainability (environmental, economic, and social).
Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 BrazilPublisher:MDPI AG Authors: Nauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; +5 AuthorsNauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; Thiago C. da Silva; Felipe N. Domingues; Ana C. Ruggieri; Ricardo A. Reis; Aníbal C. do Rêgo;handle: 11449/240423
Nitrous oxide (N2O) is one of the main gases emitted from soils, and the changes in land use in the Amazon may alter gas emission patterns. The objective of this study was to evaluate the effects of land use, temperature, and nitrogen on N2O emissions in soils in the Amazon. For this, three treatments randomized, with five repetitions, were incubated to quantify N2O emissions: (i) three different land uses (wet rainforest, pasture, and agriculture); (ii) different temperatures (25, 30, 35, and 40 °C); and (iii) different nitrogen additions to the soil (0, 90, 180, and 270 kg of N ha−1). Our results show that land use alters the flux of N2O, with the highest emissions observed in agricultural soils compared to that in forest and pasture areas. The change in soil temperature to 30 °C increased N2O emissions with land use, at which the emission of N2O was higher in the pasture and agriculture soils. Our results showed that the emission of N2O in the soil of the Amazon rainforest was low regardless of the temperature and nitrogen treatment. Therefore, the change in land use alters the resilience of the ecosystem, providing emissions of N2O.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 BrazilPublisher:MDPI AG Authors: Nauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; +5 AuthorsNauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; Thiago C. da Silva; Felipe N. Domingues; Ana C. Ruggieri; Ricardo A. Reis; Aníbal C. do Rêgo;handle: 11449/240423
Nitrous oxide (N2O) is one of the main gases emitted from soils, and the changes in land use in the Amazon may alter gas emission patterns. The objective of this study was to evaluate the effects of land use, temperature, and nitrogen on N2O emissions in soils in the Amazon. For this, three treatments randomized, with five repetitions, were incubated to quantify N2O emissions: (i) three different land uses (wet rainforest, pasture, and agriculture); (ii) different temperatures (25, 30, 35, and 40 °C); and (iii) different nitrogen additions to the soil (0, 90, 180, and 270 kg of N ha−1). Our results show that land use alters the flux of N2O, with the highest emissions observed in agricultural soils compared to that in forest and pasture areas. The change in soil temperature to 30 °C increased N2O emissions with land use, at which the emission of N2O was higher in the pasture and agriculture soils. Our results showed that the emission of N2O in the soil of the Amazon rainforest was low regardless of the temperature and nitrogen treatment. Therefore, the change in land use alters the resilience of the ecosystem, providing emissions of N2O.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Authors: Dyer, James; Vergé, Xavier;Although the demand on agriculture to produce food could double by 2050, changing diets will expand the global demand for protein even faster. Canadian livestock producers will likely expand in response to this market opportunity. Because of the high greenhouse gas (GHG) emissions from animal protein production, the portion of this protein demand that can be met by pulse crops must be considered. The protein basis for GHG emission intensity was assessed for 2006 using a multi-commodity GHG emissions inventory model. Because arable land is required for other agricultural products, protein production and GHG emissions were also assessed on the basis of the land use. GHG emissions per unit of protein are one or two orders of magnitude higher for protein from livestock, particularly ruminants, than for protein from pulses. The protein production from pulses was moderately higher per unit of land than the protein from livestock. This difference was greater when soybeans were the only pulse in the comparison. Protein from livestock, especially ruminants, resulted in much higher GHG emissions per unit of land than the protein from pulses. A shift towards more protein from pulses could assure a better global protein supply and reduce GHG emissions associated with that supply.
Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Authors: Dyer, James; Vergé, Xavier;Although the demand on agriculture to produce food could double by 2050, changing diets will expand the global demand for protein even faster. Canadian livestock producers will likely expand in response to this market opportunity. Because of the high greenhouse gas (GHG) emissions from animal protein production, the portion of this protein demand that can be met by pulse crops must be considered. The protein basis for GHG emission intensity was assessed for 2006 using a multi-commodity GHG emissions inventory model. Because arable land is required for other agricultural products, protein production and GHG emissions were also assessed on the basis of the land use. GHG emissions per unit of protein are one or two orders of magnitude higher for protein from livestock, particularly ruminants, than for protein from pulses. The protein production from pulses was moderately higher per unit of land than the protein from livestock. This difference was greater when soybeans were the only pulse in the comparison. Protein from livestock, especially ruminants, resulted in much higher GHG emissions per unit of land than the protein from pulses. A shift towards more protein from pulses could assure a better global protein supply and reduce GHG emissions associated with that supply.
Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Muhammad Adnan Shahid; Ali Sarkhosh; Naeem Khan; Rashad Mukhtar Balal; Shahid Ali; Lorenzo Rossi; Celina Gómez; Neil Mattson; Wajid Nasim; Francisco Garcia-Sanchez;Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 59visibility views 59 download downloads 145 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Muhammad Adnan Shahid; Ali Sarkhosh; Naeem Khan; Rashad Mukhtar Balal; Shahid Ali; Lorenzo Rossi; Celina Gómez; Neil Mattson; Wajid Nasim; Francisco Garcia-Sanchez;Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 59visibility views 59 download downloads 145 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Sokólski; Krzysztof Józef Jankowski; Dariusz Załuski; Artur Szatkowski;In this study, the agricultural inputs, energy requirements and costs associated with the production of semi-dwarf (PR45 D03 and Avenir) and long-stem (Visby) cultivars of winter oilseed rape were optimized in an experiment with 35-1 fractional factorial design. A field experiment was carried out in the Agricultural Experiment Station in Bałcyny (north-eastern Poland) in 2008–2011. The study investigated the responses of two morphotypes of hybrid cultivars of winter oilseed rape to key yield-forming factors (seeding date, seeding rate, nitrogen fertilization) and yield protection factors (fungal disease control). Agronomic inputs were tested at three levels. Our findings indicate that production technologies (characterized by a different intensity of agricultural inputs) should target the specific requirements of winter oilseed rape cultivars. Semi-dwarf cultivars of winter oilseed rape (PR45 D03 and Avenir) were characterized by higher yield potential at different input levels than the long-stem cultivar (Visby). Semi-dwarf cultivars required higher levels of agricultural inputs than the long-stem cultivar. Semi-dwarf cultivars grown in high-input technologies were characterized by the highest energy efficiency ratio. In contrast, the long-stem cultivar was characterized by the optimal energy input-energy output ratio in the low-input technology. Regardless of cultivar, high-input production technologies were more profitable because the resulting increase in seed yield significantly outweighed the rise in production costs.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Sokólski; Krzysztof Józef Jankowski; Dariusz Załuski; Artur Szatkowski;In this study, the agricultural inputs, energy requirements and costs associated with the production of semi-dwarf (PR45 D03 and Avenir) and long-stem (Visby) cultivars of winter oilseed rape were optimized in an experiment with 35-1 fractional factorial design. A field experiment was carried out in the Agricultural Experiment Station in Bałcyny (north-eastern Poland) in 2008–2011. The study investigated the responses of two morphotypes of hybrid cultivars of winter oilseed rape to key yield-forming factors (seeding date, seeding rate, nitrogen fertilization) and yield protection factors (fungal disease control). Agronomic inputs were tested at three levels. Our findings indicate that production technologies (characterized by a different intensity of agricultural inputs) should target the specific requirements of winter oilseed rape cultivars. Semi-dwarf cultivars of winter oilseed rape (PR45 D03 and Avenir) were characterized by higher yield potential at different input levels than the long-stem cultivar (Visby). Semi-dwarf cultivars required higher levels of agricultural inputs than the long-stem cultivar. Semi-dwarf cultivars grown in high-input technologies were characterized by the highest energy efficiency ratio. In contrast, the long-stem cultivar was characterized by the optimal energy input-energy output ratio in the low-input technology. Regardless of cultivar, high-input production technologies were more profitable because the resulting increase in seed yield significantly outweighed the rise in production costs.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Igor G. Loskutov; Liubov Yu. Novikova; Galina V. Belskaya; Elena V. Blinova;Climate change has become a significant factor in crop production in the 21st century for many countries. To turn losses into profit, adaptation measures are needed, which are based on the analysis and forecast of economically valuable characteristics of crops. The field trial data were analyzed for 764 oat accessions from the global germplasm collection by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in 2001–2019 and the cultivar ‘Gorizont’ in 1990–2019 in Yekaterinino Experiment Station of VIR (Tambov Province, Russia, 52°59′ N, 40°50′ E). A progressive shortening of the growing season and a yield increase were observed during the study both in the mean values for the tested accessions and in the cv. ‘Gorizont’. Grain yield variability of cv. ‘Gorizont’ across the years was also associated with 1000 grain weight variations. The models predict a further reduction in the growing season by 2.4 days/10 years, mainly caused by an increase in temperatures above 15 °C, and an increase in yield by 47.6 g/m2/10 years, mainly caused by an increase in the temperature in May. ANOVA demonstrated that the highest yields in Tambov Province were produced by accessions from Ulyanovsk Province, Ukraine, Moscow Province, Norway, Germany, and Poland.
Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Igor G. Loskutov; Liubov Yu. Novikova; Galina V. Belskaya; Elena V. Blinova;Climate change has become a significant factor in crop production in the 21st century for many countries. To turn losses into profit, adaptation measures are needed, which are based on the analysis and forecast of economically valuable characteristics of crops. The field trial data were analyzed for 764 oat accessions from the global germplasm collection by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in 2001–2019 and the cultivar ‘Gorizont’ in 1990–2019 in Yekaterinino Experiment Station of VIR (Tambov Province, Russia, 52°59′ N, 40°50′ E). A progressive shortening of the growing season and a yield increase were observed during the study both in the mean values for the tested accessions and in the cv. ‘Gorizont’. Grain yield variability of cv. ‘Gorizont’ across the years was also associated with 1000 grain weight variations. The models predict a further reduction in the growing season by 2.4 days/10 years, mainly caused by an increase in temperatures above 15 °C, and an increase in yield by 47.6 g/m2/10 years, mainly caused by an increase in the temperature in May. ANOVA demonstrated that the highest yields in Tambov Province were produced by accessions from Ulyanovsk Province, Ukraine, Moscow Province, Norway, Germany, and Poland.
Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Sheetal Sharma; Rajeev Padbhushan; Upendra Kumar;Over years of intensive cultivation and imbalanced fertilizer use, the soils of the Indian subcontinent have become deficient in several nutrients and are impoverished in organic matter. Recently, this region has started emphasizing a shift from inorganic to organic farming to manage soil health. However, owing to the steadily increasing demands for food by the overgrowing populations of this region, a complete shift to an organic farming system is not possible. The rice–wheat cropping system (RWCS) is in crisis because of falling or static yields. The nations of this region have already recognized this problem and have modified farming systems toward integrated nutrient management (INM) practices. The INM concept aims to design farming systems to ensure sustainability by improving soil health, while securing food for the population by improving crop productivity. Therefore, this paper was synthesized to quantify the impact and role of INM in improving crop productivity and sustainability of the RWCS in the context of the Indian subcontinent through meta-analysis using 338 paired data during the period of 1989–2016. The meta-analysis of the whole data for rice and wheat showed a positive increase in the grain yield of both crops with the use of INM over inorganic fertilizers only (IORA), organic fertilizers only (ORA), and control (no fertilizers; CO) treatments. The increase in grain yield was significant at p < 0.05 for rice in INM over ORA and CO treatments. For wheat, the increase in grain yield was significant at p < 0.05 in INM over IORA, ORA, and CO treatments. The yield differences in the INM treatment over IORA were 0.05 and 0.13 Mg ha−1, respectively, in rice and wheat crops. The percent yield increases in INM treatment over IORA, ORA, and CO treatments were 2.52, 29.2, and 90.9, respectively, in loamy soil and 0.60, 24.9, and 93.7, respectively, in clayey soil. The net returns increased by 121% (INM vs. CO) in rice, and 9.34% (INM vs. IORA) and 127% (INM vs. CO) in wheat crop. Use of integrated nutrient management had a positive effect on soil properties as compared to other nutrient management options. Overall, the yield gain and maintenance of soil health due to INM practices over other nutrient management practices in RWCS can be a viable nutrient management option in the Indian subcontinent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Sheetal Sharma; Rajeev Padbhushan; Upendra Kumar;Over years of intensive cultivation and imbalanced fertilizer use, the soils of the Indian subcontinent have become deficient in several nutrients and are impoverished in organic matter. Recently, this region has started emphasizing a shift from inorganic to organic farming to manage soil health. However, owing to the steadily increasing demands for food by the overgrowing populations of this region, a complete shift to an organic farming system is not possible. The rice–wheat cropping system (RWCS) is in crisis because of falling or static yields. The nations of this region have already recognized this problem and have modified farming systems toward integrated nutrient management (INM) practices. The INM concept aims to design farming systems to ensure sustainability by improving soil health, while securing food for the population by improving crop productivity. Therefore, this paper was synthesized to quantify the impact and role of INM in improving crop productivity and sustainability of the RWCS in the context of the Indian subcontinent through meta-analysis using 338 paired data during the period of 1989–2016. The meta-analysis of the whole data for rice and wheat showed a positive increase in the grain yield of both crops with the use of INM over inorganic fertilizers only (IORA), organic fertilizers only (ORA), and control (no fertilizers; CO) treatments. The increase in grain yield was significant at p < 0.05 for rice in INM over ORA and CO treatments. For wheat, the increase in grain yield was significant at p < 0.05 in INM over IORA, ORA, and CO treatments. The yield differences in the INM treatment over IORA were 0.05 and 0.13 Mg ha−1, respectively, in rice and wheat crops. The percent yield increases in INM treatment over IORA, ORA, and CO treatments were 2.52, 29.2, and 90.9, respectively, in loamy soil and 0.60, 24.9, and 93.7, respectively, in clayey soil. The net returns increased by 121% (INM vs. CO) in rice, and 9.34% (INM vs. IORA) and 127% (INM vs. CO) in wheat crop. Use of integrated nutrient management had a positive effect on soil properties as compared to other nutrient management options. Overall, the yield gain and maintenance of soil health due to INM practices over other nutrient management practices in RWCS can be a viable nutrient management option in the Indian subcontinent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: John N. Ng’ombe; Moses C. Tembo; Blessing Masasi;While climate change threatens global food security, health, and nutrition outcomes, Africa is more vulnerable because its economies largely depend on rain-fed agriculture. Thus, there is need for agricultural producers in Africa to employ robust adaptive measures that withstand the risks of climate change. However, the success of adaptation measures to climate change primarily depends on the communities’ knowledge or awareness of climate change and its risks. Nonetheless, existing empirical research is still limited to illuminate farmers’ awareness of the climate change problem. This study employs a Bayesian hierarchical logistic model, estimated using Hamiltonian Monte Carlo (HMC) methods, to empirically determine drivers of smallholder farmers’ awareness of climate change and its risks to agriculture in Zambia. The results suggest that on average, 77% of farmers in Zambia are aware of climate change and its risks to agriculture. We find socio-demographics, climate change information sources, climate change adaptive factors, and climate change impact-related shocks as predictors of the expression of climate change awareness. We suggest that farmers should be given all the necessary information about climate change and its risks to agriculture. Most importantly, the drivers identified can assist policymakers to provide the effective extension and advisory services that would enhance the understanding of climate change among farmers in synergy with appropriate farm-level climate-smart agricultural practices.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: John N. Ng’ombe; Moses C. Tembo; Blessing Masasi;While climate change threatens global food security, health, and nutrition outcomes, Africa is more vulnerable because its economies largely depend on rain-fed agriculture. Thus, there is need for agricultural producers in Africa to employ robust adaptive measures that withstand the risks of climate change. However, the success of adaptation measures to climate change primarily depends on the communities’ knowledge or awareness of climate change and its risks. Nonetheless, existing empirical research is still limited to illuminate farmers’ awareness of the climate change problem. This study employs a Bayesian hierarchical logistic model, estimated using Hamiltonian Monte Carlo (HMC) methods, to empirically determine drivers of smallholder farmers’ awareness of climate change and its risks to agriculture in Zambia. The results suggest that on average, 77% of farmers in Zambia are aware of climate change and its risks to agriculture. We find socio-demographics, climate change information sources, climate change adaptive factors, and climate change impact-related shocks as predictors of the expression of climate change awareness. We suggest that farmers should be given all the necessary information about climate change and its risks to agriculture. Most importantly, the drivers identified can assist policymakers to provide the effective extension and advisory services that would enhance the understanding of climate change among farmers in synergy with appropriate farm-level climate-smart agricultural practices.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mengyuan Luo; Zhaoyong Shi; Shuang Yang; Menghan Zhang; Shanwei Wu; Mengge Zhang;Nitrogen (N) deposition is known to significantly affect plant growth. Mycorrhizas play an important role in plant productivity, and plants of different mycorrhizal types respond differently to global change, which will inevitably affect plant response to N deposition. However, little is known about the differences of different mycorrhizas in biomass allocation of host plants in response to N addition. Here, a meta-analysis of data from N addition experiments was carried out to analyze the response of biomass in arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM) plants to N addition. The results showed that biomass of leaf, stem, fine root (FR), and litter between AM and ECM plants responded differently to N addition (p < 0.05). Among them, biomass of leaf and stem in ECM plants (leaf: 46.89%; stem: 45.59%) was more sensitive (positively) to N addition than AM plants (leaf: 27.84%; stem: 10.30%) (p < 0.05). N addition suppressed biomass of FR in AM plants (−11.22%) but promoted that in ECM plants (13.77%). The effects on biomass also varied with different functional groups between AM and ECM plants. However, the N responses were influenced by other resources. When other treatments were added, biomass was less varied in AM plants compared to ECM plants. In addition, the N response of WB (whole biomass) and root biomass were positively correlated with annual temperature in ECM plants, but that in AM plants did not. The effects on shoot biomass in AM and ECM plants to N addition both decreased with annual temperature. The N response of root biomass increased with annual precipitation. It can be seen that different mycorrhizal types regulate the response of different plant organ biomass to N addition, which is significant for predicting ecosystem responses and feedback to environmental change.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mengyuan Luo; Zhaoyong Shi; Shuang Yang; Menghan Zhang; Shanwei Wu; Mengge Zhang;Nitrogen (N) deposition is known to significantly affect plant growth. Mycorrhizas play an important role in plant productivity, and plants of different mycorrhizal types respond differently to global change, which will inevitably affect plant response to N deposition. However, little is known about the differences of different mycorrhizas in biomass allocation of host plants in response to N addition. Here, a meta-analysis of data from N addition experiments was carried out to analyze the response of biomass in arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM) plants to N addition. The results showed that biomass of leaf, stem, fine root (FR), and litter between AM and ECM plants responded differently to N addition (p < 0.05). Among them, biomass of leaf and stem in ECM plants (leaf: 46.89%; stem: 45.59%) was more sensitive (positively) to N addition than AM plants (leaf: 27.84%; stem: 10.30%) (p < 0.05). N addition suppressed biomass of FR in AM plants (−11.22%) but promoted that in ECM plants (13.77%). The effects on biomass also varied with different functional groups between AM and ECM plants. However, the N responses were influenced by other resources. When other treatments were added, biomass was less varied in AM plants compared to ECM plants. In addition, the N response of WB (whole biomass) and root biomass were positively correlated with annual temperature in ECM plants, but that in AM plants did not. The effects on shoot biomass in AM and ECM plants to N addition both decreased with annual temperature. The N response of root biomass increased with annual precipitation. It can be seen that different mycorrhizal types regulate the response of different plant organ biomass to N addition, which is significant for predicting ecosystem responses and feedback to environmental change.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | MAGICEC| MAGICSanta Celma; Marina Sanz; Pilar Ciria; Oksana Maliarenko; Oleh Prysiazhniuk; Mudrite Daugaviete; Dagnija Lazdina; Moritz von Cossel;Agricultural land abandonment due to biophysical and socioeconomic constraints is increasing across Europe. Meanwhile there is also an increase in bioenergy demand. This study assessed woody crop performance on several relevant types of marginal agricultural land in Europe, based on field experiments in Latvia, Spain and Ukraine. In Latvia, hybrid aspen was more productive than birch and alder species, and after eight years produced 4.8 Mg ha−1 y−1 on stony soil with sandy loam texture, when best clone and treatment combination was selected. In Spain, Siberian elm produced up to 7.1 Mg ha−1 y−1 on stony, sandy soil with low organic carbon content after three triennial rotations. In Ukraine, willow plantations produced a maximum of 10.8 Mg ha−1 y−1 on a soil with low soil organic carbon after second triennial rotation. The productivity was higher when management practices were optimized specifically to address the limiting factors of a site. Longer rotations and lower biomass yields compared to high-value land can be expected when woody crops are grown on similar marginal agricultural land shown in this study. Future studies should start here and investigate to what extent woody crops can contribute to rural development under these conditions.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:EC | MAGICEC| MAGICSanta Celma; Marina Sanz; Pilar Ciria; Oksana Maliarenko; Oleh Prysiazhniuk; Mudrite Daugaviete; Dagnija Lazdina; Moritz von Cossel;Agricultural land abandonment due to biophysical and socioeconomic constraints is increasing across Europe. Meanwhile there is also an increase in bioenergy demand. This study assessed woody crop performance on several relevant types of marginal agricultural land in Europe, based on field experiments in Latvia, Spain and Ukraine. In Latvia, hybrid aspen was more productive than birch and alder species, and after eight years produced 4.8 Mg ha−1 y−1 on stony soil with sandy loam texture, when best clone and treatment combination was selected. In Spain, Siberian elm produced up to 7.1 Mg ha−1 y−1 on stony, sandy soil with low organic carbon content after three triennial rotations. In Ukraine, willow plantations produced a maximum of 10.8 Mg ha−1 y−1 on a soil with low soil organic carbon after second triennial rotation. The productivity was higher when management practices were optimized specifically to address the limiting factors of a site. Longer rotations and lower biomass yields compared to high-value land can be expected when woody crops are grown on similar marginal agricultural land shown in this study. Future studies should start here and investigate to what extent woody crops can contribute to rural development under these conditions.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/4/908/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12040908&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Authors: Claudia A. Ochoa-Noriega; José A. Aznar-Sánchez; Juan F. Velasco-Muñoz; Alejandro Álvarez-Bejar;handle: 10835/9170
The development of agricultural activity in Mexico is generating environmental externalities that could compromise its future. One of the principal challenges facing the Mexican agricultural sector is to find a way to continue growing without jeopardising the availability and quality of its water resources. The objective of this article is to analyse the dynamics of the research on the use of water in agriculture in Mexico and its sustainable management. To do this, a review and a bibliometric analysis have been carried out on a sample of 1490 articles. The results show that the research has focused on the pollution of water bodies, climate change, the quality of water, the application of technology in order to make water use more efficient, biodiversity, erosion, agronomic practices that reduce water consumption, underground water sources, and conservation agriculture. Although research focusing on sustainability is still in its infancy, it has become a priority field. A gap in the research has been detected in terms of the economic and social dimensions of sustainability. There is also a lack of holistic studies that include all three of the pillars of sustainability (environmental, economic, and social).
Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SpainPublisher:MDPI AG Authors: Claudia A. Ochoa-Noriega; José A. Aznar-Sánchez; Juan F. Velasco-Muñoz; Alejandro Álvarez-Bejar;handle: 10835/9170
The development of agricultural activity in Mexico is generating environmental externalities that could compromise its future. One of the principal challenges facing the Mexican agricultural sector is to find a way to continue growing without jeopardising the availability and quality of its water resources. The objective of this article is to analyse the dynamics of the research on the use of water in agriculture in Mexico and its sustainable management. To do this, a review and a bibliometric analysis have been carried out on a sample of 1490 articles. The results show that the research has focused on the pollution of water bodies, climate change, the quality of water, the application of technology in order to make water use more efficient, biodiversity, erosion, agronomic practices that reduce water consumption, underground water sources, and conservation agriculture. Although research focusing on sustainability is still in its infancy, it has become a priority field. A gap in the research has been detected in terms of the economic and social dimensions of sustainability. There is also a lack of holistic studies that include all three of the pillars of sustainability (environmental, economic, and social).
Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAriUAL - Repositorio Institucional de la Universidad de Almería (Spain)Article . 2020License: CC BY NC NDFull-Text: https://www.mdpi.com/2073-4395/10/12/1957add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10121957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 BrazilPublisher:MDPI AG Authors: Nauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; +5 AuthorsNauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; Thiago C. da Silva; Felipe N. Domingues; Ana C. Ruggieri; Ricardo A. Reis; Aníbal C. do Rêgo;handle: 11449/240423
Nitrous oxide (N2O) is one of the main gases emitted from soils, and the changes in land use in the Amazon may alter gas emission patterns. The objective of this study was to evaluate the effects of land use, temperature, and nitrogen on N2O emissions in soils in the Amazon. For this, three treatments randomized, with five repetitions, were incubated to quantify N2O emissions: (i) three different land uses (wet rainforest, pasture, and agriculture); (ii) different temperatures (25, 30, 35, and 40 °C); and (iii) different nitrogen additions to the soil (0, 90, 180, and 270 kg of N ha−1). Our results show that land use alters the flux of N2O, with the highest emissions observed in agricultural soils compared to that in forest and pasture areas. The change in soil temperature to 30 °C increased N2O emissions with land use, at which the emission of N2O was higher in the pasture and agriculture soils. Our results showed that the emission of N2O in the soil of the Amazon rainforest was low regardless of the temperature and nitrogen treatment. Therefore, the change in land use alters the resilience of the ecosystem, providing emissions of N2O.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 BrazilPublisher:MDPI AG Authors: Nauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; +5 AuthorsNauara M. Lage Filho; Abmael da S. Cardoso; Jorge C. de Azevedo; Cristian Faturi; Thiago C. da Silva; Felipe N. Domingues; Ana C. Ruggieri; Ricardo A. Reis; Aníbal C. do Rêgo;handle: 11449/240423
Nitrous oxide (N2O) is one of the main gases emitted from soils, and the changes in land use in the Amazon may alter gas emission patterns. The objective of this study was to evaluate the effects of land use, temperature, and nitrogen on N2O emissions in soils in the Amazon. For this, three treatments randomized, with five repetitions, were incubated to quantify N2O emissions: (i) three different land uses (wet rainforest, pasture, and agriculture); (ii) different temperatures (25, 30, 35, and 40 °C); and (iii) different nitrogen additions to the soil (0, 90, 180, and 270 kg of N ha−1). Our results show that land use alters the flux of N2O, with the highest emissions observed in agricultural soils compared to that in forest and pasture areas. The change in soil temperature to 30 °C increased N2O emissions with land use, at which the emission of N2O was higher in the pasture and agriculture soils. Our results showed that the emission of N2O in the soil of the Amazon rainforest was low regardless of the temperature and nitrogen treatment. Therefore, the change in land use alters the resilience of the ecosystem, providing emissions of N2O.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/7/1608/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12071608&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Authors: Dyer, James; Vergé, Xavier;Although the demand on agriculture to produce food could double by 2050, changing diets will expand the global demand for protein even faster. Canadian livestock producers will likely expand in response to this market opportunity. Because of the high greenhouse gas (GHG) emissions from animal protein production, the portion of this protein demand that can be met by pulse crops must be considered. The protein basis for GHG emission intensity was assessed for 2006 using a multi-commodity GHG emissions inventory model. Because arable land is required for other agricultural products, protein production and GHG emissions were also assessed on the basis of the land use. GHG emissions per unit of protein are one or two orders of magnitude higher for protein from livestock, particularly ruminants, than for protein from pulses. The protein production from pulses was moderately higher per unit of land than the protein from livestock. This difference was greater when soybeans were the only pulse in the comparison. Protein from livestock, especially ruminants, resulted in much higher GHG emissions per unit of land than the protein from pulses. A shift towards more protein from pulses could assure a better global protein supply and reduce GHG emissions associated with that supply.
Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015Publisher:MDPI AG Authors: Dyer, James; Vergé, Xavier;Although the demand on agriculture to produce food could double by 2050, changing diets will expand the global demand for protein even faster. Canadian livestock producers will likely expand in response to this market opportunity. Because of the high greenhouse gas (GHG) emissions from animal protein production, the portion of this protein demand that can be met by pulse crops must be considered. The protein basis for GHG emission intensity was assessed for 2006 using a multi-commodity GHG emissions inventory model. Because arable land is required for other agricultural products, protein production and GHG emissions were also assessed on the basis of the land use. GHG emissions per unit of protein are one or two orders of magnitude higher for protein from livestock, particularly ruminants, than for protein from pulses. The protein production from pulses was moderately higher per unit of land than the protein from livestock. This difference was greater when soybeans were the only pulse in the comparison. Protein from livestock, especially ruminants, resulted in much higher GHG emissions per unit of land than the protein from pulses. A shift towards more protein from pulses could assure a better global protein supply and reduce GHG emissions associated with that supply.
Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/2073-4395/5/4/569/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy5040569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Muhammad Adnan Shahid; Ali Sarkhosh; Naeem Khan; Rashad Mukhtar Balal; Shahid Ali; Lorenzo Rossi; Celina Gómez; Neil Mattson; Wajid Nasim; Francisco Garcia-Sanchez;Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 59visibility views 59 download downloads 145 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Muhammad Adnan Shahid; Ali Sarkhosh; Naeem Khan; Rashad Mukhtar Balal; Shahid Ali; Lorenzo Rossi; Celina Gómez; Neil Mattson; Wajid Nasim; Francisco Garcia-Sanchez;Climate change is causing soil salinization, resulting in crop losses throughout the world. The ability of plants to tolerate salt stress is determined by multiple biochemical and molecular pathways. Here we discuss physiological, biochemical, and cellular modulations in plants in response to salt stress. Knowledge of these modulations can assist in assessing salt tolerance potential and the mechanisms underlying salinity tolerance in plants. Salinity-induced cellular damage is highly correlated with generation of reactive oxygen species, ionic imbalance, osmotic damage, and reduced relative water content. Accelerated antioxidant activities and osmotic adjustment by the formation of organic and inorganic osmolytes are significant and effective salinity tolerance mechanisms for crop plants. In addition, polyamines improve salt tolerance by regulating various physiological mechanisms, including rhizogenesis, somatic embryogenesis, maintenance of cell pH, and ionic homeostasis. This research project focuses on three strategies to augment salinity tolerance capacity in agricultural crops: salinity-induced alterations in signaling pathways; signaling of phytohormones, ion channels, and biosensors; and expression of ion transporter genes in crop plants (especially in comparison to halophytes).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 307 citations 307 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 59visibility views 59 download downloads 145 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10070938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Sokólski; Krzysztof Józef Jankowski; Dariusz Załuski; Artur Szatkowski;In this study, the agricultural inputs, energy requirements and costs associated with the production of semi-dwarf (PR45 D03 and Avenir) and long-stem (Visby) cultivars of winter oilseed rape were optimized in an experiment with 35-1 fractional factorial design. A field experiment was carried out in the Agricultural Experiment Station in Bałcyny (north-eastern Poland) in 2008–2011. The study investigated the responses of two morphotypes of hybrid cultivars of winter oilseed rape to key yield-forming factors (seeding date, seeding rate, nitrogen fertilization) and yield protection factors (fungal disease control). Agronomic inputs were tested at three levels. Our findings indicate that production technologies (characterized by a different intensity of agricultural inputs) should target the specific requirements of winter oilseed rape cultivars. Semi-dwarf cultivars of winter oilseed rape (PR45 D03 and Avenir) were characterized by higher yield potential at different input levels than the long-stem cultivar (Visby). Semi-dwarf cultivars required higher levels of agricultural inputs than the long-stem cultivar. Semi-dwarf cultivars grown in high-input technologies were characterized by the highest energy efficiency ratio. In contrast, the long-stem cultivar was characterized by the optimal energy input-energy output ratio in the low-input technology. Regardless of cultivar, high-input production technologies were more profitable because the resulting increase in seed yield significantly outweighed the rise in production costs.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Sokólski; Krzysztof Józef Jankowski; Dariusz Załuski; Artur Szatkowski;In this study, the agricultural inputs, energy requirements and costs associated with the production of semi-dwarf (PR45 D03 and Avenir) and long-stem (Visby) cultivars of winter oilseed rape were optimized in an experiment with 35-1 fractional factorial design. A field experiment was carried out in the Agricultural Experiment Station in Bałcyny (north-eastern Poland) in 2008–2011. The study investigated the responses of two morphotypes of hybrid cultivars of winter oilseed rape to key yield-forming factors (seeding date, seeding rate, nitrogen fertilization) and yield protection factors (fungal disease control). Agronomic inputs were tested at three levels. Our findings indicate that production technologies (characterized by a different intensity of agricultural inputs) should target the specific requirements of winter oilseed rape cultivars. Semi-dwarf cultivars of winter oilseed rape (PR45 D03 and Avenir) were characterized by higher yield potential at different input levels than the long-stem cultivar (Visby). Semi-dwarf cultivars required higher levels of agricultural inputs than the long-stem cultivar. Semi-dwarf cultivars grown in high-input technologies were characterized by the highest energy efficiency ratio. In contrast, the long-stem cultivar was characterized by the optimal energy input-energy output ratio in the low-input technology. Regardless of cultivar, high-input production technologies were more profitable because the resulting increase in seed yield significantly outweighed the rise in production costs.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/4/508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10040508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Igor G. Loskutov; Liubov Yu. Novikova; Galina V. Belskaya; Elena V. Blinova;Climate change has become a significant factor in crop production in the 21st century for many countries. To turn losses into profit, adaptation measures are needed, which are based on the analysis and forecast of economically valuable characteristics of crops. The field trial data were analyzed for 764 oat accessions from the global germplasm collection by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in 2001–2019 and the cultivar ‘Gorizont’ in 1990–2019 in Yekaterinino Experiment Station of VIR (Tambov Province, Russia, 52°59′ N, 40°50′ E). A progressive shortening of the growing season and a yield increase were observed during the study both in the mean values for the tested accessions and in the cv. ‘Gorizont’. Grain yield variability of cv. ‘Gorizont’ across the years was also associated with 1000 grain weight variations. The models predict a further reduction in the growing season by 2.4 days/10 years, mainly caused by an increase in temperatures above 15 °C, and an increase in yield by 47.6 g/m2/10 years, mainly caused by an increase in the temperature in May. ANOVA demonstrated that the highest yields in Tambov Province were produced by accessions from Ulyanovsk Province, Ukraine, Moscow Province, Norway, Germany, and Poland.
Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Igor G. Loskutov; Liubov Yu. Novikova; Galina V. Belskaya; Elena V. Blinova;Climate change has become a significant factor in crop production in the 21st century for many countries. To turn losses into profit, adaptation measures are needed, which are based on the analysis and forecast of economically valuable characteristics of crops. The field trial data were analyzed for 764 oat accessions from the global germplasm collection by the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) in 2001–2019 and the cultivar ‘Gorizont’ in 1990–2019 in Yekaterinino Experiment Station of VIR (Tambov Province, Russia, 52°59′ N, 40°50′ E). A progressive shortening of the growing season and a yield increase were observed during the study both in the mean values for the tested accessions and in the cv. ‘Gorizont’. Grain yield variability of cv. ‘Gorizont’ across the years was also associated with 1000 grain weight variations. The models predict a further reduction in the growing season by 2.4 days/10 years, mainly caused by an increase in temperatures above 15 °C, and an increase in yield by 47.6 g/m2/10 years, mainly caused by an increase in the temperature in May. ANOVA demonstrated that the highest yields in Tambov Province were produced by accessions from Ulyanovsk Province, Ukraine, Moscow Province, Norway, Germany, and Poland.
Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4395/11/3/423/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy11030423&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Sheetal Sharma; Rajeev Padbhushan; Upendra Kumar;Over years of intensive cultivation and imbalanced fertilizer use, the soils of the Indian subcontinent have become deficient in several nutrients and are impoverished in organic matter. Recently, this region has started emphasizing a shift from inorganic to organic farming to manage soil health. However, owing to the steadily increasing demands for food by the overgrowing populations of this region, a complete shift to an organic farming system is not possible. The rice–wheat cropping system (RWCS) is in crisis because of falling or static yields. The nations of this region have already recognized this problem and have modified farming systems toward integrated nutrient management (INM) practices. The INM concept aims to design farming systems to ensure sustainability by improving soil health, while securing food for the population by improving crop productivity. Therefore, this paper was synthesized to quantify the impact and role of INM in improving crop productivity and sustainability of the RWCS in the context of the Indian subcontinent through meta-analysis using 338 paired data during the period of 1989–2016. The meta-analysis of the whole data for rice and wheat showed a positive increase in the grain yield of both crops with the use of INM over inorganic fertilizers only (IORA), organic fertilizers only (ORA), and control (no fertilizers; CO) treatments. The increase in grain yield was significant at p < 0.05 for rice in INM over ORA and CO treatments. For wheat, the increase in grain yield was significant at p < 0.05 in INM over IORA, ORA, and CO treatments. The yield differences in the INM treatment over IORA were 0.05 and 0.13 Mg ha−1, respectively, in rice and wheat crops. The percent yield increases in INM treatment over IORA, ORA, and CO treatments were 2.52, 29.2, and 90.9, respectively, in loamy soil and 0.60, 24.9, and 93.7, respectively, in clayey soil. The net returns increased by 121% (INM vs. CO) in rice, and 9.34% (INM vs. IORA) and 127% (INM vs. CO) in wheat crop. Use of integrated nutrient management had a positive effect on soil properties as compared to other nutrient management options. Overall, the yield gain and maintenance of soil health due to INM practices over other nutrient management practices in RWCS can be a viable nutrient management option in the Indian subcontinent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Sheetal Sharma; Rajeev Padbhushan; Upendra Kumar;Over years of intensive cultivation and imbalanced fertilizer use, the soils of the Indian subcontinent have become deficient in several nutrients and are impoverished in organic matter. Recently, this region has started emphasizing a shift from inorganic to organic farming to manage soil health. However, owing to the steadily increasing demands for food by the overgrowing populations of this region, a complete shift to an organic farming system is not possible. The rice–wheat cropping system (RWCS) is in crisis because of falling or static yields. The nations of this region have already recognized this problem and have modified farming systems toward integrated nutrient management (INM) practices. The INM concept aims to design farming systems to ensure sustainability by improving soil health, while securing food for the population by improving crop productivity. Therefore, this paper was synthesized to quantify the impact and role of INM in improving crop productivity and sustainability of the RWCS in the context of the Indian subcontinent through meta-analysis using 338 paired data during the period of 1989–2016. The meta-analysis of the whole data for rice and wheat showed a positive increase in the grain yield of both crops with the use of INM over inorganic fertilizers only (IORA), organic fertilizers only (ORA), and control (no fertilizers; CO) treatments. The increase in grain yield was significant at p < 0.05 for rice in INM over ORA and CO treatments. For wheat, the increase in grain yield was significant at p < 0.05 in INM over IORA, ORA, and CO treatments. The yield differences in the INM treatment over IORA were 0.05 and 0.13 Mg ha−1, respectively, in rice and wheat crops. The percent yield increases in INM treatment over IORA, ORA, and CO treatments were 2.52, 29.2, and 90.9, respectively, in loamy soil and 0.60, 24.9, and 93.7, respectively, in clayey soil. The net returns increased by 121% (INM vs. CO) in rice, and 9.34% (INM vs. IORA) and 127% (INM vs. CO) in wheat crop. Use of integrated nutrient management had a positive effect on soil properties as compared to other nutrient management options. Overall, the yield gain and maintenance of soil health due to INM practices over other nutrient management practices in RWCS can be a viable nutrient management option in the Indian subcontinent.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy9020071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: John N. Ng’ombe; Moses C. Tembo; Blessing Masasi;While climate change threatens global food security, health, and nutrition outcomes, Africa is more vulnerable because its economies largely depend on rain-fed agriculture. Thus, there is need for agricultural producers in Africa to employ robust adaptive measures that withstand the risks of climate change. However, the success of adaptation measures to climate change primarily depends on the communities’ knowledge or awareness of climate change and its risks. Nonetheless, existing empirical research is still limited to illuminate farmers’ awareness of the climate change problem. This study employs a Bayesian hierarchical logistic model, estimated using Hamiltonian Monte Carlo (HMC) methods, to empirically determine drivers of smallholder farmers’ awareness of climate change and its risks to agriculture in Zambia. The results suggest that on average, 77% of farmers in Zambia are aware of climate change and its risks to agriculture. We find socio-demographics, climate change information sources, climate change adaptive factors, and climate change impact-related shocks as predictors of the expression of climate change awareness. We suggest that farmers should be given all the necessary information about climate change and its risks to agriculture. Most importantly, the drivers identified can assist policymakers to provide the effective extension and advisory services that would enhance the understanding of climate change among farmers in synergy with appropriate farm-level climate-smart agricultural practices.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: John N. Ng’ombe; Moses C. Tembo; Blessing Masasi;While climate change threatens global food security, health, and nutrition outcomes, Africa is more vulnerable because its economies largely depend on rain-fed agriculture. Thus, there is need for agricultural producers in Africa to employ robust adaptive measures that withstand the risks of climate change. However, the success of adaptation measures to climate change primarily depends on the communities’ knowledge or awareness of climate change and its risks. Nonetheless, existing empirical research is still limited to illuminate farmers’ awareness of the climate change problem. This study employs a Bayesian hierarchical logistic model, estimated using Hamiltonian Monte Carlo (HMC) methods, to empirically determine drivers of smallholder farmers’ awareness of climate change and its risks to agriculture in Zambia. The results suggest that on average, 77% of farmers in Zambia are aware of climate change and its risks to agriculture. We find socio-demographics, climate change information sources, climate change adaptive factors, and climate change impact-related shocks as predictors of the expression of climate change awareness. We suggest that farmers should be given all the necessary information about climate change and its risks to agriculture. Most importantly, the drivers identified can assist policymakers to provide the effective extension and advisory services that would enhance the understanding of climate change among farmers in synergy with appropriate farm-level climate-smart agricultural practices.
Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2073-4395/10/3/376/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy10030376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mengyuan Luo; Zhaoyong Shi; Shuang Yang; Menghan Zhang; Shanwei Wu; Mengge Zhang;Nitrogen (N) deposition is known to significantly affect plant growth. Mycorrhizas play an important role in plant productivity, and plants of different mycorrhizal types respond differently to global change, which will inevitably affect plant response to N deposition. However, little is known about the differences of different mycorrhizas in biomass allocation of host plants in response to N addition. Here, a meta-analysis of data from N addition experiments was carried out to analyze the response of biomass in arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM) plants to N addition. The results showed that biomass of leaf, stem, fine root (FR), and litter between AM and ECM plants responded differently to N addition (p < 0.05). Among them, biomass of leaf and stem in ECM plants (leaf: 46.89%; stem: 45.59%) was more sensitive (positively) to N addition than AM plants (leaf: 27.84%; stem: 10.30%) (p < 0.05). N addition suppressed biomass of FR in AM plants (−11.22%) but promoted that in ECM plants (13.77%). The effects on biomass also varied with different functional groups between AM and ECM plants. However, the N responses were influenced by other resources. When other treatments were added, biomass was less varied in AM plants compared to ECM plants. In addition, the N response of WB (whole biomass) and root biomass were positively correlated with annual temperature in ECM plants, but that in AM plants did not. The effects on shoot biomass in AM and ECM plants to N addition both decreased with annual temperature. The N response of root biomass increased with annual precipitation. It can be seen that different mycorrhizal types regulate the response of different plant organ biomass to N addition, which is significant for predicting ecosystem responses and feedback to environmental change.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Mengyuan Luo; Zhaoyong Shi; Shuang Yang; Menghan Zhang; Shanwei Wu; Mengge Zhang;Nitrogen (N) deposition is known to significantly affect plant growth. Mycorrhizas play an important role in plant productivity, and plants of different mycorrhizal types respond differently to global change, which will inevitably affect plant response to N deposition. However, little is known about the differences of different mycorrhizas in biomass allocation of host plants in response to N addition. Here, a meta-analysis of data from N addition experiments was carried out to analyze the response of biomass in arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM) plants to N addition. The results showed that biomass of leaf, stem, fine root (FR), and litter between AM and ECM plants responded differently to N addition (p < 0.05). Among them, biomass of leaf and stem in ECM plants (leaf: 46.89%; stem: 45.59%) was more sensitive (positively) to N addition than AM plants (leaf: 27.84%; stem: 10.30%) (p < 0.05). N addition suppressed biomass of FR in AM plants (−11.22%) but promoted that in ECM plants (13.77%). The effects on biomass also varied with different functional groups between AM and ECM plants. However, the N responses were influenced by other resources. When other treatments were added, biomass was less varied in AM plants compared to ECM plants. In addition, the N response of WB (whole biomass) and root biomass were positively correlated with annual temperature in ECM plants, but that in AM plants did not. The effects on shoot biomass in AM and ECM plants to N addition both decreased with annual temperature. The N response of root biomass increased with annual precipitation. It can be seen that different mycorrhizal types regulate the response of different plant organ biomass to N addition, which is significant for predicting ecosystem responses and feedback to environmental change.
Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Agronomy arrow_drop_down AgronomyOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2073-4395/12/10/2357/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/agronomy12102357&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu