- home
- Advanced Search
- Energy Research
- Energy and Built Environment
- Energy Research
- Energy and Built Environment
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Yingying Wang; Sudan Zhang; Dengjia Wang; Yanfeng Liu;At present, thermal conductivity is usually taken as a constant value in the calculation of building energy consumption and load. However, in the actual use of building materials, they are exposed to the environment with continuously changing temperature and relative humidity. The thermal conductivity of materials will inevitably change with temperature and humidity, leading to deviations in the estimation of energy consumption in the building. Therefore, in this study, variations in the thermal conductivity of eight common building insulation materials (glass wool, rock wool, silica aerogel blanket, expanded polystyrene, extruded polystyrene, phenolic foam, foam ceramic and foam glass) with temperature (in the range of 20–60 °C) and relative humidity (in the range of 0–100%) were studied by experimental methods. The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maximum growth rates from 3.9 to 22.7% in the examined temperature range. Due to the structural characteristics of materials, the increasing thermal conductivity of different materials varies depending on the relative humidity. The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%. In addition, the principles of selection of building insulation materials in different humidity regions were given. The research results of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Yingying Wang; Sudan Zhang; Dengjia Wang; Yanfeng Liu;At present, thermal conductivity is usually taken as a constant value in the calculation of building energy consumption and load. However, in the actual use of building materials, they are exposed to the environment with continuously changing temperature and relative humidity. The thermal conductivity of materials will inevitably change with temperature and humidity, leading to deviations in the estimation of energy consumption in the building. Therefore, in this study, variations in the thermal conductivity of eight common building insulation materials (glass wool, rock wool, silica aerogel blanket, expanded polystyrene, extruded polystyrene, phenolic foam, foam ceramic and foam glass) with temperature (in the range of 20–60 °C) and relative humidity (in the range of 0–100%) were studied by experimental methods. The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maximum growth rates from 3.9 to 22.7% in the examined temperature range. Due to the structural characteristics of materials, the increasing thermal conductivity of different materials varies depending on the relative humidity. The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%. In addition, the principles of selection of building insulation materials in different humidity regions were given. The research results of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Lahcen BALLI; Mohamed HLIMI; Youssef ACHENANI; Adil ATIFI; Bachir HAMRI;This article focuses on the experimental and numerical study of an industrial prototype furnace intended for the production of ceramics in order to improve the energy efficiency and therefore optimize the fuel consumption and the corresponding carbon dioxide emissions. In order to understand the thermal behavior from which stems the energy efficiency of the experimental prototype, we establish in this work, a simplified modeling allowing to establish a mathematical model describing the thermal behavior of the furnace. The model is able to accurately predict the spatial and temporal distribution of the temperature at each point of the furnace to control the firing of the refractory product so that the final product is of good quality in terms of resistance and hardness. In addition, the power consumed by the prototype must be optimized in order to reduce energy and environmental consumption. In particular, this efficient technology has allowed us to save 83% of energy used in the traditional furnace and to reduce 87.36% of the relative carbon dioxide emission. The simulation of the mathematical model made it possible to compare the numerical results with the experimental measurements obtained by the prototype as well as to validate the model and to adjust the heat transfer parameters.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Lahcen BALLI; Mohamed HLIMI; Youssef ACHENANI; Adil ATIFI; Bachir HAMRI;This article focuses on the experimental and numerical study of an industrial prototype furnace intended for the production of ceramics in order to improve the energy efficiency and therefore optimize the fuel consumption and the corresponding carbon dioxide emissions. In order to understand the thermal behavior from which stems the energy efficiency of the experimental prototype, we establish in this work, a simplified modeling allowing to establish a mathematical model describing the thermal behavior of the furnace. The model is able to accurately predict the spatial and temporal distribution of the temperature at each point of the furnace to control the firing of the refractory product so that the final product is of good quality in terms of resistance and hardness. In addition, the power consumed by the prototype must be optimized in order to reduce energy and environmental consumption. In particular, this efficient technology has allowed us to save 83% of energy used in the traditional furnace and to reduce 87.36% of the relative carbon dioxide emission. The simulation of the mathematical model made it possible to compare the numerical results with the experimental measurements obtained by the prototype as well as to validate the model and to adjust the heat transfer parameters.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Ronggui Yang; Dongliang Zhao; Dongliang Zhao; Dikai Xu; Hua Qian; Hua Qian; Zhitong Yi; Yingyan lv; Jingtao Xu;A transparent radiative cooling (T-RC) film with low transmittance in solar spectra and selectively high emissivity in the atmospheric window (8–13 μm) is applied on roof glazing for building energy saving. To evaluate the performance of the T-RC film, two identical model boxes (1.0 m × 0.6 m × 1.2 m, L × W × H) were constructed and the inside air temperatures were measured in August in Ningbo, China. Results show that the maximum temperature difference between the two model boxes with and without the T-RC film was 21.6 °C during the experiment. A whole building model was built in EnergyPlus for the model box. With a good agreement achieved between the calculation results and the measured temperature data, the experimentally validated EnergyPlus model was then extended to an 815.1 m2 exhibition building with roof glazing to analyze the annual air conditioning (AC) energy consumption. The results show that by incorporating both the T-RC film's cooling benefit in summer and heating penalty in winter, the annual AC energy consumption of the exhibition building can be reduced by 40.9–63.4%, varying with different climate conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Ronggui Yang; Dongliang Zhao; Dongliang Zhao; Dikai Xu; Hua Qian; Hua Qian; Zhitong Yi; Yingyan lv; Jingtao Xu;A transparent radiative cooling (T-RC) film with low transmittance in solar spectra and selectively high emissivity in the atmospheric window (8–13 μm) is applied on roof glazing for building energy saving. To evaluate the performance of the T-RC film, two identical model boxes (1.0 m × 0.6 m × 1.2 m, L × W × H) were constructed and the inside air temperatures were measured in August in Ningbo, China. Results show that the maximum temperature difference between the two model boxes with and without the T-RC film was 21.6 °C during the experiment. A whole building model was built in EnergyPlus for the model box. With a good agreement achieved between the calculation results and the measured temperature data, the experimentally validated EnergyPlus model was then extended to an 815.1 m2 exhibition building with roof glazing to analyze the annual air conditioning (AC) energy consumption. The results show that by incorporating both the T-RC film's cooling benefit in summer and heating penalty in winter, the annual AC energy consumption of the exhibition building can be reduced by 40.9–63.4%, varying with different climate conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Ci Ao; Suying Yan; Long Zhao; Xiaoyan Zhao; Yuting Wu;In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid (SA), the composite phase change material(PCM) was prepared by adding boron nitride (BN) and expanded graphite (EG) to melted SA, and its thermal conductivity, crystal structure, chemical stability, thermal stability, cycle stability, leakage characteristics, heat storage/release characteristics, and temperature response characteristics were characterized. The results showed that the addition of BN and EG significantly improved the thermal conductivity of the material, and they efficiently adsorbed melted SA. The maximum load of SA was 76 wt. % and there was almost no liquid leakage. Moreover, the melting enthalpy and temperature were 154.20 J • g − 1 and 67.85°C, respectively. Compared with pure SA, the SA/BN/EG composite showed a lower melting temperature and a higher freezing temperature. In addition, when the mass fraction of BN and EG was 12 wt. %, the thermal conductivity of the composite was 6.349 W • m−1 • K−1, which was 18.619 times that of SA. More importantly, the composite showed good stability for 50 cycles of heating and cooling, and the SA / BN / EG-12 hardly decomposes below 200°C, which implies that the working performance of the composite PCM is relatively stable within the temperature range of 100°C. Therefore, the composite can exhibit excellent thermal stability in the field of building heating.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Ci Ao; Suying Yan; Long Zhao; Xiaoyan Zhao; Yuting Wu;In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid (SA), the composite phase change material(PCM) was prepared by adding boron nitride (BN) and expanded graphite (EG) to melted SA, and its thermal conductivity, crystal structure, chemical stability, thermal stability, cycle stability, leakage characteristics, heat storage/release characteristics, and temperature response characteristics were characterized. The results showed that the addition of BN and EG significantly improved the thermal conductivity of the material, and they efficiently adsorbed melted SA. The maximum load of SA was 76 wt. % and there was almost no liquid leakage. Moreover, the melting enthalpy and temperature were 154.20 J • g − 1 and 67.85°C, respectively. Compared with pure SA, the SA/BN/EG composite showed a lower melting temperature and a higher freezing temperature. In addition, when the mass fraction of BN and EG was 12 wt. %, the thermal conductivity of the composite was 6.349 W • m−1 • K−1, which was 18.619 times that of SA. More importantly, the composite showed good stability for 50 cycles of heating and cooling, and the SA / BN / EG-12 hardly decomposes below 200°C, which implies that the working performance of the composite PCM is relatively stable within the temperature range of 100°C. Therefore, the composite can exhibit excellent thermal stability in the field of building heating.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Elsevier BV Min Zheng; Ziguang Wang; Liyao You; Baiyi Li; Yao Wang;With the continuous deepening of China's rural construction and development, people's living conditions are improved day by day, while accompanied by energy and environment crisis issues. This paper mainly analyzes the energy consumption pattern and the indoor environment of rural households in China and discusses the energy-saving optimization strategies for improving the thermal environment of buildings. Questionnaire surveys and field surveys were conducted in three villages in Guanghan, China. The measurement results show that the annual indoor temperature range of the region in the summer is 15–31 °C and the relative humidity range is 34%-96%. The average indoor temperatures in summer and winter are 28 °C and 16 °C respectively. The indoor thermal environment of rural buildings is usually poor and cannot meet the requirements of Chinese standards. At the same time, the architectural design and energy consumption pattern of rural households are different from those in urban areas as countryside has unique characteristics. Finally, we put forward certain energy-saving improvement measures at the end of the article.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Elsevier BV Min Zheng; Ziguang Wang; Liyao You; Baiyi Li; Yao Wang;With the continuous deepening of China's rural construction and development, people's living conditions are improved day by day, while accompanied by energy and environment crisis issues. This paper mainly analyzes the energy consumption pattern and the indoor environment of rural households in China and discusses the energy-saving optimization strategies for improving the thermal environment of buildings. Questionnaire surveys and field surveys were conducted in three villages in Guanghan, China. The measurement results show that the annual indoor temperature range of the region in the summer is 15–31 °C and the relative humidity range is 34%-96%. The average indoor temperatures in summer and winter are 28 °C and 16 °C respectively. The indoor thermal environment of rural buildings is usually poor and cannot meet the requirements of Chinese standards. At the same time, the architectural design and energy consumption pattern of rural households are different from those in urban areas as countryside has unique characteristics. Finally, we put forward certain energy-saving improvement measures at the end of the article.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Djeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; +1 AuthorsDjeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; Tchinda René;To solve the problem energy deficit encountered in developing countries, Hybrid Renewable Energy System (HRES) appears to be a very good solution. The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability (LPSP), economic i.e Cost of Electricity (COE) and Net Present Cost (NPC) and environmental i.e Total Greenhouse gases emission (TGE) aspects using Particle Swarm Optimization (PSO), hybrid Particle Swarm Optimization-Grey Wolf Optimization (PSOGWO), hybrid Grey-Wolf Optimization-Cuckoo Search (GWOCS) and Sine-Cosine Algorithm (SCA) for a Community multimedia center in MAKENENE, Cameroon; where inhabitants have to spend at times 3 to 4 days of blackout. Seven configurations (Scenarios) of hybrid energy systems including PV, WT, Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW. Four values of the derating factor i.e 0.6, 0.7, 0.8 and 0.9 are used in this analysis and the best value is 0.9. Scenario 3 with LPSP, COE, NPC, TGE and RF of 0.003%, 0.15913 $/kWh, 46953.0485 $, 2.3406 kg/year and 99.8 % respectively when using GWOCS is found to be the most appropriate for the Community multimedia center. The optimal Scenario is obtained for a system comprising of 18 kW of Ppv−rated corresponding to 69 solar panels, 3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of Ndg.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Djeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; +1 AuthorsDjeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; Tchinda René;To solve the problem energy deficit encountered in developing countries, Hybrid Renewable Energy System (HRES) appears to be a very good solution. The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability (LPSP), economic i.e Cost of Electricity (COE) and Net Present Cost (NPC) and environmental i.e Total Greenhouse gases emission (TGE) aspects using Particle Swarm Optimization (PSO), hybrid Particle Swarm Optimization-Grey Wolf Optimization (PSOGWO), hybrid Grey-Wolf Optimization-Cuckoo Search (GWOCS) and Sine-Cosine Algorithm (SCA) for a Community multimedia center in MAKENENE, Cameroon; where inhabitants have to spend at times 3 to 4 days of blackout. Seven configurations (Scenarios) of hybrid energy systems including PV, WT, Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW. Four values of the derating factor i.e 0.6, 0.7, 0.8 and 0.9 are used in this analysis and the best value is 0.9. Scenario 3 with LPSP, COE, NPC, TGE and RF of 0.003%, 0.15913 $/kWh, 46953.0485 $, 2.3406 kg/year and 99.8 % respectively when using GWOCS is found to be the most appropriate for the Community multimedia center. The optimal Scenario is obtained for a system comprising of 18 kW of Ppv−rated corresponding to 69 solar panels, 3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of Ndg.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Shui Yu; Xueyan Liu; Jianghui Yang; Fuhong Han; Jiashuai Wei;The building sector is one of the largest energy user and carbon emitters globally. To increase the utilization rate of renewable energy and reduce carbon dioxide emissions, the optimal technical scheme of active public institutions and coupled utilization of renewable energy is studied. In this study, the energy consumption of three types of public institutions in various regions of China was simulated by using DeST building energy consumption software, combined with energy conversion efficiency and data released by the National Bureau of Statistics, and the total energy demand and total energy supply of public institutions were predicted using the load density method. Based on the coupling mechanism of the MARKAL model, the optimal proportion of renewable energy in the energy supply of public buildings in different regions is determined. Through the study of the number of public institutions in various regions of China, energy consumption characteristics, construction area, and other related data, the reverse energy flow method is creatively proposed, and the active and renewable energy coupling algorithm from the energy demand side of public institutions to the energy supply side is established. The results show that the central region has the highest utilization rate of renewable energy in the public sector, reaching 36.18%. The use of renewable energy in public buildings in hot summer and warm winter zones decreased to 35.08%, and it was 12.82% in cold zones. By 2025, the proportion of renewable energy resources in China is expected to reach 29.2%. The energy coupling model and algorithm constructed in this paper can provide a basis for the coupling macro configuration of renewable energy in public institutions in China.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Shui Yu; Xueyan Liu; Jianghui Yang; Fuhong Han; Jiashuai Wei;The building sector is one of the largest energy user and carbon emitters globally. To increase the utilization rate of renewable energy and reduce carbon dioxide emissions, the optimal technical scheme of active public institutions and coupled utilization of renewable energy is studied. In this study, the energy consumption of three types of public institutions in various regions of China was simulated by using DeST building energy consumption software, combined with energy conversion efficiency and data released by the National Bureau of Statistics, and the total energy demand and total energy supply of public institutions were predicted using the load density method. Based on the coupling mechanism of the MARKAL model, the optimal proportion of renewable energy in the energy supply of public buildings in different regions is determined. Through the study of the number of public institutions in various regions of China, energy consumption characteristics, construction area, and other related data, the reverse energy flow method is creatively proposed, and the active and renewable energy coupling algorithm from the energy demand side of public institutions to the energy supply side is established. The results show that the central region has the highest utilization rate of renewable energy in the public sector, reaching 36.18%. The use of renewable energy in public buildings in hot summer and warm winter zones decreased to 35.08%, and it was 12.82% in cold zones. By 2025, the proportion of renewable energy resources in China is expected to reach 29.2%. The energy coupling model and algorithm constructed in this paper can provide a basis for the coupling macro configuration of renewable energy in public institutions in China.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Taliv Hussain;A desiccant air conditioning system is considered a capable alternative to a conventional air conditioning system because of its independent control of temperature, humidity and being eco-friendly. Also, to resolve the problem of more energy consumption for the restoration of a desiccant, structures comprising of desiccant can utilize thermal energy or complete waste heat to revive desiccant material. Therefore, this research work executes an experimental, optimization and comparative examination for conventional and desiccant air conditioning systems regenerated by two different modes, i.e. firstly using (Mode-I) complete waste heat from condenser and secondly using (Mode-II) rod (electric heater) heat for regeneration at different process air inlet temperatures, i.e. (28, 29.5, 31, 32.5, 34, 35.5 and 37 °C), at different process air inlet velocities, i.e. (1.5, 2.5, 3.5 and 4.5 m/s) and a fix (2.5 m/s) regeneration air inlet velocity. Thus, optimization of performance parameters, i.e. VCOP, ECOP, dehumidification effectiveness, moisture removal capacity (kg/hr), DCOP, regeneration effectiveness and regeneration rate (kg/hr), is identified for achieving maximum efficiency of conventional and desiccant air conditioning systems under the above operating conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Taliv Hussain;A desiccant air conditioning system is considered a capable alternative to a conventional air conditioning system because of its independent control of temperature, humidity and being eco-friendly. Also, to resolve the problem of more energy consumption for the restoration of a desiccant, structures comprising of desiccant can utilize thermal energy or complete waste heat to revive desiccant material. Therefore, this research work executes an experimental, optimization and comparative examination for conventional and desiccant air conditioning systems regenerated by two different modes, i.e. firstly using (Mode-I) complete waste heat from condenser and secondly using (Mode-II) rod (electric heater) heat for regeneration at different process air inlet temperatures, i.e. (28, 29.5, 31, 32.5, 34, 35.5 and 37 °C), at different process air inlet velocities, i.e. (1.5, 2.5, 3.5 and 4.5 m/s) and a fix (2.5 m/s) regeneration air inlet velocity. Thus, optimization of performance parameters, i.e. VCOP, ECOP, dehumidification effectiveness, moisture removal capacity (kg/hr), DCOP, regeneration effectiveness and regeneration rate (kg/hr), is identified for achieving maximum efficiency of conventional and desiccant air conditioning systems under the above operating conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Giorgos Aspetakis; Qian Wang;Climate crisis mitigation roadmaps, policies and directives have increasingly declared that a key element for the facilitation of sustainable urban development is on-site decentralized renewable energy generation. A technology with enhanced capabilities, able of promoting the integration of renewable energy into buildings, for energy independent and resilient communities, is Photovoltaic Thermal (PVT) systems. Ongoing research has potential yet displays a lack in unified methodology. This limits its influence on future decision-making in building and city planning levels. In this investigation, the often overlooked air-based PVT technology is put on the spotlight and their suitability for integration with energy systems of buildings is assessed. The aim of this study is to highlight vital performance and integration roadblocks in PVT research and offer suggestions for overcoming them. The methodology of reviewed literature is examined in detail with the goal of contributing to a unified approach for more impactful research.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Giorgos Aspetakis; Qian Wang;Climate crisis mitigation roadmaps, policies and directives have increasingly declared that a key element for the facilitation of sustainable urban development is on-site decentralized renewable energy generation. A technology with enhanced capabilities, able of promoting the integration of renewable energy into buildings, for energy independent and resilient communities, is Photovoltaic Thermal (PVT) systems. Ongoing research has potential yet displays a lack in unified methodology. This limits its influence on future decision-making in building and city planning levels. In this investigation, the often overlooked air-based PVT technology is put on the spotlight and their suitability for integration with energy systems of buildings is assessed. The aim of this study is to highlight vital performance and integration roadblocks in PVT research and offer suggestions for overcoming them. The methodology of reviewed literature is examined in detail with the goal of contributing to a unified approach for more impactful research.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 MalaysiaPublisher:Elsevier BV Authors: M.A.A. Mamun; M.M. Islam; M. Hasanuzzaman; Jeyraj Selvaraj;Photovoltaic (PV) system's performance is significantly affected by its orientation and tilt angle. Experimental investigation (indoor and outdoor) has been carried out to trace the variation in PV performance and electrical parameters at varying tilt angles in Malaysian conditions. There were two experimental modus: 1) varying module tilt under constant irradiation level, 2) varying irradiation intensity at the optimum tilt set up. For the former scheme, the irradiation level was maintained at 750 W/m2, and for the later arrangement, the module tilt angle was varied from 0o to 80o by means of a single-axis tracker. Results show that under constant irradiation of 750 W/m2, every 5o increase in tilt angle causes a power drop of 2.09 W at indoor and 3.45 W at outdoor. In contrast, for the same condition, efficiency decreases by 0.54% for indoor case and by 0.76% at outdoor. On the other hand, for every 100 W/m2 increase in irradiation, solar cell temperature rises by 7.52°C at indoor and by 5.67°C at outdoor. As of module electrical parameters, open-circuit voltage, short-circuit current, maximum power point voltage and maximum power point current drops substantially with increasing tilt angle, whereas fill factor drops rather gradually. Outdoor experimental investigation confirms that the optimum tilt angle at Malaysian conditions is 15o and orienting a PV module this angle will maximize the sun's energy captured and thereby enhance its performance.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 MalaysiaPublisher:Elsevier BV Authors: M.A.A. Mamun; M.M. Islam; M. Hasanuzzaman; Jeyraj Selvaraj;Photovoltaic (PV) system's performance is significantly affected by its orientation and tilt angle. Experimental investigation (indoor and outdoor) has been carried out to trace the variation in PV performance and electrical parameters at varying tilt angles in Malaysian conditions. There were two experimental modus: 1) varying module tilt under constant irradiation level, 2) varying irradiation intensity at the optimum tilt set up. For the former scheme, the irradiation level was maintained at 750 W/m2, and for the later arrangement, the module tilt angle was varied from 0o to 80o by means of a single-axis tracker. Results show that under constant irradiation of 750 W/m2, every 5o increase in tilt angle causes a power drop of 2.09 W at indoor and 3.45 W at outdoor. In contrast, for the same condition, efficiency decreases by 0.54% for indoor case and by 0.76% at outdoor. On the other hand, for every 100 W/m2 increase in irradiation, solar cell temperature rises by 7.52°C at indoor and by 5.67°C at outdoor. As of module electrical parameters, open-circuit voltage, short-circuit current, maximum power point voltage and maximum power point current drops substantially with increasing tilt angle, whereas fill factor drops rather gradually. Outdoor experimental investigation confirms that the optimum tilt angle at Malaysian conditions is 15o and orienting a PV module this angle will maximize the sun's energy captured and thereby enhance its performance.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Yingying Wang; Sudan Zhang; Dengjia Wang; Yanfeng Liu;At present, thermal conductivity is usually taken as a constant value in the calculation of building energy consumption and load. However, in the actual use of building materials, they are exposed to the environment with continuously changing temperature and relative humidity. The thermal conductivity of materials will inevitably change with temperature and humidity, leading to deviations in the estimation of energy consumption in the building. Therefore, in this study, variations in the thermal conductivity of eight common building insulation materials (glass wool, rock wool, silica aerogel blanket, expanded polystyrene, extruded polystyrene, phenolic foam, foam ceramic and foam glass) with temperature (in the range of 20–60 °C) and relative humidity (in the range of 0–100%) were studied by experimental methods. The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maximum growth rates from 3.9 to 22.7% in the examined temperature range. Due to the structural characteristics of materials, the increasing thermal conductivity of different materials varies depending on the relative humidity. The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%. In addition, the principles of selection of building insulation materials in different humidity regions were given. The research results of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Yingying Wang; Sudan Zhang; Dengjia Wang; Yanfeng Liu;At present, thermal conductivity is usually taken as a constant value in the calculation of building energy consumption and load. However, in the actual use of building materials, they are exposed to the environment with continuously changing temperature and relative humidity. The thermal conductivity of materials will inevitably change with temperature and humidity, leading to deviations in the estimation of energy consumption in the building. Therefore, in this study, variations in the thermal conductivity of eight common building insulation materials (glass wool, rock wool, silica aerogel blanket, expanded polystyrene, extruded polystyrene, phenolic foam, foam ceramic and foam glass) with temperature (in the range of 20–60 °C) and relative humidity (in the range of 0–100%) were studied by experimental methods. The results show that the thermal conductivity of these common building insulation materials increased approximately linearly with increasing temperature with maximum growth rates from 3.9 to 22.7% in the examined temperature range. Due to the structural characteristics of materials, the increasing thermal conductivity of different materials varies depending on the relative humidity. The maximum growth rates of thermal conductivity with humidity ranged from 8.2 to 186.7%. In addition, the principles of selection of building insulation materials in different humidity regions were given. The research results of this paper aim to provide basic data for the accurate value of thermal conductivity of building insulation materials and for the calculation of energy consumption.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Lahcen BALLI; Mohamed HLIMI; Youssef ACHENANI; Adil ATIFI; Bachir HAMRI;This article focuses on the experimental and numerical study of an industrial prototype furnace intended for the production of ceramics in order to improve the energy efficiency and therefore optimize the fuel consumption and the corresponding carbon dioxide emissions. In order to understand the thermal behavior from which stems the energy efficiency of the experimental prototype, we establish in this work, a simplified modeling allowing to establish a mathematical model describing the thermal behavior of the furnace. The model is able to accurately predict the spatial and temporal distribution of the temperature at each point of the furnace to control the firing of the refractory product so that the final product is of good quality in terms of resistance and hardness. In addition, the power consumed by the prototype must be optimized in order to reduce energy and environmental consumption. In particular, this efficient technology has allowed us to save 83% of energy used in the traditional furnace and to reduce 87.36% of the relative carbon dioxide emission. The simulation of the mathematical model made it possible to compare the numerical results with the experimental measurements obtained by the prototype as well as to validate the model and to adjust the heat transfer parameters.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Lahcen BALLI; Mohamed HLIMI; Youssef ACHENANI; Adil ATIFI; Bachir HAMRI;This article focuses on the experimental and numerical study of an industrial prototype furnace intended for the production of ceramics in order to improve the energy efficiency and therefore optimize the fuel consumption and the corresponding carbon dioxide emissions. In order to understand the thermal behavior from which stems the energy efficiency of the experimental prototype, we establish in this work, a simplified modeling allowing to establish a mathematical model describing the thermal behavior of the furnace. The model is able to accurately predict the spatial and temporal distribution of the temperature at each point of the furnace to control the firing of the refractory product so that the final product is of good quality in terms of resistance and hardness. In addition, the power consumed by the prototype must be optimized in order to reduce energy and environmental consumption. In particular, this efficient technology has allowed us to save 83% of energy used in the traditional furnace and to reduce 87.36% of the relative carbon dioxide emission. The simulation of the mathematical model made it possible to compare the numerical results with the experimental measurements obtained by the prototype as well as to validate the model and to adjust the heat transfer parameters.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Ronggui Yang; Dongliang Zhao; Dongliang Zhao; Dikai Xu; Hua Qian; Hua Qian; Zhitong Yi; Yingyan lv; Jingtao Xu;A transparent radiative cooling (T-RC) film with low transmittance in solar spectra and selectively high emissivity in the atmospheric window (8–13 μm) is applied on roof glazing for building energy saving. To evaluate the performance of the T-RC film, two identical model boxes (1.0 m × 0.6 m × 1.2 m, L × W × H) were constructed and the inside air temperatures were measured in August in Ningbo, China. Results show that the maximum temperature difference between the two model boxes with and without the T-RC film was 21.6 °C during the experiment. A whole building model was built in EnergyPlus for the model box. With a good agreement achieved between the calculation results and the measured temperature data, the experimentally validated EnergyPlus model was then extended to an 815.1 m2 exhibition building with roof glazing to analyze the annual air conditioning (AC) energy consumption. The results show that by incorporating both the T-RC film's cooling benefit in summer and heating penalty in winter, the annual AC energy consumption of the exhibition building can be reduced by 40.9–63.4%, varying with different climate conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Ronggui Yang; Dongliang Zhao; Dongliang Zhao; Dikai Xu; Hua Qian; Hua Qian; Zhitong Yi; Yingyan lv; Jingtao Xu;A transparent radiative cooling (T-RC) film with low transmittance in solar spectra and selectively high emissivity in the atmospheric window (8–13 μm) is applied on roof glazing for building energy saving. To evaluate the performance of the T-RC film, two identical model boxes (1.0 m × 0.6 m × 1.2 m, L × W × H) were constructed and the inside air temperatures were measured in August in Ningbo, China. Results show that the maximum temperature difference between the two model boxes with and without the T-RC film was 21.6 °C during the experiment. A whole building model was built in EnergyPlus for the model box. With a good agreement achieved between the calculation results and the measured temperature data, the experimentally validated EnergyPlus model was then extended to an 815.1 m2 exhibition building with roof glazing to analyze the annual air conditioning (AC) energy consumption. The results show that by incorporating both the T-RC film's cooling benefit in summer and heating penalty in winter, the annual AC energy consumption of the exhibition building can be reduced by 40.9–63.4%, varying with different climate conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.07.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Ci Ao; Suying Yan; Long Zhao; Xiaoyan Zhao; Yuting Wu;In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid (SA), the composite phase change material(PCM) was prepared by adding boron nitride (BN) and expanded graphite (EG) to melted SA, and its thermal conductivity, crystal structure, chemical stability, thermal stability, cycle stability, leakage characteristics, heat storage/release characteristics, and temperature response characteristics were characterized. The results showed that the addition of BN and EG significantly improved the thermal conductivity of the material, and they efficiently adsorbed melted SA. The maximum load of SA was 76 wt. % and there was almost no liquid leakage. Moreover, the melting enthalpy and temperature were 154.20 J • g − 1 and 67.85°C, respectively. Compared with pure SA, the SA/BN/EG composite showed a lower melting temperature and a higher freezing temperature. In addition, when the mass fraction of BN and EG was 12 wt. %, the thermal conductivity of the composite was 6.349 W • m−1 • K−1, which was 18.619 times that of SA. More importantly, the composite showed good stability for 50 cycles of heating and cooling, and the SA / BN / EG-12 hardly decomposes below 200°C, which implies that the working performance of the composite PCM is relatively stable within the temperature range of 100°C. Therefore, the composite can exhibit excellent thermal stability in the field of building heating.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Ci Ao; Suying Yan; Long Zhao; Xiaoyan Zhao; Yuting Wu;In order to solve the problems of low thermal conductivity and easy liquid leakage of a stearic acid (SA), the composite phase change material(PCM) was prepared by adding boron nitride (BN) and expanded graphite (EG) to melted SA, and its thermal conductivity, crystal structure, chemical stability, thermal stability, cycle stability, leakage characteristics, heat storage/release characteristics, and temperature response characteristics were characterized. The results showed that the addition of BN and EG significantly improved the thermal conductivity of the material, and they efficiently adsorbed melted SA. The maximum load of SA was 76 wt. % and there was almost no liquid leakage. Moreover, the melting enthalpy and temperature were 154.20 J • g − 1 and 67.85°C, respectively. Compared with pure SA, the SA/BN/EG composite showed a lower melting temperature and a higher freezing temperature. In addition, when the mass fraction of BN and EG was 12 wt. %, the thermal conductivity of the composite was 6.349 W • m−1 • K−1, which was 18.619 times that of SA. More importantly, the composite showed good stability for 50 cycles of heating and cooling, and the SA / BN / EG-12 hardly decomposes below 200°C, which implies that the working performance of the composite PCM is relatively stable within the temperature range of 100°C. Therefore, the composite can exhibit excellent thermal stability in the field of building heating.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Elsevier BV Min Zheng; Ziguang Wang; Liyao You; Baiyi Li; Yao Wang;With the continuous deepening of China's rural construction and development, people's living conditions are improved day by day, while accompanied by energy and environment crisis issues. This paper mainly analyzes the energy consumption pattern and the indoor environment of rural households in China and discusses the energy-saving optimization strategies for improving the thermal environment of buildings. Questionnaire surveys and field surveys were conducted in three villages in Guanghan, China. The measurement results show that the annual indoor temperature range of the region in the summer is 15–31 °C and the relative humidity range is 34%-96%. The average indoor temperatures in summer and winter are 28 °C and 16 °C respectively. The indoor thermal environment of rural buildings is usually poor and cannot meet the requirements of Chinese standards. At the same time, the architectural design and energy consumption pattern of rural households are different from those in urban areas as countryside has unique characteristics. Finally, we put forward certain energy-saving improvement measures at the end of the article.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Elsevier BV Min Zheng; Ziguang Wang; Liyao You; Baiyi Li; Yao Wang;With the continuous deepening of China's rural construction and development, people's living conditions are improved day by day, while accompanied by energy and environment crisis issues. This paper mainly analyzes the energy consumption pattern and the indoor environment of rural households in China and discusses the energy-saving optimization strategies for improving the thermal environment of buildings. Questionnaire surveys and field surveys were conducted in three villages in Guanghan, China. The measurement results show that the annual indoor temperature range of the region in the summer is 15–31 °C and the relative humidity range is 34%-96%. The average indoor temperatures in summer and winter are 28 °C and 16 °C respectively. The indoor thermal environment of rural buildings is usually poor and cannot meet the requirements of Chinese standards. At the same time, the architectural design and energy consumption pattern of rural households are different from those in urban areas as countryside has unique characteristics. Finally, we put forward certain energy-saving improvement measures at the end of the article.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2020 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2020.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Djeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; +1 AuthorsDjeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; Tchinda René;To solve the problem energy deficit encountered in developing countries, Hybrid Renewable Energy System (HRES) appears to be a very good solution. The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability (LPSP), economic i.e Cost of Electricity (COE) and Net Present Cost (NPC) and environmental i.e Total Greenhouse gases emission (TGE) aspects using Particle Swarm Optimization (PSO), hybrid Particle Swarm Optimization-Grey Wolf Optimization (PSOGWO), hybrid Grey-Wolf Optimization-Cuckoo Search (GWOCS) and Sine-Cosine Algorithm (SCA) for a Community multimedia center in MAKENENE, Cameroon; where inhabitants have to spend at times 3 to 4 days of blackout. Seven configurations (Scenarios) of hybrid energy systems including PV, WT, Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW. Four values of the derating factor i.e 0.6, 0.7, 0.8 and 0.9 are used in this analysis and the best value is 0.9. Scenario 3 with LPSP, COE, NPC, TGE and RF of 0.003%, 0.15913 $/kWh, 46953.0485 $, 2.3406 kg/year and 99.8 % respectively when using GWOCS is found to be the most appropriate for the Community multimedia center. The optimal Scenario is obtained for a system comprising of 18 kW of Ppv−rated corresponding to 69 solar panels, 3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of Ndg.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Elsevier BV Authors: Djeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; +1 AuthorsDjeudjo Temene Hermann; Talla Konchou Franck Armel; Talla Konchou Franck Armel; Njomo Donatien; Tchinda René;To solve the problem energy deficit encountered in developing countries, Hybrid Renewable Energy System (HRES) appears to be a very good solution. The paper presents the optimal design of a hybrid renewable energy system considering the technical i.e Loss of Power Supply Probability (LPSP), economic i.e Cost of Electricity (COE) and Net Present Cost (NPC) and environmental i.e Total Greenhouse gases emission (TGE) aspects using Particle Swarm Optimization (PSO), hybrid Particle Swarm Optimization-Grey Wolf Optimization (PSOGWO), hybrid Grey-Wolf Optimization-Cuckoo Search (GWOCS) and Sine-Cosine Algorithm (SCA) for a Community multimedia center in MAKENENE, Cameroon; where inhabitants have to spend at times 3 to 4 days of blackout. Seven configurations (Scenarios) of hybrid energy systems including PV, WT, Battery and Diesel generator are analyzed considering an average daily energy load of 50.22 kWh with a peak load of 5.6 kW. Four values of the derating factor i.e 0.6, 0.7, 0.8 and 0.9 are used in this analysis and the best value is 0.9. Scenario 3 with LPSP, COE, NPC, TGE and RF of 0.003%, 0.15913 $/kWh, 46953.0485 $, 2.3406 kg/year and 99.8 % respectively when using GWOCS is found to be the most appropriate for the Community multimedia center. The optimal Scenario is obtained for a system comprising of 18 kW of Ppv−rated corresponding to 69 solar panels, 3 days of AD corresponding to a total battery capacity of 241 kWh and 1 of Ndg.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.01.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Shui Yu; Xueyan Liu; Jianghui Yang; Fuhong Han; Jiashuai Wei;The building sector is one of the largest energy user and carbon emitters globally. To increase the utilization rate of renewable energy and reduce carbon dioxide emissions, the optimal technical scheme of active public institutions and coupled utilization of renewable energy is studied. In this study, the energy consumption of three types of public institutions in various regions of China was simulated by using DeST building energy consumption software, combined with energy conversion efficiency and data released by the National Bureau of Statistics, and the total energy demand and total energy supply of public institutions were predicted using the load density method. Based on the coupling mechanism of the MARKAL model, the optimal proportion of renewable energy in the energy supply of public buildings in different regions is determined. Through the study of the number of public institutions in various regions of China, energy consumption characteristics, construction area, and other related data, the reverse energy flow method is creatively proposed, and the active and renewable energy coupling algorithm from the energy demand side of public institutions to the energy supply side is established. The results show that the central region has the highest utilization rate of renewable energy in the public sector, reaching 36.18%. The use of renewable energy in public buildings in hot summer and warm winter zones decreased to 35.08%, and it was 12.82% in cold zones. By 2025, the proportion of renewable energy resources in China is expected to reach 29.2%. The energy coupling model and algorithm constructed in this paper can provide a basis for the coupling macro configuration of renewable energy in public institutions in China.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Shui Yu; Xueyan Liu; Jianghui Yang; Fuhong Han; Jiashuai Wei;The building sector is one of the largest energy user and carbon emitters globally. To increase the utilization rate of renewable energy and reduce carbon dioxide emissions, the optimal technical scheme of active public institutions and coupled utilization of renewable energy is studied. In this study, the energy consumption of three types of public institutions in various regions of China was simulated by using DeST building energy consumption software, combined with energy conversion efficiency and data released by the National Bureau of Statistics, and the total energy demand and total energy supply of public institutions were predicted using the load density method. Based on the coupling mechanism of the MARKAL model, the optimal proportion of renewable energy in the energy supply of public buildings in different regions is determined. Through the study of the number of public institutions in various regions of China, energy consumption characteristics, construction area, and other related data, the reverse energy flow method is creatively proposed, and the active and renewable energy coupling algorithm from the energy demand side of public institutions to the energy supply side is established. The results show that the central region has the highest utilization rate of renewable energy in the public sector, reaching 36.18%. The use of renewable energy in public buildings in hot summer and warm winter zones decreased to 35.08%, and it was 12.82% in cold zones. By 2025, the proportion of renewable energy resources in China is expected to reach 29.2%. The energy coupling model and algorithm constructed in this paper can provide a basis for the coupling macro configuration of renewable energy in public institutions in China.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2024 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.10.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Taliv Hussain;A desiccant air conditioning system is considered a capable alternative to a conventional air conditioning system because of its independent control of temperature, humidity and being eco-friendly. Also, to resolve the problem of more energy consumption for the restoration of a desiccant, structures comprising of desiccant can utilize thermal energy or complete waste heat to revive desiccant material. Therefore, this research work executes an experimental, optimization and comparative examination for conventional and desiccant air conditioning systems regenerated by two different modes, i.e. firstly using (Mode-I) complete waste heat from condenser and secondly using (Mode-II) rod (electric heater) heat for regeneration at different process air inlet temperatures, i.e. (28, 29.5, 31, 32.5, 34, 35.5 and 37 °C), at different process air inlet velocities, i.e. (1.5, 2.5, 3.5 and 4.5 m/s) and a fix (2.5 m/s) regeneration air inlet velocity. Thus, optimization of performance parameters, i.e. VCOP, ECOP, dehumidification effectiveness, moisture removal capacity (kg/hr), DCOP, regeneration effectiveness and regeneration rate (kg/hr), is identified for achieving maximum efficiency of conventional and desiccant air conditioning systems under the above operating conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Taliv Hussain;A desiccant air conditioning system is considered a capable alternative to a conventional air conditioning system because of its independent control of temperature, humidity and being eco-friendly. Also, to resolve the problem of more energy consumption for the restoration of a desiccant, structures comprising of desiccant can utilize thermal energy or complete waste heat to revive desiccant material. Therefore, this research work executes an experimental, optimization and comparative examination for conventional and desiccant air conditioning systems regenerated by two different modes, i.e. firstly using (Mode-I) complete waste heat from condenser and secondly using (Mode-II) rod (electric heater) heat for regeneration at different process air inlet temperatures, i.e. (28, 29.5, 31, 32.5, 34, 35.5 and 37 °C), at different process air inlet velocities, i.e. (1.5, 2.5, 3.5 and 4.5 m/s) and a fix (2.5 m/s) regeneration air inlet velocity. Thus, optimization of performance parameters, i.e. VCOP, ECOP, dehumidification effectiveness, moisture removal capacity (kg/hr), DCOP, regeneration effectiveness and regeneration rate (kg/hr), is identified for achieving maximum efficiency of conventional and desiccant air conditioning systems under the above operating conditions.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2022.01.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Giorgos Aspetakis; Qian Wang;Climate crisis mitigation roadmaps, policies and directives have increasingly declared that a key element for the facilitation of sustainable urban development is on-site decentralized renewable energy generation. A technology with enhanced capabilities, able of promoting the integration of renewable energy into buildings, for energy independent and resilient communities, is Photovoltaic Thermal (PVT) systems. Ongoing research has potential yet displays a lack in unified methodology. This limits its influence on future decision-making in building and city planning levels. In this investigation, the often overlooked air-based PVT technology is put on the spotlight and their suitability for integration with energy systems of buildings is assessed. The aim of this study is to highlight vital performance and integration roadblocks in PVT research and offer suggestions for overcoming them. The methodology of reviewed literature is examined in detail with the goal of contributing to a unified approach for more impactful research.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Giorgos Aspetakis; Qian Wang;Climate crisis mitigation roadmaps, policies and directives have increasingly declared that a key element for the facilitation of sustainable urban development is on-site decentralized renewable energy generation. A technology with enhanced capabilities, able of promoting the integration of renewable energy into buildings, for energy independent and resilient communities, is Photovoltaic Thermal (PVT) systems. Ongoing research has potential yet displays a lack in unified methodology. This limits its influence on future decision-making in building and city planning levels. In this investigation, the often overlooked air-based PVT technology is put on the spotlight and their suitability for integration with energy systems of buildings is assessed. The aim of this study is to highlight vital performance and integration roadblocks in PVT research and offer suggestions for overcoming them. The methodology of reviewed literature is examined in detail with the goal of contributing to a unified approach for more impactful research.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.10.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 MalaysiaPublisher:Elsevier BV Authors: M.A.A. Mamun; M.M. Islam; M. Hasanuzzaman; Jeyraj Selvaraj;Photovoltaic (PV) system's performance is significantly affected by its orientation and tilt angle. Experimental investigation (indoor and outdoor) has been carried out to trace the variation in PV performance and electrical parameters at varying tilt angles in Malaysian conditions. There were two experimental modus: 1) varying module tilt under constant irradiation level, 2) varying irradiation intensity at the optimum tilt set up. For the former scheme, the irradiation level was maintained at 750 W/m2, and for the later arrangement, the module tilt angle was varied from 0o to 80o by means of a single-axis tracker. Results show that under constant irradiation of 750 W/m2, every 5o increase in tilt angle causes a power drop of 2.09 W at indoor and 3.45 W at outdoor. In contrast, for the same condition, efficiency decreases by 0.54% for indoor case and by 0.76% at outdoor. On the other hand, for every 100 W/m2 increase in irradiation, solar cell temperature rises by 7.52°C at indoor and by 5.67°C at outdoor. As of module electrical parameters, open-circuit voltage, short-circuit current, maximum power point voltage and maximum power point current drops substantially with increasing tilt angle, whereas fill factor drops rather gradually. Outdoor experimental investigation confirms that the optimum tilt angle at Malaysian conditions is 15o and orienting a PV module this angle will maximize the sun's energy captured and thereby enhance its performance.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 MalaysiaPublisher:Elsevier BV Authors: M.A.A. Mamun; M.M. Islam; M. Hasanuzzaman; Jeyraj Selvaraj;Photovoltaic (PV) system's performance is significantly affected by its orientation and tilt angle. Experimental investigation (indoor and outdoor) has been carried out to trace the variation in PV performance and electrical parameters at varying tilt angles in Malaysian conditions. There were two experimental modus: 1) varying module tilt under constant irradiation level, 2) varying irradiation intensity at the optimum tilt set up. For the former scheme, the irradiation level was maintained at 750 W/m2, and for the later arrangement, the module tilt angle was varied from 0o to 80o by means of a single-axis tracker. Results show that under constant irradiation of 750 W/m2, every 5o increase in tilt angle causes a power drop of 2.09 W at indoor and 3.45 W at outdoor. In contrast, for the same condition, efficiency decreases by 0.54% for indoor case and by 0.76% at outdoor. On the other hand, for every 100 W/m2 increase in irradiation, solar cell temperature rises by 7.52°C at indoor and by 5.67°C at outdoor. As of module electrical parameters, open-circuit voltage, short-circuit current, maximum power point voltage and maximum power point current drops substantially with increasing tilt angle, whereas fill factor drops rather gradually. Outdoor experimental investigation confirms that the optimum tilt angle at Malaysian conditions is 15o and orienting a PV module this angle will maximize the sun's energy captured and thereby enhance its performance.
Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 90 citations 90 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefUniversity of Malaya: UM Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2021.02.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu