
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Number of days for Maximum Temperature over 90th percentile for Near Future (2046-2065)
doi: 10.15493/sarva.csag.10000115 , 10.15493/sarva.csag.10000069 , 10.15493/sarva.csag.10000416 , 10.15493/sarva.csag.10000324 , 10.15493/sarva.csag.10000222 , 10.15493/sarva.csag.10000319 , 10.15493/sarva.csag.10000370 , 10.15493/sarva.csag.10000217 , 10.15493/sarva.csag.10000273 , 10.15493/sarva.csag.10000421 , 10.15493/sarva.csag.10000171 , 10.15493/sarva.csag.10000166 , 10.15493/sarva.csag.10000120 , 10.15493/sarva.csag.10000268 , 10.15493/sarva.csag.10000023
doi: 10.15493/sarva.csag.10000115 , 10.15493/sarva.csag.10000069 , 10.15493/sarva.csag.10000416 , 10.15493/sarva.csag.10000324 , 10.15493/sarva.csag.10000222 , 10.15493/sarva.csag.10000319 , 10.15493/sarva.csag.10000370 , 10.15493/sarva.csag.10000217 , 10.15493/sarva.csag.10000273 , 10.15493/sarva.csag.10000421 , 10.15493/sarva.csag.10000171 , 10.15493/sarva.csag.10000166 , 10.15493/sarva.csag.10000120 , 10.15493/sarva.csag.10000268 , 10.15493/sarva.csag.10000023
Number of days for Maximum Temperature over 90th percentile for Near Future (2046-2065)
Model Run: Near future (2046 - 2065) (Near future (2046 - 2065)). The Self-Organizing Map Downscaling (SOMD) was developed at the Climate Systems Analysis Group (CSAG)[1], University of Cape Town. This is a leading empirical downscaled technique and provides meteorological station level response to global climate change forcing (See Hewitson and Crane (2006) for methodological details and Wilby et al. (2004) for a review of this and other statistical downscaling methodologies). Downscaling of a General Circulation Model (GCM) is accomplished by deriving the normative local response from the atmospheric state on a given day, as defined from historical observed data. [1] http://www.csag.uct.ac.za/
Climate, forecast, water, downscaled, atmospheric, CM 2.0-GFDL-NOAA, E-R-GISS, coupled, CGCM 2.3.2-MRI, SARVA, GEOSS data core, Echo-G-MIUB, model, monthly, Temperature, Mark 3.5-CSIRO, CSAG, CM 4-IPSL, WMS, ECHAM-5-MPI-OM, CM 3-CNRM, climate change, quarter degree, weather, Climate Forecasts, CGCM 3.1-CCCMA, Climate Forecasts CSAG
Climate, forecast, water, downscaled, atmospheric, CM 2.0-GFDL-NOAA, E-R-GISS, coupled, CGCM 2.3.2-MRI, SARVA, GEOSS data core, Echo-G-MIUB, model, monthly, Temperature, Mark 3.5-CSIRO, CSAG, CM 4-IPSL, WMS, ECHAM-5-MPI-OM, CM 3-CNRM, climate change, quarter degree, weather, Climate Forecasts, CGCM 3.1-CCCMA, Climate Forecasts CSAG
23 Research products, page 1 of 3
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
- 2011IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
