Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2023
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Phenological mismatch affects individual fitness and population growth in the winter moth

Authors: van Dis, Natalie; Sieperda, Geert-Jan; Bansal, Vidisha; van Lith, Bart; Wertheim, Bregje; Visser, Marcel;

Phenological mismatch affects individual fitness and population growth in the winter moth

Abstract

Field data on winter moths were collected yearly since 1994 in four forests around Arnhem, the Netherlands, using simple funnel traps to catch adult moths in winter (see [Van Asch et al. 2013, Nat Clim Change] for details). Eggs collected from these wild adults were kept in a field shed at the Netherlands Institute of Ecology. Deposited field data for the period 1994–2021 include per year: number of adult moths collected, with for each moth (individual-based data with individual identifier): number of eggs laid, spring seasonal timing of their eggs kept in our field shed, and spring seasonal timing of budburst of oak trees in the field on which adults were caught. Experimental data were collected in a caterpillar feeding experiment in the Spring of 2021, using eggs from the long-term field monitoring (described above). The experiment consisted of a split-brood design, where the timing of hatching of eggs laid by each female was manipulated to induce staggered hatching. Caterpillars were then divided over different photoperiod treatments (constant photoperiod or naturally changing photoperiod) and different phenological mismatch treatments (hatching before [0–4 days] or after oak budburst [1–5 days], and then fed with oak leaves accordingly). Deposited experimental data include per caterpillar (individual-based data with individual identifier): parent origin (Catch area, tree, and date), hatch date, death date (if died before pupating), pupation date, pupation weight, date of adult emerging, adult weight, and adult sex.

Climate change can severely impact species that depend on temporary resources by inducing phenological mismatches between consumer and resource seasonal timing. In the winter moth, warmer winters caused eggs to hatch before their food source, young oak leaves, became available. This phenological mismatch changed the selection on the temperature sensitivity of egg development rate. However, we know little about the fine-scale fitness consequences of phenological mismatch at the individual level and how this mismatch affects population dynamics in the winter moth. To determine the fitness consequences of mistimed egg hatching relative to timing of oak budburst, we quantified survival and pupation weight in a feeding experiment. We found that mismatch greatly increased mortality rates of freshly hatched caterpillars, as well as affecting caterpillar growth and development time. We then investigated whether these individual fitness consequences have population-level impacts by estimating the effect of phenological mismatch on population dynamics, using our long-term data (1994–2021) on relative winter moth population densities at four locations in the Netherlands. We found a significant effect of mismatch on population density with higher population growth rates in years with a smaller phenological mismatch. Our results indicate that climate change-induced phenological mismatch can incur severe individual fitness consequences that can impact population density in the wild.

Keywords

Operophtera brumata, FOS: Biological sciences, Population cycles, Climate change, Phenological mismatch, Demography, FOS: Sociology, fitness

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 60
  • 3
    views
    60
    downloads
    Data sourceViewsDownloads
    ZENODO360
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
3
60
Related to Research communities
Energy Research