

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Fractal Droughts Climate Projections
Fractal Droughts Climate Projections
Meteorological droughts will become the principal factor driving compound hot-dry events and analysis thereof is therefore fundamental with regard to understanding future climate patterns. The average citizen knows little of geometry, but it plays an essential role in the characteristics of the droughts, by means of "fractional lengths". A fractality measure based upon the Cantor set reveals consensual changes in the behavior of droughts worldwide. Most regions will undergo a slight increase in fractality (up to +10% on average), particularly associated with an acceleration of the hydrological cycle and the Hadley cell expansion, with a shift towards the higher latitudes of the tropical edge in both hemispheres. Simultaneously, the polar regions might benefit from more regular precipitation patterns. Other inequality measures, such as the indices of Gini and Monjo, showed similar results. In general terms, the earth’s climate will be more fractal in the rainfall-related patterns, which likely means that the consequences will be more catastrophic for the human population.
Meteorological drought, Global rainfall pattern, Climate change, Cantor-based exponent, Fractal dimension, n-index
Meteorological drought, Global rainfall pattern, Climate change, Cantor-based exponent, Fractal dimension, n-index
1 Research products, page 1 of 1
- 2023IsVersionOf
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average visibility views 9 download downloads 1 - 9views1downloads
Data source Views Downloads ZENODO 9 1


