- home
- Search
- Energy Research
- 12. Responsible consumption
- US
- CN
- UA
- Aurora Universities Network
- Energy Research
- 12. Responsible consumption
- US
- CN
- UA
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:IOP Publishing Funded by:UKRI | Comparative assessment an..., UKRI | Integrated assessment of ..., UKRI | Euro-China GE: Dynamics o...UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE) ,UKRI| Euro-China GE: Dynamics of Green Growth in European and Chinese Cities (DRAGON)Jing Meng; Zongyong Zhang; Zongyong Zhang; Yuli Shan; Lili Yang; Lili Yang; Dabo Guan; Dabo Guan; Xian Li; Xian Li;China is confronted with an unprecedented water crisis regarding its quantity and quality. In this study, we quantified the dynamics of China?s embodied water use and chemical oxygen demand (COD) discharge from 2010 to 2015. The analysis was conducted with the latest available water use data across sectors in primary, secondary and tertiary industries and input?output models. The results showed that (1) China?s water crisis was alleviated under urbanisation. Urban consumption occupied the largest percentages (over 30%) of embodied water use and COD discharge, but embodied water intensities in urban consumption were far lower than those in rural consumption. (2) The ?new normal? phase witnessed the optimisation of China?s water use structures. Embodied water use in light-manufacturing and tertiary sectors increased while those in heavy-manufacturing sectors (except chemicals and transport equipment) dropped. (3) Transformation of China?s international market brought positive effects on its domestic water use. China?s water use (116?80 billion tonnes (Bts))(9) and COD discharge (3.95?2.22 million tonnes (Mts)) embodied in export tremendously decreased while its total export values (11?25 trillion CNY) soared. Furthermore, embodied water use and COD discharge in relatively low-end sectors, such as textile, started to transfer from international to domestic markets when a part of China?s production activities had been relocated to other developing countries.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 8 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Ya Zhou; Ya Zhou; Yuli Shan; Dabo Guan; Dabo Guan; Guosheng Liu;Abstract Cities are the major contributors to energy consumption and CO2 emissions, as well as being leading innovators and implementers of policy measures in climate change mitigation. Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is an agglomeration of cities put forward by China to strengthen international cooperation among “Belt and Road” countries and promote low-carbon, inclusive, coordinated and sustainable development. Few studies have discussed the emission characteristics of GBA cities. This study, for the first time, compiles emission inventories of 11 GBA cities and their surroundings based on IPCC territorial emission accounting approach, which are consistent and comparable with the national and provincial inventories. Results show that (a) total emissions increased from 426 Mt in 2000 to 610 Mt in 2016, while emissions of GBA cities increased rapidly by 6.9% over 2000–2011 and peaked in 2014 (334 Mt); (b) raw coal and diesel oil are the top two emitters by energy type, while energy production sector and tertiary industry are the top two largest sectors; (c) GBA cities take the lead in low-carbon development, emitted 4% of total national emissions and contributed 13% of national GDP with less than a third of national emission intensities and less than three-quarters of national per capita emissions; (d) Macao, Shenzhen and Hong Kong have the top three lowest emission intensity in the country; (e) most of GBA cities are experiencing the shift from an industrial economy to a service economy, while Hong Kong, Shenzhen, Foshan and Huizhou reached their peak emissions and Guangzhou, Dongguan and Jiangmen remained decreasing emission tendencies; (g) for those coal-dominate or energy-production cities (i.e. Zhuhai, Zhongshan, Zhaoqing, Maoming, Yangjiang, Shanwei, Shaoguan and Zhanjiang) in mid-term industrialization, total emissions experienced soaring increases. The emission inventories provide robust, self-consistent, transparent and comparable data support for identifying spatial–temporal emission characteristics, developing low-carbon policies, monitoring mitigation progress in GBA cities as well as further emissions-related studies at a city-level. The low-carbon roadmaps designed for GBA cities and their surroundings also provide a benchmark for other developing countries/cities to adapting changing climate and achieve sustainable development.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 1,014 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Bing Yan; Giorgio Graditi; Nicola Bianco; Peter B. Luh; Vincenzo Naso; Luigi Mongibello; M. Di Somma;Abstract In recent years, distributed energy systems (DESs) have been recognized as a promising option for sustainable development of future energy systems, and their application has increased rapidly with supportive policies and financial incentives. With growing concerns on global warming and depletion of fossil fuels, design optimization of DESs through economic assessments for short-run benefits only is not sufficient, while application of exergy principles can improve the efficiency in energy resource use for long-run sustainability of energy supply. The innovation of this paper is to investigate exergy in DES design to attain rational use of energy resources including renewables by considering energy qualities of supply and demand. By using low-temperature sources for low-quality thermal demand, the waste of high-quality energy can be reduced, and the overall exergy efficiency can be increased. The goal of the design optimization problem is to determine types, numbers and sizes of energy devices in DESs to reduce the total annual cost and increase the overall exergy efficiency. Based on a pre-established DES superstructure with multiple energy devices such as combined heat and power and PV, a multi-objective linear problem is formulated. In modeling of energy devices, the novelty is that the entire available size ranges and the variation of their efficiencies, capital and operation and maintenance costs with sizes are considered. The operation of energy devices is modeled based on previous work on DES operation optimization. By minimizing a weighted sum of the total annual cost and primary exergy input, the problem is solved by branch-and-cut. Numerical results show that the Pareto frontier provides good balancing solutions for planners based on economic and sustainability priorities. The total annual cost and primary exergy input of DESs with optimized configurations are reduced by 21–36% as compared with conventional energy supply systems, where grid power is used for the electricity demand, and gas-fired boilers and electric chillers fed by grid power for thermal demand. A sensitivity analysis is also carried out to analyze the influence of energy prices and energy demand variation on the optimized DES configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:MDPI AG Kai Fang; Kai Fang; Zheng Duan; Reinout Heijungs; Reinout Heijungs; G.R. de Snoo;Growing scientific evidence for the indispensable role of environmental sustainability in sustainable development calls for appropriate frameworks and indicators for environmental sustainability assessment (ESA). In this paper, we operationalize and update the footprint-boundary ESA framework, with a particular focus on its methodological and application extensions to the national level. By using the latest datasets available, the planetary boundaries for carbon emissions, water use and land use are allocated to 28 selected countries in comparison to the corresponding environmental footprints. The environmental sustainability ratio (ESR)—an internationally comparable indicator representing the sustainability gap between contemporary anthropogenic interference and critical capacity thresholds—allows one to map the reserve or transgression of the nation-specific environmental boundaries. While the geographical distribution of the three ESRs varies across nations, in general, the worldwide unsustainability of carbon emissions is largely driven by economic development, while resource endowments play a more central role in explaining national performance on water and land use. The main value added of this paper is to provide concrete evidence of the usefulness of the proposed framework in allocating overall responsibility for environmental sustainability to sub-global scales and in informing policy makers about the need to prevent the planet’s environment from tipping into an undesirable state.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70811285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 47 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70811285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Maraike Probst; Christian Ebner; Peter Aichinger; Heribert Insam; Martin Kuprian;pmid: 26189781
Energy supply is a global hot topic. The social and political pressure forces a higher percentage of energy supplied by renewable resources. The production of renewable energy in form of biomethane can be increased by co-substrates such as municipal biowaste. However, a demand-driven energy production or its storage needs optimisation, the option to store the substrate with its inherent energy is investigated in this study. The calorific content of biowaste was found unchanged after 45 d of storage (19.9±0.19 kJ g(-1) total solids), and the methane yield obtained from stored biowaste was comparable to fresh biowaste or even higher (approx. 400 m(3) Mg(-1) volatile solids). Our results show that the storage supports the hydrolysis of the co-substrate via acidification and production of volatile fatty acids. The data indicate that storage of biowaste is an efficient way to produce bioenergy on demand. This could in strengthen the role of biomethane plants for electricity supply the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.06.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.06.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Kai Fang; Yanmei Li; Qi Wen; Jiashuo Li; Qinli Lu; Reinout Heijungs; Reinout Heijungs; Kuishuang Feng; Xianjin Huang;A continuous growth of international trade, especially between developing countries, has greatly increased carbon dioxide (CO2) emissions associated with energy consumption over the past two decades. Given the more intensified intraregional cooperation and trade within the Belt and Road Initiative (BRI), this study aims to trace the imbalance of CO2 embodied in trade between nations in BRI and the rest of the world, providing new insights into the drivers of emissions growth by contrasting consumption, production and technological differences-based perspectives. Results indicate that the BRI contributed to over 50% of global carbon footprint and 92% of its increase in 1995–2015. The BRI was a net exporter of trade-embodied emissions, whose technological-adjusted carbon footprint remained remarkably large due to comparatively high carbon intensity. Geographically, carbon leakage has gradually moved from China and India to other BRI countries, especially to Southeast Asia, West Asia and Africa. Technological change was the key driver of emissions reduction, followed by the change in industrial structure. The growth in final demand per capita was the most important driver for the growth of CO2 emissions in BRI. Improving carbon efficiency remains a critical step for BRI nations to slow down not only emissions growth but also carbon leakage. The paper managed to provide novel insights into the carbon leakage in BRI by contrasting the consumption, production and technological differences-based perspectives, thus being able to better inform policymakers on region-specific low-carbon transition and global climate governance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United KingdomPublisher:Elsevier BV Michael Pahle; Roberto Schaeffer; Shonali Pachauri; Jiyong Eom; Aayushi Awasthy; Wenying Chen; Corrado Di Maria; Kejun Jiang; Chenmin He; Joana Portugal-Pereira; George Safonov; Elena Verdolini;The UN Sustainable Development Goals (SDGs) and the Paris Agreement have ushered in a new era of policymaking to deliver on the formulated goals. Energy policies are key to ensuring universal access to affordable, reliable, sustainable, and modern energy (SDG7). Yet they can also have considerable impact on other goals. To successfully achieve multiple goals concurrently, policies need to balance different objectives and manage their interactions. Refining previously contemplated design principles, we identify three key principles - complementary, transparency and adaptability - as highly pertinent for multiple-objective energy policies based on a synthesis of seventeen coordinated policy case studies. First, policies should entail complementary measures and design provisions that specifically target non-energy objectives (complementarity). Second, policy impacts should be tracked comprehensively in both energy and non-energy domains to uncover diminishing returns and facilitate policy learning (transparency). Third, policies should be capable of adapting to changing objectives over time (adaptability). These principles are rarely considered in current policies, implying the need to mainstream them into the next generation of policymaking by pointing to best practices and new tools.
IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 64 Powered bymore_vert IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Czech Republic, United Kingdom, Czech RepublicPublisher:Elsevier BV Kamila Turečková; Petr Dvořák; Stanislav Martinát; Stanislav Martinát; Bohumil Frantál; Dan van der Horst;The development of renewable energy sources has been primarily justified on the ground of environmental policies and energy security, but new jobs opportunities and establishment of new economy sectors may be equally important co-benefits from investments in this sector. The main goal of this paper is to assess the employment benefits of investments in renewable energy in the Czech Republic. We examine the level and rate of the development of the renewable energy sector in the Czech Republic in terms of ('green‘) job creation for the period 2008–2013, in comparison to data from other EU countries, including Germany as a leading early investor in renewables. Whilst the deployment of renewable energy in the Czech Republic has succeeded to create a significant number of jobs (more than 20 000 employees in 2010), our analysis illustrates a strong dependency of job creation on the continuation of financial incentives. We also find that biomass and waste energy processing offer the highest employment per MWh, which benefits employment in (economically fragile) rural areas. We discuss the question of competitiveness of a country that was not amongst the early adopters of renewables, arguing that the technical skills of the labour force in the Czech Republic provide a potential for more sustained investments in the sector.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 251download downloads 251 Powered bymore_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Yu, Xiang; Zheng, Heran; Sun, Lu; Shan, Yuli;China has the largest number of industrial parks in the world. These parks are not only crucial for the country to accelerate industrialization but also to achieve its climate change targets. Constructing CO2 emission inventories for industrial parks is the first step in analysing the park's emission patterns and designing low-carbon policies. However, most of the previous emission accounts for industrial parks adopted various scopes and methodologies, making them incomparable with each other. This study develops a self-consistent methodology and framework for China's industrial parks based on enterprise-level data. We consider both Scope 1 and 2 emissions and construct the inventories by 19 energy types and 39 industrial sectors, which are consistent with the existing national, provincial, and city-level emission inventories. Such sectoral-based emission inventories will be not only able to provide data support for the design of emission/energy control policies, but also help the central/local governments evaluate a park's emission reduction performance. Finally, an empirical study is applied to four industrial parks to verify the method. In addition, we review the eco-industrial park programmes in Japan and South Korea, as well as their emissions accounting framework. We find that most of the Japanese industrial parks provide Scope 1, 2 and 3 emissions, while for South Korea, parks mostly focus on Scope 1 emissions. The discussion of Japan and South Korea's eco-industrial parks have referential significance for the construction China's low-carbon parks.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Cleaner ProductionArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 349 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Cleaner ProductionArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Chiyao Sun; Ji’an Liu; Liana Razmerita; Yanru Xu; Jia Qi;doi: 10.3390/su14137789
Digitalization provides opportunities for sustainable development. Cultivating postgraduates’ digital skills is an important task of higher education to support sustainable development (HESD). As a crucial way of cultivating digital skills, high-quality online learning processes are of great significance to achieve “Quality Education”, in line with the 2030 sustainable development agenda. Based on Biggs’s 3P (Presage-Process-Product) learning model, this study focused on the whole learning process and explored the relationship among postgraduates’ information literacy, online platforms, online knowledge-sharing processes and their innovation performance. The analysis of a questionnaire survey of 501 Chinese postgraduates showed that (1) information literacy has a positively predictive effect on postgraduates’ innovation performance; (2) different online learning processes lead to different learning results. Compared to the quantity-oriented online knowledge sharing process (Qty-KSP), the quality-oriented online knowledge sharing process (Qlty-KSP) is related to better innovation performance, which opens onto this study’s third finding: (3) Qty-KSP and Qlty-KSP play a parallel mediating effect between postgraduates’ information literacy and their innovation performance. Compared to Qty-KSP, Qlty-KSP is a more powerful intermediary variable, which leads to this study’s fourth finding; (4) an efficient online learning environment can contribute to higher-quality online learning process, thus improving postgraduates’ innovative performance. This study suggests that policy makers should develop postgraduates’ digital skills for sustainable development in the digital age. This can be achieved by (1) cultivating postgraduates’ information literacy; (2) encouraging them to practice high-quality online learning processes; and (3) providing an efficient sharing platform for sustainability, resilience, and digitalization in higher education.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:IOP Publishing Funded by:UKRI | Comparative assessment an..., UKRI | Integrated assessment of ..., UKRI | Euro-China GE: Dynamics o...UKRI| Comparative assessment and region-specific optimisation of GGR ,UKRI| Integrated assessment of the emission-health-socioeconomics nexus and air pollution mitigation solutions and interventions in Beijing (INHANCE) ,UKRI| Euro-China GE: Dynamics of Green Growth in European and Chinese Cities (DRAGON)Jing Meng; Zongyong Zhang; Zongyong Zhang; Yuli Shan; Lili Yang; Lili Yang; Dabo Guan; Dabo Guan; Xian Li; Xian Li;China is confronted with an unprecedented water crisis regarding its quantity and quality. In this study, we quantified the dynamics of China?s embodied water use and chemical oxygen demand (COD) discharge from 2010 to 2015. The analysis was conducted with the latest available water use data across sectors in primary, secondary and tertiary industries and input?output models. The results showed that (1) China?s water crisis was alleviated under urbanisation. Urban consumption occupied the largest percentages (over 30%) of embodied water use and COD discharge, but embodied water intensities in urban consumption were far lower than those in rural consumption. (2) The ?new normal? phase witnessed the optimisation of China?s water use structures. Embodied water use in light-manufacturing and tertiary sectors increased while those in heavy-manufacturing sectors (except chemicals and transport equipment) dropped. (3) Transformation of China?s international market brought positive effects on its domestic water use. China?s water use (116?80 billion tonnes (Bts))(9) and COD discharge (3.95?2.22 million tonnes (Mts)) embodied in export tremendously decreased while its total export values (11?25 trillion CNY) soared. Furthermore, embodied water use and COD discharge in relatively low-end sectors, such as textile, started to transfer from international to domestic markets when a part of China?s production activities had been relocated to other developing countries.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 8 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/ab4e54&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Ya Zhou; Ya Zhou; Yuli Shan; Dabo Guan; Dabo Guan; Guosheng Liu;Abstract Cities are the major contributors to energy consumption and CO2 emissions, as well as being leading innovators and implementers of policy measures in climate change mitigation. Guangdong-Hong Kong-Macao Greater Bay Area (GBA) is an agglomeration of cities put forward by China to strengthen international cooperation among “Belt and Road” countries and promote low-carbon, inclusive, coordinated and sustainable development. Few studies have discussed the emission characteristics of GBA cities. This study, for the first time, compiles emission inventories of 11 GBA cities and their surroundings based on IPCC territorial emission accounting approach, which are consistent and comparable with the national and provincial inventories. Results show that (a) total emissions increased from 426 Mt in 2000 to 610 Mt in 2016, while emissions of GBA cities increased rapidly by 6.9% over 2000–2011 and peaked in 2014 (334 Mt); (b) raw coal and diesel oil are the top two emitters by energy type, while energy production sector and tertiary industry are the top two largest sectors; (c) GBA cities take the lead in low-carbon development, emitted 4% of total national emissions and contributed 13% of national GDP with less than a third of national emission intensities and less than three-quarters of national per capita emissions; (d) Macao, Shenzhen and Hong Kong have the top three lowest emission intensity in the country; (e) most of GBA cities are experiencing the shift from an industrial economy to a service economy, while Hong Kong, Shenzhen, Foshan and Huizhou reached their peak emissions and Guangzhou, Dongguan and Jiangmen remained decreasing emission tendencies; (g) for those coal-dominate or energy-production cities (i.e. Zhuhai, Zhongshan, Zhaoqing, Maoming, Yangjiang, Shanwei, Shaoguan and Zhanjiang) in mid-term industrialization, total emissions experienced soaring increases. The emission inventories provide robust, self-consistent, transparent and comparable data support for identifying spatial–temporal emission characteristics, developing low-carbon policies, monitoring mitigation progress in GBA cities as well as further emissions-related studies at a city-level. The low-carbon roadmaps designed for GBA cities and their surroundings also provide a benchmark for other developing countries/cities to adapting changing climate and achieve sustainable development.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 140 citations 140 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 1,014 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.07.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Bing Yan; Giorgio Graditi; Nicola Bianco; Peter B. Luh; Vincenzo Naso; Luigi Mongibello; M. Di Somma;Abstract In recent years, distributed energy systems (DESs) have been recognized as a promising option for sustainable development of future energy systems, and their application has increased rapidly with supportive policies and financial incentives. With growing concerns on global warming and depletion of fossil fuels, design optimization of DESs through economic assessments for short-run benefits only is not sufficient, while application of exergy principles can improve the efficiency in energy resource use for long-run sustainability of energy supply. The innovation of this paper is to investigate exergy in DES design to attain rational use of energy resources including renewables by considering energy qualities of supply and demand. By using low-temperature sources for low-quality thermal demand, the waste of high-quality energy can be reduced, and the overall exergy efficiency can be increased. The goal of the design optimization problem is to determine types, numbers and sizes of energy devices in DESs to reduce the total annual cost and increase the overall exergy efficiency. Based on a pre-established DES superstructure with multiple energy devices such as combined heat and power and PV, a multi-objective linear problem is formulated. In modeling of energy devices, the novelty is that the entire available size ranges and the variation of their efficiencies, capital and operation and maintenance costs with sizes are considered. The operation of energy devices is modeled based on previous work on DES operation optimization. By minimizing a weighted sum of the total annual cost and primary exergy input, the problem is solved by branch-and-cut. Numerical results show that the Pareto frontier provides good balancing solutions for planners based on economic and sustainability priorities. The total annual cost and primary exergy input of DESs with optimized configurations are reduced by 21–36% as compared with conventional energy supply systems, where grid power is used for the electricity demand, and gas-fired boilers and electric chillers fed by grid power for thermal demand. A sensitivity analysis is also carried out to analyze the influence of energy prices and energy demand variation on the optimized DES configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:MDPI AG Kai Fang; Kai Fang; Zheng Duan; Reinout Heijungs; Reinout Heijungs; G.R. de Snoo;Growing scientific evidence for the indispensable role of environmental sustainability in sustainable development calls for appropriate frameworks and indicators for environmental sustainability assessment (ESA). In this paper, we operationalize and update the footprint-boundary ESA framework, with a particular focus on its methodological and application extensions to the national level. By using the latest datasets available, the planetary boundaries for carbon emissions, water use and land use are allocated to 28 selected countries in comparison to the corresponding environmental footprints. The environmental sustainability ratio (ESR)—an internationally comparable indicator representing the sustainability gap between contemporary anthropogenic interference and critical capacity thresholds—allows one to map the reserve or transgression of the nation-specific environmental boundaries. While the geographical distribution of the three ESRs varies across nations, in general, the worldwide unsustainability of carbon emissions is largely driven by economic development, while resource endowments play a more central role in explaining national performance on water and land use. The main value added of this paper is to provide concrete evidence of the usefulness of the proposed framework in allocating overall responsibility for environmental sustainability to sub-global scales and in informing policy makers about the need to prevent the planet’s environment from tipping into an undesirable state.
Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70811285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 72 citations 72 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 47 Powered bymore_vert Delft University of ... arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2015License: CC BYData sources: Bielefeld Academic Search Engine (BASE)DANS (Data Archiving and Networked Services)Article . 2015Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70811285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Maraike Probst; Christian Ebner; Peter Aichinger; Heribert Insam; Martin Kuprian;pmid: 26189781
Energy supply is a global hot topic. The social and political pressure forces a higher percentage of energy supplied by renewable resources. The production of renewable energy in form of biomethane can be increased by co-substrates such as municipal biowaste. However, a demand-driven energy production or its storage needs optimisation, the option to store the substrate with its inherent energy is investigated in this study. The calorific content of biowaste was found unchanged after 45 d of storage (19.9±0.19 kJ g(-1) total solids), and the methane yield obtained from stored biowaste was comparable to fresh biowaste or even higher (approx. 400 m(3) Mg(-1) volatile solids). Our results show that the storage supports the hydrolysis of the co-substrate via acidification and production of volatile fatty acids. The data indicate that storage of biowaste is an efficient way to produce bioenergy on demand. This could in strengthen the role of biomethane plants for electricity supply the future.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.06.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2015.06.147&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Kai Fang; Yanmei Li; Qi Wen; Jiashuo Li; Qinli Lu; Reinout Heijungs; Reinout Heijungs; Kuishuang Feng; Xianjin Huang;A continuous growth of international trade, especially between developing countries, has greatly increased carbon dioxide (CO2) emissions associated with energy consumption over the past two decades. Given the more intensified intraregional cooperation and trade within the Belt and Road Initiative (BRI), this study aims to trace the imbalance of CO2 embodied in trade between nations in BRI and the rest of the world, providing new insights into the drivers of emissions growth by contrasting consumption, production and technological differences-based perspectives. Results indicate that the BRI contributed to over 50% of global carbon footprint and 92% of its increase in 1995–2015. The BRI was a net exporter of trade-embodied emissions, whose technological-adjusted carbon footprint remained remarkably large due to comparatively high carbon intensity. Geographically, carbon leakage has gradually moved from China and India to other BRI countries, especially to Southeast Asia, West Asia and Africa. Technological change was the key driver of emissions reduction, followed by the change in industrial structure. The growth in final demand per capita was the most important driver for the growth of CO2 emissions in BRI. Improving carbon efficiency remains a critical step for BRI nations to slow down not only emissions growth but also carbon leakage. The paper managed to provide novel insights into the carbon leakage in BRI by contrasting the consumption, production and technological differences-based perspectives, thus being able to better inform policymakers on region-specific low-carbon transition and global climate governance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United KingdomPublisher:Elsevier BV Michael Pahle; Roberto Schaeffer; Shonali Pachauri; Jiyong Eom; Aayushi Awasthy; Wenying Chen; Corrado Di Maria; Kejun Jiang; Chenmin He; Joana Portugal-Pereira; George Safonov; Elena Verdolini;The UN Sustainable Development Goals (SDGs) and the Paris Agreement have ushered in a new era of policymaking to deliver on the formulated goals. Energy policies are key to ensuring universal access to affordable, reliable, sustainable, and modern energy (SDG7). Yet they can also have considerable impact on other goals. To successfully achieve multiple goals concurrently, policies need to balance different objectives and manage their interactions. Refining previously contemplated design principles, we identify three key principles - complementary, transparency and adaptability - as highly pertinent for multiple-objective energy policies based on a synthesis of seventeen coordinated policy case studies. First, policies should entail complementary measures and design provisions that specifically target non-energy objectives (complementarity). Second, policy impacts should be tracked comprehensively in both energy and non-energy domains to uncover diminishing returns and facilitate policy learning (transparency). Third, policies should be capable of adapting to changing objectives over time (adaptability). These principles are rarely considered in current policies, implying the need to mainstream them into the next generation of policymaking by pointing to best practices and new tools.
IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 64 Powered bymore_vert IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Czech Republic, United Kingdom, Czech RepublicPublisher:Elsevier BV Kamila Turečková; Petr Dvořák; Stanislav Martinát; Stanislav Martinát; Bohumil Frantál; Dan van der Horst;The development of renewable energy sources has been primarily justified on the ground of environmental policies and energy security, but new jobs opportunities and establishment of new economy sectors may be equally important co-benefits from investments in this sector. The main goal of this paper is to assess the employment benefits of investments in renewable energy in the Czech Republic. We examine the level and rate of the development of the renewable energy sector in the Czech Republic in terms of ('green‘) job creation for the period 2008–2013, in comparison to data from other EU countries, including Germany as a leading early investor in renewables. Whilst the deployment of renewable energy in the Czech Republic has succeeded to create a significant number of jobs (more than 20 000 employees in 2010), our analysis illustrates a strong dependency of job creation on the continuation of financial incentives. We also find that biomass and waste energy processing offer the highest employment per MWh, which benefits employment in (economically fragile) rural areas. We discuss the question of competitiveness of a country that was not amongst the early adopters of renewables, arguing that the technical skills of the labour force in the Czech Republic provide a potential for more sustained investments in the sector.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 251download downloads 251 Powered bymore_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Elsevier BV Authors: Yu, Xiang; Zheng, Heran; Sun, Lu; Shan, Yuli;China has the largest number of industrial parks in the world. These parks are not only crucial for the country to accelerate industrialization but also to achieve its climate change targets. Constructing CO2 emission inventories for industrial parks is the first step in analysing the park's emission patterns and designing low-carbon policies. However, most of the previous emission accounts for industrial parks adopted various scopes and methodologies, making them incomparable with each other. This study develops a self-consistent methodology and framework for China's industrial parks based on enterprise-level data. We consider both Scope 1 and 2 emissions and construct the inventories by 19 energy types and 39 industrial sectors, which are consistent with the existing national, provincial, and city-level emission inventories. Such sectoral-based emission inventories will be not only able to provide data support for the design of emission/energy control policies, but also help the central/local governments evaluate a park's emission reduction performance. Finally, an empirical study is applied to four industrial parks to verify the method. In addition, we review the eco-industrial park programmes in Japan and South Korea, as well as their emissions accounting framework. We find that most of the Japanese industrial parks provide Scope 1, 2 and 3 emissions, while for South Korea, parks mostly focus on Scope 1 emissions. The discussion of Japan and South Korea's eco-industrial parks have referential significance for the construction China's low-carbon parks.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Cleaner ProductionArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 42 citations 42 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 349 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Journal of Cleaner ProductionArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJournal of Cleaner ProductionArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.118712&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Chiyao Sun; Ji’an Liu; Liana Razmerita; Yanru Xu; Jia Qi;doi: 10.3390/su14137789
Digitalization provides opportunities for sustainable development. Cultivating postgraduates’ digital skills is an important task of higher education to support sustainable development (HESD). As a crucial way of cultivating digital skills, high-quality online learning processes are of great significance to achieve “Quality Education”, in line with the 2030 sustainable development agenda. Based on Biggs’s 3P (Presage-Process-Product) learning model, this study focused on the whole learning process and explored the relationship among postgraduates’ information literacy, online platforms, online knowledge-sharing processes and their innovation performance. The analysis of a questionnaire survey of 501 Chinese postgraduates showed that (1) information literacy has a positively predictive effect on postgraduates’ innovation performance; (2) different online learning processes lead to different learning results. Compared to the quantity-oriented online knowledge sharing process (Qty-KSP), the quality-oriented online knowledge sharing process (Qlty-KSP) is related to better innovation performance, which opens onto this study’s third finding: (3) Qty-KSP and Qlty-KSP play a parallel mediating effect between postgraduates’ information literacy and their innovation performance. Compared to Qty-KSP, Qlty-KSP is a more powerful intermediary variable, which leads to this study’s fourth finding; (4) an efficient online learning environment can contribute to higher-quality online learning process, thus improving postgraduates’ innovative performance. This study suggests that policy makers should develop postgraduates’ digital skills for sustainable development in the digital age. This can be achieved by (1) cultivating postgraduates’ information literacy; (2) encouraging them to practice high-quality online learning processes; and (3) providing an efficient sharing platform for sustainability, resilience, and digitalization in higher education.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14137789&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu