- home
- Search
- Energy Research
- 12. Responsible consumption
- US
- UA
- Aurora Universities Network
- Energy Research
- 12. Responsible consumption
- US
- UA
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Bing Yan; Giorgio Graditi; Nicola Bianco; Peter B. Luh; Vincenzo Naso; Luigi Mongibello; M. Di Somma;Abstract In recent years, distributed energy systems (DESs) have been recognized as a promising option for sustainable development of future energy systems, and their application has increased rapidly with supportive policies and financial incentives. With growing concerns on global warming and depletion of fossil fuels, design optimization of DESs through economic assessments for short-run benefits only is not sufficient, while application of exergy principles can improve the efficiency in energy resource use for long-run sustainability of energy supply. The innovation of this paper is to investigate exergy in DES design to attain rational use of energy resources including renewables by considering energy qualities of supply and demand. By using low-temperature sources for low-quality thermal demand, the waste of high-quality energy can be reduced, and the overall exergy efficiency can be increased. The goal of the design optimization problem is to determine types, numbers and sizes of energy devices in DESs to reduce the total annual cost and increase the overall exergy efficiency. Based on a pre-established DES superstructure with multiple energy devices such as combined heat and power and PV, a multi-objective linear problem is formulated. In modeling of energy devices, the novelty is that the entire available size ranges and the variation of their efficiencies, capital and operation and maintenance costs with sizes are considered. The operation of energy devices is modeled based on previous work on DES operation optimization. By minimizing a weighted sum of the total annual cost and primary exergy input, the problem is solved by branch-and-cut. Numerical results show that the Pareto frontier provides good balancing solutions for planners based on economic and sustainability priorities. The total annual cost and primary exergy input of DESs with optimized configurations are reduced by 21–36% as compared with conventional energy supply systems, where grid power is used for the electricity demand, and gas-fired boilers and electric chillers fed by grid power for thermal demand. A sensitivity analysis is also carried out to analyze the influence of energy prices and energy demand variation on the optimized DES configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Kai Fang; Yanmei Li; Qi Wen; Jiashuo Li; Qinli Lu; Reinout Heijungs; Reinout Heijungs; Kuishuang Feng; Xianjin Huang;A continuous growth of international trade, especially between developing countries, has greatly increased carbon dioxide (CO2) emissions associated with energy consumption over the past two decades. Given the more intensified intraregional cooperation and trade within the Belt and Road Initiative (BRI), this study aims to trace the imbalance of CO2 embodied in trade between nations in BRI and the rest of the world, providing new insights into the drivers of emissions growth by contrasting consumption, production and technological differences-based perspectives. Results indicate that the BRI contributed to over 50% of global carbon footprint and 92% of its increase in 1995–2015. The BRI was a net exporter of trade-embodied emissions, whose technological-adjusted carbon footprint remained remarkably large due to comparatively high carbon intensity. Geographically, carbon leakage has gradually moved from China and India to other BRI countries, especially to Southeast Asia, West Asia and Africa. Technological change was the key driver of emissions reduction, followed by the change in industrial structure. The growth in final demand per capita was the most important driver for the growth of CO2 emissions in BRI. Improving carbon efficiency remains a critical step for BRI nations to slow down not only emissions growth but also carbon leakage. The paper managed to provide novel insights into the carbon leakage in BRI by contrasting the consumption, production and technological differences-based perspectives, thus being able to better inform policymakers on region-specific low-carbon transition and global climate governance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Czech Republic, United Kingdom, Czech RepublicPublisher:Elsevier BV Kamila Turečková; Petr Dvořák; Stanislav Martinát; Stanislav Martinát; Bohumil Frantál; Dan van der Horst;The development of renewable energy sources has been primarily justified on the ground of environmental policies and energy security, but new jobs opportunities and establishment of new economy sectors may be equally important co-benefits from investments in this sector. The main goal of this paper is to assess the employment benefits of investments in renewable energy in the Czech Republic. We examine the level and rate of the development of the renewable energy sector in the Czech Republic in terms of ('green‘) job creation for the period 2008–2013, in comparison to data from other EU countries, including Germany as a leading early investor in renewables. Whilst the deployment of renewable energy in the Czech Republic has succeeded to create a significant number of jobs (more than 20 000 employees in 2010), our analysis illustrates a strong dependency of job creation on the continuation of financial incentives. We also find that biomass and waste energy processing offer the highest employment per MWh, which benefits employment in (economically fragile) rural areas. We discuss the question of competitiveness of a country that was not amongst the early adopters of renewables, arguing that the technical skills of the labour force in the Czech Republic provide a potential for more sustained investments in the sector.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 251download downloads 251 Powered bymore_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Frontiers Media SA Maya D. Lambreva; Paul J. D. Janssen; Viviana Scognamiglio; Cecilia Bartolucci; Amina Antonacci; Giuseppina Rea; Katia Buonasera; Nicolas Plumeré; Raoul N. Frese;pmid: 24971306
pmc: PMC4054791
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 China (People's Republic of), United Kingdom, China (People's Republic of), China (People's Republic of)Publisher:Wiley Sander Chan; Idil Boran; Harro van Asselt; Gabriela Iacobuţă; Navam Niles; Katharine Rietig; Michelle Scobie; Jennifer S. Bansard; Deborah Delgado Pugley; Laurence L. Delina; Friederike Eichhorn; Paula Ellinger; Okechukwu Enechi; Thomas Hale; Lukas Hermwille; Thomas Hickmann; Matthias Honegger; Andrea Hurtado Epstein; Stephanie La Hoz Theuer; Robert Mizo; Yixian Sun; P. Toussaint; Geoffrey Wambugu;Sustainable Development Goals and the Paris Agreement stand as milestone diplomatic achievements. However, immense discrepancies between political commitments and governmental action remain. Combined national climate commitments fall far short of the Paris Agreement's 1.5/2°C targets. Similar political ambition gaps persist across various areas of sustainable development. Many therefore argue that actions by nonstate actors, such as businesses and investors, cities and regions, and nongovernmental organizations (NGOs), are crucial. These voices have resonated across the United Nations (UN) system, leading to growing recognition, promotion, and mobilization of such actions in ever greater numbers. This article investigates optimistic arguments about nonstate engagement, namely: (a) “the more the better”; (b) “everybody wins”; (c) “everyone does their part”; and (d) “more brings more.” However, these optimistic arguments may not be matched in practice due to governance risks. The current emphasis on quantifiable impacts may lead to the under‐appreciation of variegated social, economic, and environmental impacts. Claims that everybody stands to benefit may easily be contradicted by outcomes that are not in line with priorities and needs in developing countries. Despite the seeming depoliticization of the role of nonstate actors in implementation, actions may still lead to politically contentious outcomes. Finally, nonstate climate and sustainability actions may not be self‐reinforcing but may heavily depend on supporting mechanisms. The article concludes with governance risk‐reduction strategies that can be combined to maximize nonstate potential in sustainable and climate‐resilient transformations.This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governance
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Climate ChangeArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews Climate ChangeArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Climate ChangeArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews Climate ChangeArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTMeyfroidt, Patrick; De Bremond, Ariane; Ryan, Casey M.; Archer, Emma; Aspinall, Richard; Chhabra, Abha; Camara, Gilberto; Corbera, Esteve; DeFries, Ruth; Díaz, Sandra; Dong, Jinwei; Ellis, Erle C.; Erb, Karl-Heinz; Fisher, Janet A.; Garrett, Rachael D.; Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan; Haberl, Helmut; Heinimann, Andreas; Hostert, Patrick; Jobbágy, Esteban G.; Kerr, Suzi; Kuemmerle, Tobias; Lambin, Eric F.; Lavorel, Sandra; Lele, Sharachandra; Mertz, Ole; Messerli, Peter; Metternicht, Graciela; Munroe, Darla K.; Nagendra, Harini; Nielsen, Jonas Østergaard; Ojima, Dennis S.; Parker, Dawn Cassandra; Pascual, Unai; Porter, John R.; Ramankutty, Navin; Reenberg, Anette; Roy Chowdhury, Rinku; Seto, Karen C.; Seufert, Verena; Shibata, Hideaki; Thomson, Allison; Turner, Billie L.; Urabe, Jotaro; Veldkamp, Tom; Verburg, Peter H.; Zeleke, Gete; zu Ermgassen, Erasmus K. H. J.; Universitat Autònoma de Barcelona. Departament de Geografia;Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SILCI, EC | VERIFYEC| SILCI ,EC| VERIFYRobert J. Andres; Jan Ivar Korsbakken; Glen P. Peters; Detlef P. van Vuuren; Detlef P. van Vuuren; Josep G. Canadell; Jale Tosun; Corinne Le Quéré; Robbie M. Andrew; Andrew Jordan; Charlie Wilson; Charlie Wilson;Global emissions of carbon dioxide (CO 2 ) from fossil fuels and industry increased by 2.2% per year on average between 2005 and 2015 1 . Global emissions need to peak and decline rapidly to limit climate change to well below 2 °C of warming 2,3 , which is one of the goals of the Paris Agreement 4 . Untangling the reasons underlying recent changes in emissions trajectories is critical to guide efforts to attain those goals. Here we analyse the drivers of decreasing CO 2 emissions in a group of 18 developed economies that have decarbonized over the period 2005–2015. We show that within this group, the displacement of fossil fuels by renewable energy and decreases in energy use explain decreasing CO 2 emissions. However, the decrease in energy use can be explained at least in part by a lower growth in gross domestic product. Correlation analysis suggests that policies on renewable energy are supporting emissions reductions and displacing fossil fuels in these 18 countries, but not elsewhere, and that policies on energy efficiency are supporting lower energy use in these 18 countries, as well as more widely. Overall, the evidence shows that efforts to reduce emissions are underway in many countries, but these efforts need to be maintained and enhanced by more stringent policy actions to support a global peak in emissions followed by global emissions reductions in line with the goals of the Paris Agreement 3 .
IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0419-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 344 citations 344 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 20visibility views 20 download downloads 180 Powered bymore_vert IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0419-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Danai Riga; Sabine Spijker; August B. Smit; Johanneke E. van der Harst; Taco J. De Vries; Leanne J. M. Schmitz; Yvar van Mourik; Witte J.G. Hoogendijk;High rates of comorbidity between alcohol use disorder (AUD) and major depressive disorder (MDD) are reported. Preclinical models examining effects of primary depression on secondary AUD are currently absent, preventing adequate testing of drug treatment. Here, we combined social defeat-induced persistent stress (SDPS) and operant alcohol self-administration (SA) paradigms to assess causality between these two neuropsychiatric disorders. We then exploited guanfacine, an FDA-approved adrenergic agent reported to reduce drug craving in humans, against SDPS-induced modulation of operant alcohol SA. Wistar rats were socially defeated and isolated for a period of ≥9 weeks, during which depression-like symptomatology (cognitive and social behavioral symptoms) was assessed. Subsequently, animals were subjected to a 5-month operant alcohol SA paradigm, examining acquisition, motivation, extinction, and cue-induced reinstatement of alcohol seeking. The effects of guanfacine on motivation and relapse were measured at >6 months following defeat. SDPS rats exhibited significant disruption of social and cognitive behavior, including short-term spatial and long-term social memory, several months following defeat. Notably, SDPS increased motivation to obtain alcohol, and cue-induced relapse vulnerability. Guanfacine reversed the SDPS-induced effects on motivation and relapse. Together, our model mimics core symptomatology of a sustained depressive-like state and a subsequent vulnerability to alcohol abuse. We show that SDPS is strongly associated with an enhanced motivation for alcohol intake and relapse. Finally, we show that the clinically employed drug guanfacine has potential as a novel treatment option in comorbid patients, as it effectively reduced the enhanced sensitivity to alcohol and alcohol-associated stimuli.
Neuropsychopharmacol... arrow_drop_down https://doi.org/10.1038/npp.20...Article . 2013Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down https://doi.org/10.1038/npp.20...Article . 2013Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | VERIFY, EC | 4C, EC | PARIS REINFORCE +1 projectsEC| VERIFY ,EC| 4C ,EC| PARIS REINFORCE ,EC| CHEMatthew W. Jones; Robbie M. Andrew; Glen P. Peters; Greet Janssens-Maenhout; Anthony J. De-Gol; Philippe Ciais; Prabir K. Patra; Frederic Chevallier; Corinne Le Quéré;AbstractQuantification of CO2 fluxes at the Earth’s surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959–2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 66visibility views 66 download downloads 91 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Fiji, Australia, United KingdomPublisher:Elsevier BV Funded by:EC | TILOSEC| TILOSAuthors: Jeremy M. Hills; Jeremy M. Hills; Evanthie Michalena; Konstantinos Chalvatzis;Abstract Transitioning to sustainability will require innovation, not just in technological and economic terms but also in governance and culture. The work presented here sought a remote, vulnerable island context (Fiji, South Pacific) to enable further insight into the innovation process related to resilience and sustainability. The innovation targeted by this work was off-grid solar renewable energy (RE) systems framed as a development instrument to promote local, community-based resilience to climate change through increased livelihood security and reduction of climate change effects. Applying a local-level resilience framework to solar technology use, we conclude that the RE system can improve resilience, however, unintended consequences included a rush for energy usage causing a “tragedy of commons” of finite stored energy and subsequently increased supplementary fossil fuel use. This suggests that there are still missed resilience opportunities in the way that the innovation is implemented in developing countries and remote areas in particular. Further analysis demonstrated that improved planning at the socio-technological interface has the potential to strengthen communities' resilience. With significant RE investments required for a transition to a low-carbon future in many developing countries, there is a pressing need to effectively introduce innovative uses of technologies. Existential threats to many local communities, and some nations in the Pacific may mean that sub-optimal innovation will not be enough.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Technological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTechnological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalThe University of South Pacific: USP Electronic Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2018.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 29visibility views 29 download downloads 435 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Technological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTechnological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalThe University of South Pacific: USP Electronic Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2018.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV Bing Yan; Giorgio Graditi; Nicola Bianco; Peter B. Luh; Vincenzo Naso; Luigi Mongibello; M. Di Somma;Abstract In recent years, distributed energy systems (DESs) have been recognized as a promising option for sustainable development of future energy systems, and their application has increased rapidly with supportive policies and financial incentives. With growing concerns on global warming and depletion of fossil fuels, design optimization of DESs through economic assessments for short-run benefits only is not sufficient, while application of exergy principles can improve the efficiency in energy resource use for long-run sustainability of energy supply. The innovation of this paper is to investigate exergy in DES design to attain rational use of energy resources including renewables by considering energy qualities of supply and demand. By using low-temperature sources for low-quality thermal demand, the waste of high-quality energy can be reduced, and the overall exergy efficiency can be increased. The goal of the design optimization problem is to determine types, numbers and sizes of energy devices in DESs to reduce the total annual cost and increase the overall exergy efficiency. Based on a pre-established DES superstructure with multiple energy devices such as combined heat and power and PV, a multi-objective linear problem is formulated. In modeling of energy devices, the novelty is that the entire available size ranges and the variation of their efficiencies, capital and operation and maintenance costs with sizes are considered. The operation of energy devices is modeled based on previous work on DES operation optimization. By minimizing a weighted sum of the total annual cost and primary exergy input, the problem is solved by branch-and-cut. Numerical results show that the Pareto frontier provides good balancing solutions for planners based on economic and sustainability priorities. The total annual cost and primary exergy input of DESs with optimized configurations are reduced by 21–36% as compared with conventional energy supply systems, where grid power is used for the electricity demand, and gas-fired boilers and electric chillers fed by grid power for thermal demand. A sensitivity analysis is also carried out to analyze the influence of energy prices and energy demand variation on the optimized DES configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 128 citations 128 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.03.105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwitzerlandPublisher:Elsevier BV Kai Fang; Yanmei Li; Qi Wen; Jiashuo Li; Qinli Lu; Reinout Heijungs; Reinout Heijungs; Kuishuang Feng; Xianjin Huang;A continuous growth of international trade, especially between developing countries, has greatly increased carbon dioxide (CO2) emissions associated with energy consumption over the past two decades. Given the more intensified intraregional cooperation and trade within the Belt and Road Initiative (BRI), this study aims to trace the imbalance of CO2 embodied in trade between nations in BRI and the rest of the world, providing new insights into the drivers of emissions growth by contrasting consumption, production and technological differences-based perspectives. Results indicate that the BRI contributed to over 50% of global carbon footprint and 92% of its increase in 1995–2015. The BRI was a net exporter of trade-embodied emissions, whose technological-adjusted carbon footprint remained remarkably large due to comparatively high carbon intensity. Geographically, carbon leakage has gradually moved from China and India to other BRI countries, especially to Southeast Asia, West Asia and Africa. Technological change was the key driver of emissions reduction, followed by the change in industrial structure. The growth in final demand per capita was the most important driver for the growth of CO2 emissions in BRI. Improving carbon efficiency remains a critical step for BRI nations to slow down not only emissions growth but also carbon leakage. The paper managed to provide novel insights into the carbon leakage in BRI by contrasting the consumption, production and technological differences-based perspectives, thus being able to better inform policymakers on region-specific low-carbon transition and global climate governance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2020.115934&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Czech Republic, United Kingdom, Czech RepublicPublisher:Elsevier BV Kamila Turečková; Petr Dvořák; Stanislav Martinát; Stanislav Martinát; Bohumil Frantál; Dan van der Horst;The development of renewable energy sources has been primarily justified on the ground of environmental policies and energy security, but new jobs opportunities and establishment of new economy sectors may be equally important co-benefits from investments in this sector. The main goal of this paper is to assess the employment benefits of investments in renewable energy in the Czech Republic. We examine the level and rate of the development of the renewable energy sector in the Czech Republic in terms of ('green‘) job creation for the period 2008–2013, in comparison to data from other EU countries, including Germany as a leading early investor in renewables. Whilst the deployment of renewable energy in the Czech Republic has succeeded to create a significant number of jobs (more than 20 000 employees in 2010), our analysis illustrates a strong dependency of job creation on the continuation of financial incentives. We also find that biomass and waste energy processing offer the highest employment per MWh, which benefits employment in (economically fragile) rural areas. We discuss the question of competitiveness of a country that was not amongst the early adopters of renewables, arguing that the technical skills of the labour force in the Czech Republic provide a potential for more sustained investments in the sector.
CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 251download downloads 251 Powered bymore_vert CORE arrow_drop_down COREArticle . 2017Full-Text: https://orca.cardiff.ac.uk/id/eprint/110279/1/RSER_Dvorak_et_al_accepted_version_18112016.pdfData sources: CORERepository of the Czech Academy of SciencesArticle . 2017Data sources: Repository of the Czech Academy of SciencesRenewable and Sustainable Energy ReviewsArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2016.11.158&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Frontiers Media SA Maya D. Lambreva; Paul J. D. Janssen; Viviana Scognamiglio; Cecilia Bartolucci; Amina Antonacci; Giuseppina Rea; Katia Buonasera; Nicolas Plumeré; Raoul N. Frese;pmid: 24971306
pmc: PMC4054791
The development of a sustainable bio-based economy has drawn much attention in recent years, and research to find smart solutions to the many inherent challenges has intensified. In nature, perhaps the best example of an authentic sustainable system is oxygenic photosynthesis. The biochemistry of this intricate process is empowered by solar radiation influx and performed by hierarchically organized complexes composed by photoreceptors, inorganic catalysts, and enzymes which define specific niches for optimizing light-to-energy conversion. The success of this process relies on its capability to exploit the almost inexhaustible reservoirs of sunlight, water, and carbon dioxide to transform photonic energy into chemical energy such as stored in adenosine triphosphate. Oxygenic photosynthesis is responsible for most of the oxygen, fossil fuels, and biomass on our planet. So, even after a few billion years of evolution, this process unceasingly supports life on earth, and probably soon also in outer-space, and inspires the development of enabling technologies for a sustainable global economy and ecosystem. The following review covers some of the major milestones reached in photosynthesis research, each reflecting lasting routes of innovation in agriculture, environmental protection, and clean energy production.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 78 citations 78 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fchem.2014.00036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 China (People's Republic of), United Kingdom, China (People's Republic of), China (People's Republic of)Publisher:Wiley Sander Chan; Idil Boran; Harro van Asselt; Gabriela Iacobuţă; Navam Niles; Katharine Rietig; Michelle Scobie; Jennifer S. Bansard; Deborah Delgado Pugley; Laurence L. Delina; Friederike Eichhorn; Paula Ellinger; Okechukwu Enechi; Thomas Hale; Lukas Hermwille; Thomas Hickmann; Matthias Honegger; Andrea Hurtado Epstein; Stephanie La Hoz Theuer; Robert Mizo; Yixian Sun; P. Toussaint; Geoffrey Wambugu;Sustainable Development Goals and the Paris Agreement stand as milestone diplomatic achievements. However, immense discrepancies between political commitments and governmental action remain. Combined national climate commitments fall far short of the Paris Agreement's 1.5/2°C targets. Similar political ambition gaps persist across various areas of sustainable development. Many therefore argue that actions by nonstate actors, such as businesses and investors, cities and regions, and nongovernmental organizations (NGOs), are crucial. These voices have resonated across the United Nations (UN) system, leading to growing recognition, promotion, and mobilization of such actions in ever greater numbers. This article investigates optimistic arguments about nonstate engagement, namely: (a) “the more the better”; (b) “everybody wins”; (c) “everyone does their part”; and (d) “more brings more.” However, these optimistic arguments may not be matched in practice due to governance risks. The current emphasis on quantifiable impacts may lead to the under‐appreciation of variegated social, economic, and environmental impacts. Claims that everybody stands to benefit may easily be contradicted by outcomes that are not in line with priorities and needs in developing countries. Despite the seeming depoliticization of the role of nonstate actors in implementation, actions may still lead to politically contentious outcomes. Finally, nonstate climate and sustainability actions may not be self‐reinforcing but may heavily depend on supporting mechanisms. The article concludes with governance risk‐reduction strategies that can be combined to maximize nonstate potential in sustainable and climate‐resilient transformations.This article is categorized under: Policy and Governance > Multilevel and Transnational Climate Change Governance
Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Climate ChangeArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews Climate ChangeArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Wiley Interdisciplin... arrow_drop_down Wiley Interdisciplinary Reviews Climate ChangeArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefWiley Interdisciplinary Reviews Climate ChangeArticle . 2019Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/wcc.572&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 15 Feb 2022 South Africa, Spain, Switzerland, United States, DenmarkPublisher:Proceedings of the National Academy of Sciences Funded by:EC | MIDLAND, EC | COUPLED, EC | SystemShift +2 projectsEC| MIDLAND ,EC| COUPLED ,EC| SystemShift ,EC| MAT_STOCKS ,EC| HEFTMeyfroidt, Patrick; De Bremond, Ariane; Ryan, Casey M.; Archer, Emma; Aspinall, Richard; Chhabra, Abha; Camara, Gilberto; Corbera, Esteve; DeFries, Ruth; Díaz, Sandra; Dong, Jinwei; Ellis, Erle C.; Erb, Karl-Heinz; Fisher, Janet A.; Garrett, Rachael D.; Golubiewski, Nancy E.; Grau, H. Ricardo; Grove, J. Morgan; Haberl, Helmut; Heinimann, Andreas; Hostert, Patrick; Jobbágy, Esteban G.; Kerr, Suzi; Kuemmerle, Tobias; Lambin, Eric F.; Lavorel, Sandra; Lele, Sharachandra; Mertz, Ole; Messerli, Peter; Metternicht, Graciela; Munroe, Darla K.; Nagendra, Harini; Nielsen, Jonas Østergaard; Ojima, Dennis S.; Parker, Dawn Cassandra; Pascual, Unai; Porter, John R.; Ramankutty, Navin; Reenberg, Anette; Roy Chowdhury, Rinku; Seto, Karen C.; Seufert, Verena; Shibata, Hideaki; Thomson, Allison; Turner, Billie L.; Urabe, Jotaro; Veldkamp, Tom; Verburg, Peter H.; Zeleke, Gete; zu Ermgassen, Erasmus K. H. J.; Universitat Autònoma de Barcelona. Departament de Geografia;Land use is central to addressing sustainability issues, including biodiversity conservation, climate change, food security, poverty alleviation, and sustainable energy. In this paper, we synthesize knowledge accumulated in land system science, the integrated study of terrestrial social-ecological systems, into 10 hard truths that have strong, general, empirical support. These facts help to explain the challenges of achieving sustainability in land use and thus also point toward solutions. The 10 facts are as follows: 1) Meanings and values of land are socially constructed and contested; 2) land systems exhibit complex behaviors with abrupt, hard-to-predict changes; 3) irreversible changes and path dependence are common features of land systems; 4) some land uses have a small footprint but very large impacts; 5) drivers and impacts of land-use change are globally interconnected and spill over to distant locations; 6) humanity lives on a used planet where all land provides benefits to societies; 7) land-use change usually entails trade-offs between different benefits—"win–wins" are thus rare; 8) land tenure and land-use claims are often unclear, overlapping, and contested; 9) the benefits and burdens from land are unequally distributed; and 10) land users have multiple, sometimes conflicting, ideas of what social and environmental justice entails. The facts have implications for governance, but do not provide fixed answers. Instead they constitute a set of core principles which can guide scientists, policy makers, and practitioners toward meeting sustainability challenges in land use.
Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Columbia University ... arrow_drop_down Columbia University Academic CommonsArticle . 2022Full-Text: https://doi.org/10.7916/gqbb-4y58Data sources: Bielefeld Academic Search Engine (BASE)UP Research Data RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Western Sydney (UWS): Research DirectArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.2109217118&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:EC | SILCI, EC | VERIFYEC| SILCI ,EC| VERIFYRobert J. Andres; Jan Ivar Korsbakken; Glen P. Peters; Detlef P. van Vuuren; Detlef P. van Vuuren; Josep G. Canadell; Jale Tosun; Corinne Le Quéré; Robbie M. Andrew; Andrew Jordan; Charlie Wilson; Charlie Wilson;Global emissions of carbon dioxide (CO 2 ) from fossil fuels and industry increased by 2.2% per year on average between 2005 and 2015 1 . Global emissions need to peak and decline rapidly to limit climate change to well below 2 °C of warming 2,3 , which is one of the goals of the Paris Agreement 4 . Untangling the reasons underlying recent changes in emissions trajectories is critical to guide efforts to attain those goals. Here we analyse the drivers of decreasing CO 2 emissions in a group of 18 developed economies that have decarbonized over the period 2005–2015. We show that within this group, the displacement of fossil fuels by renewable energy and decreases in energy use explain decreasing CO 2 emissions. However, the decrease in energy use can be explained at least in part by a lower growth in gross domestic product. Correlation analysis suggests that policies on renewable energy are supporting emissions reductions and displacing fossil fuels in these 18 countries, but not elsewhere, and that policies on energy efficiency are supporting lower energy use in these 18 countries, as well as more widely. Overall, the evidence shows that efforts to reduce emissions are underway in many countries, but these efforts need to be maintained and enhanced by more stringent policy actions to support a global peak in emissions followed by global emissions reductions in line with the goals of the Paris Agreement 3 .
IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0419-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 344 citations 344 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 20visibility views 20 download downloads 180 Powered bymore_vert IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-019-0419-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Springer Science and Business Media LLC Danai Riga; Sabine Spijker; August B. Smit; Johanneke E. van der Harst; Taco J. De Vries; Leanne J. M. Schmitz; Yvar van Mourik; Witte J.G. Hoogendijk;High rates of comorbidity between alcohol use disorder (AUD) and major depressive disorder (MDD) are reported. Preclinical models examining effects of primary depression on secondary AUD are currently absent, preventing adequate testing of drug treatment. Here, we combined social defeat-induced persistent stress (SDPS) and operant alcohol self-administration (SA) paradigms to assess causality between these two neuropsychiatric disorders. We then exploited guanfacine, an FDA-approved adrenergic agent reported to reduce drug craving in humans, against SDPS-induced modulation of operant alcohol SA. Wistar rats were socially defeated and isolated for a period of ≥9 weeks, during which depression-like symptomatology (cognitive and social behavioral symptoms) was assessed. Subsequently, animals were subjected to a 5-month operant alcohol SA paradigm, examining acquisition, motivation, extinction, and cue-induced reinstatement of alcohol seeking. The effects of guanfacine on motivation and relapse were measured at >6 months following defeat. SDPS rats exhibited significant disruption of social and cognitive behavior, including short-term spatial and long-term social memory, several months following defeat. Notably, SDPS increased motivation to obtain alcohol, and cue-induced relapse vulnerability. Guanfacine reversed the SDPS-induced effects on motivation and relapse. Together, our model mimics core symptomatology of a sustained depressive-like state and a subsequent vulnerability to alcohol abuse. We show that SDPS is strongly associated with an enhanced motivation for alcohol intake and relapse. Finally, we show that the clinically employed drug guanfacine has potential as a novel treatment option in comorbid patients, as it effectively reduced the enhanced sensitivity to alcohol and alcohol-associated stimuli.
Neuropsychopharmacol... arrow_drop_down https://doi.org/10.1038/npp.20...Article . 2013Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Neuropsychopharmacol... arrow_drop_down https://doi.org/10.1038/npp.20...Article . 2013Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/npp.2013.311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | VERIFY, EC | 4C, EC | PARIS REINFORCE +1 projectsEC| VERIFY ,EC| 4C ,EC| PARIS REINFORCE ,EC| CHEMatthew W. Jones; Robbie M. Andrew; Glen P. Peters; Greet Janssens-Maenhout; Anthony J. De-Gol; Philippe Ciais; Prabir K. Patra; Frederic Chevallier; Corinne Le Quéré;AbstractQuantification of CO2 fluxes at the Earth’s surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959–2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 66visibility views 66 download downloads 91 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Australia, Fiji, Australia, United KingdomPublisher:Elsevier BV Funded by:EC | TILOSEC| TILOSAuthors: Jeremy M. Hills; Jeremy M. Hills; Evanthie Michalena; Konstantinos Chalvatzis;Abstract Transitioning to sustainability will require innovation, not just in technological and economic terms but also in governance and culture. The work presented here sought a remote, vulnerable island context (Fiji, South Pacific) to enable further insight into the innovation process related to resilience and sustainability. The innovation targeted by this work was off-grid solar renewable energy (RE) systems framed as a development instrument to promote local, community-based resilience to climate change through increased livelihood security and reduction of climate change effects. Applying a local-level resilience framework to solar technology use, we conclude that the RE system can improve resilience, however, unintended consequences included a rush for energy usage causing a “tragedy of commons” of finite stored energy and subsequently increased supplementary fossil fuel use. This suggests that there are still missed resilience opportunities in the way that the innovation is implemented in developing countries and remote areas in particular. Further analysis demonstrated that improved planning at the socio-technological interface has the potential to strengthen communities' resilience. With significant RE investments required for a transition to a low-carbon future in many developing countries, there is a pressing need to effectively introduce innovative uses of technologies. Existential threats to many local communities, and some nations in the Pacific may mean that sub-optimal innovation will not be enough.
University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Technological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTechnological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalThe University of South Pacific: USP Electronic Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2018.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 29visibility views 29 download downloads 435 Powered bymore_vert University of East A... arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Technological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefTechnological Forecasting and Social ChangeArticle . 2018 . Peer-reviewedData sources: European Union Open Data PortalThe University of South Pacific: USP Electronic Research RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.techfore.2018.01.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu