- home
- Search
- Energy Research
- 7. Clean energy
- 11. Sustainability
- DE
- Transport Research
- Energy Research
- 7. Clean energy
- 11. Sustainability
- DE
- Transport Research
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Michela Tiboni; Silvia Rossetti; David Vetturi; Vincenza Torrisi; Francesco Botticini; Marco Domenico Schaefer;doi: 10.3390/su13041778
handle: 11381/2892392
How can urban policies and planning approaches help in achieving a safer mobility and carbon reduction in the transport sector? The attention of planners and policy makers towards the promotion of sustainability and reduction of environmental impacts has grown in recent years. This paper investigates the role that Urban Planning plays in the long term towards a safer and climate friendlier mobility, highlighting the need for integrated approaches gathering spatial planning and mobility management. After a review of several urban policies and planning strategies, initiatives, and approaches, mainly based on the urban scale, the paper presents an urban regeneration case study leading to an increase of pedestrian accessibility at the neighborhood level. This can be seen as a support tool to foster sustainable, safe, and climate friendly mobility in cities. The results of the performed analysis show a dependency of accessibility from two different factors: the distribution of services and the capillarity of the soft mobility network, which can contribute to creating a more walkable space.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:MDPI AG Authors: Yeran Sun; Amin Mobasheri; Xuke Hu; Weikai Wang;doi: 10.3390/su9061060
As it is widely accepted, cycling tends to produce health benefits and reduce air pollution. Policymakers encourage people to use bikes by improving cycling facilities as well as developing bicycle-sharing systems (BSS). It is increasingly interesting to investigate how environmental factors influence the cycling behavior of users of bicycle-sharing systems, as users of bicycle-sharing systems tend to be different from regular cyclists. Although earlier studies have examined effects of safety and convenience on the cycling behavior of regular riders, they rarely explored effects of safety and convenience on the cycling behavior of BSS riders. Therefore, in this study, we aimed to investigate how road safety, convenience, and public safety affect the cycling behavior of BSS riders by controlling for other environmental factors. Specifically, in this study, we investigated the impacts of environmental characteristics, including population density, employment density, land use mix, accessibility to point-of-interests (schools, shops, parks and gyms), road infrastructure, public transit accessibility, road safety, convenience, and public safety on the usage of BSS. Additionally, for a more accurate measure of public transit accessibility, road safety, convenience, and public safety, we used spatiotemporally varying measurements instead of spatially varying measurements, which have been widely used in earlier studies. We conducted an empirical investigation in Chicago with cycling data from a BSS called Divvy. In this study, we particularly attempted to answer the following questions: (1) how traffic accidents and congestion influence the usage of BSS; (2) how violent crime influences the usage of BSS; and (3) how public transit accessibility influences the usage of BSS. Moreover, we tried to offer implications for policies aiming to increase the usage of BSS or for the site selection of new docking stations. Empirical results demonstrate that density of bicycle lanes, public transit accessibility, and public safety influence the usage of BSS, which provides answers for our research questions. Empirical results also suggest policy implications that improving bicycle facilities and reducing the rate of violent crime rates tend to increase the usage of BSS. Moreover, some environmental factors could be considered in selecting a site for a new docking station.
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/142555/1/142555.pdfData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9061060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 6 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/142555/1/142555.pdfData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9061060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 17 Feb 2022 GermanyPublisher:Elsevier BV Authors: Schwarz, Lucas; Keler, Andreas; Krisp, Jukka M.;Introduction: During the COVID-19 lockdown significant improvements in urban air quality were detected due to the absence of motorized vehicles. It is crucial to perpetuate such improvements to maintain and improve public health simultaneously. Therefore, this exploratory study approached bicycle infrastructure in the case of Munich (Germany) to find out which specific bicycle lanes meet the demands of its users, how such infrastructure looks like, and which characteristics are potentially important. Methods: To identify patterns of bicycle infrastructure in Munich exploratory data is collected over the timespan of three consecutive weeks in August by a bicycle rider at different times of the day. We measure position, time, velocity, pulse, level of sound, temperature and humidity. In the next step, we qualitatively identified different segments and applied a cluster analysis to quantitatively describe those segments regarding the measured factors. The data allows us to identify which bicycle lanes have a particular set of measurements, indicating a favorable construction for bike riders. Results: In the exploratory dataset, five relevant segment clusters are identified: viscous, slow, inconsistent, accelerating, and best-performance. The segments that are identified as best-performance enable bicycle riders to travel efficiently and safely at amenable distances in urban areas. They are characterized by their width, little to no interaction with motorized traffic as well as pedestrians, and effective traffic light control. Discussion: We propose two levels of discussion: (1) revolves around what kind of bicycles lanes from the case study can help to increase bicycle usage in urban areas, while simultaneously improving public health and mitigating climate change challenges and (2) discussing the possibilities, limitations and necessary improvements of this kind of exploratory methodology.
Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 GermanyPublisher:MDPI AG Authors: Olga Kanz; Angèle Reinders; Johanna May; Kaining Ding;doi: 10.3390/en13195120
This paper presents a life cycle assessment (LCA) of photovoltaic (PV) solar modules which have been integrated into electric vehicle applications, also called vehicle integrated photovoltaics (VIPV). The LCA was executed by means of GaBi LCA software with Ecoinvent v2.2 as a background database, with a focus on the global warming potential (GWP). A light utility electric vehicle (LUV) named StreetScooter Work L, with a PV array of 930 Wp, was analyzed for the location of Cologne, Germany. An operation time of 8 years and an average shadowing factor of 30% were assumed. The functional unit of this LCA is 1 kWh of generated PV electricity on-board, for which an emission factor of 0.357 kg CO2-eq/kWh was calculated, whereas the average grid emissions would be 0.435 kg CO2-eq/kWh. Hence, charging by PV power hence causes lower emissions than charging an EV by the grid. The study further shows how changes in the shadowing factor, operation time, and other aspects affect vehicle’s emissions. The ecological benefit of charging by PV modules as compared to grid charging is negated when the shadowing factor exceeds 40% and hence exceeds emissions of 0.435 kg CO2-eq/kWh. However, if the operation time of a vehicle with integrated PV is prolonged to 12 years, emissions of the functional unit go down to 0.221 kg CO2-eq/kWh. It is relevant to point out that the outcomes of the LCA study strongly depend on the location of use of the vehicle, the annual irradiation, and the carbon footprint of the grid on that location.
TH Köln: ePublicatio... arrow_drop_down TH Köln: ePublicationsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert TH Köln: ePublicatio... arrow_drop_down TH Köln: ePublicationsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:Elsevier BV Authors: Pinar Korkmaz; Ulrich Fahl; Dorothea Schmid;According to the Paris Agreement, the European energy system transition is essential to achieve GHG emission reduction targets set by the EU and limit the growth of global temperatures. Investigating the role of emerging mitigation technologies and their uncertainties together with the different GHG reduction targets is crucial to realize this transition. This study analyzes the uncertainties of electric vehicles' learning paths and biomass availability for biofuels, considering policy uncertainties. Since these technologies are considered possible alternatives to conventional fuels to reduce CO2 emissions in transport, it is critical to understand their future role and the possible impact of their uncertainties during the European energy system design in case of different climate ambitions. Stochastic modeling is applied to analyze associated uncertainties as an additional approach to a traditional sensitivity analysis. Our results show that decarbonization of car transport is prioritized, and electric cars appear as no-regret options in the sector's design during the energy transition. Therefore, early deployments of EVs are essential to hedge the given uncertainties independent of the hedging period's length. Longer resolution time reduces the deployment of electric vehicles in the recourse strategies compared to having a shorter one due to a delay in the cost reductions. This decline becomes more evident with the stochastic analysis. The policy uncertainty of decarbonization targets has the highest impact on the studied uncertainties on the development of the transport sector. The transport sector can show faster adjustments considering the technology portfolio's shorter lifetime. Thanks to this adjustment, the sector depicts higher decarbonization in the hedging as well as in the recourse strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2021.100707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2021.100707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Embargo end date: 18 Feb 2021 GermanyPublisher:MDPI AG Authors: Michael Hardinghaus; Panagiotis Papantoniou;doi: 10.3390/su12083375 , 10.18452/22501
Providing a sufficiently appropriate route environment is crucial to ensuring fair and safe biking, thus encouraging cycling as a sustainable mode of transport. At the same time, better understanding of cyclists’ preferences regarding the features of their routes and their infrastructure requirements is fundamental to evaluating improvement of the current infrastructure or the development of new infrastructure. The present study has two objectives. The first is to investigate cyclists’ route preferences by means of a choice experiment based on a stated preference survey. Subsequently, the second objective is to compare cyclist preferences in two countries with different cycling characteristics (both in infrastructure as well as cyclists’ behavior). For this purpose, a graphical online stated preferences survey was conducted in Greece and Germany. Within the framework of statistical analyses, multinomial mixed logit discrete choice models were developed that allow us to quantify the trade-offs of interest, while distinguishing between the preferences of different user groups. In addition, user requirements in Greece, as a country with a low cycling share and very little dedicated bike infrastructure, were compared to the requirements in Germany, where cycling is popular and the infrastructure is well developed. The results over the whole sample indicate that subgroups value infrastructure differently according to their specific needs. When looking at country specifics, users from Greece are significantly more willing to accept longer travel times in return for higher-quality facilities. The utility of low speed limits in mixed traffic is also different. In Germany, low speed limits offset the disturbance caused by motorized traffic, but in Greece they do not. Consequently, the results help to asses which types of infrastructure are most sustainable from a user perspective and help to set priorities when the aim is to adapt the road infrastructure efficiently in a stable strategy.
Sustainability arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 148visibility views 148 download downloads 92 Powered bymore_vert Sustainability arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Elsevier BV Cláudio Pinto; Jorge V. Barreras; Ricardo de Castro; Rui Esteves Araújo; Erik Schaltz;Abstract This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles. Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs. Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear influence on the result of the sizing problem. On the other hand, a modest influence is observed when a dynamic programming strategy is followed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 26 Jun 2019 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Norway, United Kingdom, GermanyPublisher:American Geophysical Union (AGU) Funded by:RCN | Exploring the Potential a..., RCN | Potential of bio-energy w..., DFG | Climate Engineering: Risk...RCN| Exploring the Potential and Side Effects of Climate Engineering ,RCN| Potential of bio-energy with carbon capture and storage to limit warming to 1.5°C ,DFG| Climate Engineering: Risks, Challenges, Opportunities?Peter J. Irvine; Peter J. Irvine; Ben Kravitz; Erica Hendy; Simon N. Gosling; Helene Muri; W. Daniel Kissling; Cyril Caminade; Steven J. Smith; Mark Lawrence; Andreas Oschlies; Belay T. Kassie; Dieter Gerten; Dieter Gerten;Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar‐geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.
CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 61 Powered bymore_vert CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2023Publisher:World Data Center for Climate (WDCC) at DKRZ Authors: von Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; +58 Authorsvon Schuckmann, Karina; Minière, Audrey; Gues, Flora; Cuesta-Valero, Francisco José; Kirchengast, Gottfried; Adusumilli, Susheel; Straneo, Fiammetta; Allan, Richard; Barker, Paul M.; Beltrami, Hugo; Boyer, Tim; Cheng, Lijing; Church, John; Desbruyeres, Damien; Dolman, Han; Domingues, Catia M.; García-García, Almudena; Gilson, John; Gorfer, Maximilian; Haimberger, Leopold; Hendricks, Stefan; Hosoda, Shigeki; Johnson, Gregory C.; Killick, Rachel; King, Brian A.; Kolodziejczyk, Nicolas; Korosov, Anton; Krinner, Gerhard; Kuusela, Mikael; Langer, Moritz; Lavergne, Thomas; Lawrence, Isobel; Li, Yuehua; Lyman, John; Marzeion, Ben; Mayer, Michael; MacDougall, Andrew; McDougall, Trevor; Monselesan, Didier Paolo; Nitzbon, Jean; Otosaka, Inès; Peng, Jian; Purkey, Sarah; Roemmich, Dean; Sato, Kanako; Sato, Katsunari; Savita, Abhishek; Schweiger, Axel; Shepherd, Andrew; Seneviratne, Sonia I.; Slater, Donald A.; Slater, Thomas; Simons, Leon; Steiner, Andrea K.; Szekely, Tanguy; Suga, Toshio; Thiery, Wim; Timmermanns, Mary-Louise; Vanderkelen, Inne; Wijffels, Susan E.; Wu, Tonghua; Zemp, Michael;Project: GCOS Earth Heat Inventory - A study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory (EHI), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period from 1960 to present. Summary: The file “GCOS_EHI_1960-2020_Earth_Heat_Inventory_Ocean_Heat_Content_data.nc” contains a consistent long-term Earth system heat inventory over the period 1960-2020. Human-induced atmospheric composition changes cause a radiative imbalance at the top-of-atmosphere which is driving global warming. Understanding the heat gain of the Earth system from this accumulated heat – and particularly how much and where the heat is distributed in the Earth system - is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This dataset is based on a study under the Global Climate Observing System (GCOS) concerted international effort to update the Earth heat inventory published in von Schuckmann et al. (2020), and presents an updated international assessment of ocean warming estimates, and new and updated estimates of heat gain in the atmosphere, cryosphere and land over the period 1960-2020. The dataset also contains estimates for global ocean heat content over 1960-2020 for different depth layers, i.e., 0-300m, 0-700m, 700-2000m, 0-2000m, 2000-bottom, which are described in von Schuckmann et al. (2022). This version includes an update of heat storage of global ocean heat content, where one additional product (Li et al., 2022) had been included to the initial estimate. The Earth heat inventory had been updated accordingly, considering also the update for continental heat content (Cuesta-Valero et al., 2023).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26050/wdcc/gcos_ehi_1960-2020_ohc_v2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Funded by:EC | MAT_STOCKSEC| MAT_STOCKSHaberl, Helmut; Wiedenhofer, Dominik; Schug, Franz; Frantz, David; Virag, Doris; Plutzar, Christoph; Gruhler, Karin; Lederer, Jakob; Schiller, Georg; Fishman, Tomer; Lanau, Maud; Gattringer, Andreas; Kemper, Thomas; Liu, Gang; Tanikawa, Hiroki; van der Linden, Sebastian; Hostert, Patrick;Dynamics of societal material stocks such as buildings and infrastructures and their spatial patterns drive surging resource use and emissions. Building up and maintaining stocks requires large amounts of resources; currently stock-building materials amount to almost 60% of all materials used by humanity. Buildings, infrastructures and machinery shape social practices of production and consumption, thereby creating path dependencies for future resource use. They constitute the physical basis of the spatial organization of most socio-economic activities, for example as mobility networks, urbanization and settlement patterns and various other infrastructures. This dataset features a detailed map of material stocks for the whole of Germany on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors. Temporal extent The map is representative for ca. 2018. Data format Per federal state, the data come in tiles of 30x30km (see shapefile). The projection is EPSG:3035. The images are compressed GeoTiff files (*.tif). There is a mosaic in GDAL Virtual format (*.vrt), which can readily be opened in most Geographic Information Systems. The dataset features area and mass for different street types area and mass for different rail types area and mass for other infrastructure area, volume and mass for different building types Masses are reported as total values, and per material category. Units area in m² height in m volume in m³ mass in t for infrastructure and buildings Further information For further information, please see the publication or contact Helmut Haberl (helmut.haberl@boku.ac.at). A web-visualization of this dataset is available here. Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society. Publication Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., Gruhler, K., Lederer, J., Schiller, G. , Fishman, T., Lanau, M., Gattringer, A., Kemper, T., Liu, G., Tanikawa, H., van der Linden, S., Hostert, P. (accepted): High-resolution maps of material stocks in buildings and infrastructures in Austria and Germany. Environmental Science & Technology Funding This research was primarly funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950). ML and GL acknowledge funding by the Independent Research Fund Denmark (CityWeight, 6111-00555B), ML thanks the Engineering and Physical Sciences Research Council (EPSRC; project Multi-Scale, Circular Economic Potential of Non-Residential Building Scale, EP/S029273/1), JL acknowledges funding by the Vienna Science and Technology Fund (WWTF), project ESR17-067, TF acknowledges the Israel Science Foundation grant no. 2706/19.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 586visibility views 586 download downloads 70 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4536989&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:MDPI AG Michela Tiboni; Silvia Rossetti; David Vetturi; Vincenza Torrisi; Francesco Botticini; Marco Domenico Schaefer;doi: 10.3390/su13041778
handle: 11381/2892392
How can urban policies and planning approaches help in achieving a safer mobility and carbon reduction in the transport sector? The attention of planners and policy makers towards the promotion of sustainability and reduction of environmental impacts has grown in recent years. This paper investigates the role that Urban Planning plays in the long term towards a safer and climate friendlier mobility, highlighting the need for integrated approaches gathering spatial planning and mobility management. After a review of several urban policies and planning strategies, initiatives, and approaches, mainly based on the urban scale, the paper presents an urban regeneration case study leading to an increase of pedestrian accessibility at the neighborhood level. This can be seen as a support tool to foster sustainable, safe, and climate friendly mobility in cities. The results of the performed analysis show a dependency of accessibility from two different factors: the distribution of services and the capillarity of the soft mobility network, which can contribute to creating a more walkable space.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 42 citations 42 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13041778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:MDPI AG Authors: Yeran Sun; Amin Mobasheri; Xuke Hu; Weikai Wang;doi: 10.3390/su9061060
As it is widely accepted, cycling tends to produce health benefits and reduce air pollution. Policymakers encourage people to use bikes by improving cycling facilities as well as developing bicycle-sharing systems (BSS). It is increasingly interesting to investigate how environmental factors influence the cycling behavior of users of bicycle-sharing systems, as users of bicycle-sharing systems tend to be different from regular cyclists. Although earlier studies have examined effects of safety and convenience on the cycling behavior of regular riders, they rarely explored effects of safety and convenience on the cycling behavior of BSS riders. Therefore, in this study, we aimed to investigate how road safety, convenience, and public safety affect the cycling behavior of BSS riders by controlling for other environmental factors. Specifically, in this study, we investigated the impacts of environmental characteristics, including population density, employment density, land use mix, accessibility to point-of-interests (schools, shops, parks and gyms), road infrastructure, public transit accessibility, road safety, convenience, and public safety on the usage of BSS. Additionally, for a more accurate measure of public transit accessibility, road safety, convenience, and public safety, we used spatiotemporally varying measurements instead of spatially varying measurements, which have been widely used in earlier studies. We conducted an empirical investigation in Chicago with cycling data from a BSS called Divvy. In this study, we particularly attempted to answer the following questions: (1) how traffic accidents and congestion influence the usage of BSS; (2) how violent crime influences the usage of BSS; and (3) how public transit accessibility influences the usage of BSS. Moreover, we tried to offer implications for policies aiming to increase the usage of BSS or for the site selection of new docking stations. Empirical results demonstrate that density of bicycle lanes, public transit accessibility, and public safety influence the usage of BSS, which provides answers for our research questions. Empirical results also suggest policy implications that improving bicycle facilities and reducing the rate of violent crime rates tend to increase the usage of BSS. Moreover, some environmental factors could be considered in selecting a site for a new docking station.
CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/142555/1/142555.pdfData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9061060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 66 citations 66 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 8visibility views 8 download downloads 6 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2017License: CC BYFull-Text: http://eprints.gla.ac.uk/142555/1/142555.pdfData sources: CORE (RIOXX-UK Aggregator)University of Lincoln: Lincoln RepositoryArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9061060&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 17 Feb 2022 GermanyPublisher:Elsevier BV Authors: Schwarz, Lucas; Keler, Andreas; Krisp, Jukka M.;Introduction: During the COVID-19 lockdown significant improvements in urban air quality were detected due to the absence of motorized vehicles. It is crucial to perpetuate such improvements to maintain and improve public health simultaneously. Therefore, this exploratory study approached bicycle infrastructure in the case of Munich (Germany) to find out which specific bicycle lanes meet the demands of its users, how such infrastructure looks like, and which characteristics are potentially important. Methods: To identify patterns of bicycle infrastructure in Munich exploratory data is collected over the timespan of three consecutive weeks in August by a bicycle rider at different times of the day. We measure position, time, velocity, pulse, level of sound, temperature and humidity. In the next step, we qualitatively identified different segments and applied a cluster analysis to quantitatively describe those segments regarding the measured factors. The data allows us to identify which bicycle lanes have a particular set of measurements, indicating a favorable construction for bike riders. Results: In the exploratory dataset, five relevant segment clusters are identified: viscous, slow, inconsistent, accelerating, and best-performance. The segments that are identified as best-performance enable bicycle riders to travel efficiently and safely at amenable distances in urban areas. They are characterized by their width, little to no interaction with motorized traffic as well as pedestrians, and effective traffic light control. Discussion: We propose two levels of discussion: (1) revolves around what kind of bicycles lanes from the case study can help to increase bicycle usage in urban areas, while simultaneously improving public health and mitigating climate change challenges and (2) discussing the possibilities, limitations and necessary improvements of this kind of exploratory methodology.
Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Refubium arrow_drop_down RefubiumArticle . 2022License: CC BYFull-Text: https://refubium.fu-berlin.de/bitstream/fub188/34047/1/Journal_of_Urban_Mobility_100013.pdfData sources: Refubiumadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.urbmob.2022.100013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020 GermanyPublisher:MDPI AG Authors: Olga Kanz; Angèle Reinders; Johanna May; Kaining Ding;doi: 10.3390/en13195120
This paper presents a life cycle assessment (LCA) of photovoltaic (PV) solar modules which have been integrated into electric vehicle applications, also called vehicle integrated photovoltaics (VIPV). The LCA was executed by means of GaBi LCA software with Ecoinvent v2.2 as a background database, with a focus on the global warming potential (GWP). A light utility electric vehicle (LUV) named StreetScooter Work L, with a PV array of 930 Wp, was analyzed for the location of Cologne, Germany. An operation time of 8 years and an average shadowing factor of 30% were assumed. The functional unit of this LCA is 1 kWh of generated PV electricity on-board, for which an emission factor of 0.357 kg CO2-eq/kWh was calculated, whereas the average grid emissions would be 0.435 kg CO2-eq/kWh. Hence, charging by PV power hence causes lower emissions than charging an EV by the grid. The study further shows how changes in the shadowing factor, operation time, and other aspects affect vehicle’s emissions. The ecological benefit of charging by PV modules as compared to grid charging is negated when the shadowing factor exceeds 40% and hence exceeds emissions of 0.435 kg CO2-eq/kWh. However, if the operation time of a vehicle with integrated PV is prolonged to 12 years, emissions of the functional unit go down to 0.221 kg CO2-eq/kWh. It is relevant to point out that the outcomes of the LCA study strongly depend on the location of use of the vehicle, the annual irradiation, and the carbon footprint of the grid on that location.
TH Köln: ePublicatio... arrow_drop_down TH Köln: ePublicationsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert TH Köln: ePublicatio... arrow_drop_down TH Köln: ePublicationsArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Publisher:Elsevier BV Authors: Pinar Korkmaz; Ulrich Fahl; Dorothea Schmid;According to the Paris Agreement, the European energy system transition is essential to achieve GHG emission reduction targets set by the EU and limit the growth of global temperatures. Investigating the role of emerging mitigation technologies and their uncertainties together with the different GHG reduction targets is crucial to realize this transition. This study analyzes the uncertainties of electric vehicles' learning paths and biomass availability for biofuels, considering policy uncertainties. Since these technologies are considered possible alternatives to conventional fuels to reduce CO2 emissions in transport, it is critical to understand their future role and the possible impact of their uncertainties during the European energy system design in case of different climate ambitions. Stochastic modeling is applied to analyze associated uncertainties as an additional approach to a traditional sensitivity analysis. Our results show that decarbonization of car transport is prioritized, and electric cars appear as no-regret options in the sector's design during the energy transition. Therefore, early deployments of EVs are essential to hedge the given uncertainties independent of the hedging period's length. Longer resolution time reduces the deployment of electric vehicles in the recourse strategies compared to having a shorter one due to a delay in the cost reductions. This decline becomes more evident with the stochastic analysis. The policy uncertainty of decarbonization targets has the highest impact on the studied uncertainties on the development of the transport sector. The transport sector can show faster adjustments considering the technology portfolio's shorter lifetime. Thanks to this adjustment, the sector depicts higher decarbonization in the hedging as well as in the recourse strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2021.100707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.esr.2021.100707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2020Embargo end date: 18 Feb 2021 GermanyPublisher:MDPI AG Authors: Michael Hardinghaus; Panagiotis Papantoniou;doi: 10.3390/su12083375 , 10.18452/22501
Providing a sufficiently appropriate route environment is crucial to ensuring fair and safe biking, thus encouraging cycling as a sustainable mode of transport. At the same time, better understanding of cyclists’ preferences regarding the features of their routes and their infrastructure requirements is fundamental to evaluating improvement of the current infrastructure or the development of new infrastructure. The present study has two objectives. The first is to investigate cyclists’ route preferences by means of a choice experiment based on a stated preference survey. Subsequently, the second objective is to compare cyclist preferences in two countries with different cycling characteristics (both in infrastructure as well as cyclists’ behavior). For this purpose, a graphical online stated preferences survey was conducted in Greece and Germany. Within the framework of statistical analyses, multinomial mixed logit discrete choice models were developed that allow us to quantify the trade-offs of interest, while distinguishing between the preferences of different user groups. In addition, user requirements in Greece, as a country with a low cycling share and very little dedicated bike infrastructure, were compared to the requirements in Germany, where cycling is popular and the infrastructure is well developed. The results over the whole sample indicate that subgroups value infrastructure differently according to their specific needs. When looking at country specifics, users from Greece are significantly more willing to accept longer travel times in return for higher-quality facilities. The utility of low speed limits in mixed traffic is also different. In Germany, low speed limits offset the disturbance caused by motorized traffic, but in Greece they do not. Consequently, the results help to asses which types of infrastructure are most sustainable from a user perspective and help to set priorities when the aim is to adapt the road infrastructure efficiently in a stable strategy.
Sustainability arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 34 citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 148visibility views 148 download downloads 92 Powered bymore_vert Sustainability arrow_drop_down Publikationsserver der Humboldt-Universität zu BerlinArticle . 2020 . Peer-reviewedData sources: Publikationsserver der Humboldt-Universität zu Berlinadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12083375&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 DenmarkPublisher:Elsevier BV Cláudio Pinto; Jorge V. Barreras; Ricardo de Castro; Rui Esteves Araújo; Erik Schaltz;Abstract This paper presents a study of the combined influence of battery models and sizing strategy for hybrid and battery-based electric vehicles. In particular, the aim is to find the number of battery (and supercapacitor) cells to propel a light vehicle to run two different standard driving cycles. Three equivalent circuit models are considered to simulate the battery electrical performance: linear static, non-linear static and non-linear with first-order dynamics. When dimensioning a battery-based vehicle, less complex models may lead to a solution with more battery cells and higher costs. Despite the same tendency, when a hybrid vehicle is taken into account, the influence of the battery models is dependent on the sizing strategy. In this work, two sizing strategies are evaluated: dynamic programming and filter-based. For the latter, the complexity of the battery model has a clear influence on the result of the sizing problem. On the other hand, a modest influence is observed when a dynamic programming strategy is followed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.07.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Embargo end date: 26 Jun 2019 United Kingdom, United Kingdom, United Kingdom, United Kingdom, Norway, United Kingdom, GermanyPublisher:American Geophysical Union (AGU) Funded by:RCN | Exploring the Potential a..., RCN | Potential of bio-energy w..., DFG | Climate Engineering: Risk...RCN| Exploring the Potential and Side Effects of Climate Engineering ,RCN| Potential of bio-energy with carbon capture and storage to limit warming to 1.5°C ,DFG| Climate Engineering: Risks, Challenges, Opportunities?Peter J. Irvine; Peter J. Irvine; Ben Kravitz; Erica Hendy; Simon N. Gosling; Helene Muri; W. Daniel Kissling; Cyril Caminade; Steven J. Smith; Mark Lawrence; Andreas Oschlies; Belay T. Kassie; Dieter Gerten; Dieter Gerten;Despite a growing literature on the climate response to solar geoengineering—proposals to cool the planet by increasing the planetary albedo—there has been little published on the impacts of solar geoengineering on natural and human systems such as agriculture, health, water resources, and ecosystems. An understanding of the impacts of different scenarios of solar geoengineering deployment will be crucial for informing decisions on whether and how to deploy it. Here we review the current state of knowledge about impacts of a solar‐geoengineered climate and identify the major research gaps. We suggest that a thorough assessment of the climate impacts of a range of scenarios of solar geoengineering deployment is needed and can be built upon existing frameworks. However, solar geoengineering poses a novel challenge for climate impacts research as the manner of deployment could be tailored to pursue different objectives making possible a wide range of climate outcomes. We present a number of ideas for approaches to extend the survey of climate impacts beyond standard scenarios of solar geoengineering deployment to address this challenge. Reducing the impacts of climate change is the fundamental motivator for emissions reductions and for considering whether and how to deploy solar geoengineering. This means that the active engagement of the climate impacts research community will be important for improving the overall understanding of the opportunities, challenges, and risks presented by solar geoengineering.
CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 10visibility views 10 download downloads 61 Powered bymore_vert CORE arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2016License: CC BY NC NDFull-Text: http://urn.nb.no/URN:NBN:no-62489Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/2016ef000389&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu