- home
- Search
- Energy Research
- Open Access
- Restricted
- Open Source
- EU
- ES
- Transport Research
- Energy Research
- Open Access
- Restricted
- Open Source
- EU
- ES
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Malta, Germany, ItalyPublisher:MDPI AG Funded by:EC | MARCANEC| MARCANAuthors:
De Biase M.; De Biase M.
De Biase M. in OpenAIRE
Chidichimo F.; Chidichimo F.
Chidichimo F. in OpenAIRE
Maiolo M.; Maiolo M.
Maiolo M. in OpenAIRE
Micallef A.; Micallef A.
Micallef A. in OpenAIREdoi: 10.3390/w13213046
handle: 20.500.11770/326371
The effects of changes in climate predicted for 2100—reduction in recharge, increase in water demand and sea-level rise—on groundwater volume and saltwater intrusion have been quantified in the Maltese Islands, an archipelago located at the center of the Mediterranean Sea. A three-dimensional density dependent and heterogeneous model, working in transient conditions, was developed based on morphological and geological information. The hydraulic conductivity and porosity of the lithological formations were derived from previous tests and studies conducted on the islands. The complex fault system intersecting the area has also been included in the model. The results show that among the three considered factors affecting groundwater resources, the most significant is the increase in water demand, which is closely followed by the decrease in groundwater recharge. Sea-level rise plays a marginal role. The 80-year simulation period showed that these combined impacts would cause a loss of more than 16% of groundwater volume.
Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/21/3046/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale dell'Università della CalabriaArticle . 2021Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13213046&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Water arrow_drop_down WaterOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2073-4441/13/21/3046/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio Istituzionale dell'Università della CalabriaArticle . 2021Data sources: Archivio Istituzionale dell'Università della Calabriaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/w13213046&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal , Other literature type 2020Publisher:European Alliance for Innovation n.o. Funded by:EC | IN2STEMPO, FCT | PD/BD/128051/2016, EC | MERLINEC| IN2STEMPO ,FCT| PD/BD/128051/2016 ,EC| MERLINAuthors:
Vítor A. Morais; Vítor A. Morais
Vítor A. Morais in OpenAIRE
João L. Afonso; João L. Afonso
João L. Afonso in OpenAIRE
António P. Martins; António P. Martins
António P. Martins in OpenAIREThe huge power requirements of future railways require the usage of energy-efficient strategies towards amore intelligent railway system. The usage of on-board energy storage systems enables better usage of the traction energy with a higher degree of freedom. In this article is proposed a top-level charging controller forthe on-board and wayside railway energy storage systems. Its structure comprehends two processing levels: a real-time fuzzy logic controller for each energy storage system, and a genetic algorithm meta-heuristic, that remotely and automatically tune the fuzzy rules weight. As global results, the reduction of regenerated energy is 22.3% with the fuzzy logic controller. With the optimization strategy, this reduction can be further extendedto 28.7%. The need for a smart railway framework is also discussed towards a realistic implementation of such charging strategy. Thus, with a high degree of flexibility, the efficiency of railway energy systems can be increased with the proposed framework.
EAI Endorsed Transac... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4108/eai.14-1-2021.168136&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert EAI Endorsed Transac... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4108/eai.14-1-2021.168136&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 SpainPublisher:MDPI AG Authors:
Daniel Icaza; Daniel Icaza
Daniel Icaza in OpenAIRE
David Borge-Diez; David Borge-Diez
David Borge-Diez in OpenAIRE
Santiago Pulla Galindo; Carlos Flores-Vázquez;Santiago Pulla Galindo
Santiago Pulla Galindo in OpenAIREdoi: 10.3390/en16104045
handle: 2117/393220
This research presents a 100% renewable energy (RE) scenario by 2050 with a high share of electric vehicles on the grid (V2G) developed in Ecuador with the support of the EnergyPLAN analysis tool. Hour-by-hour data iterations were performed to determine solutions among various features, including energy storage, V2G connections that spanned the distribution system, and long-term evaluation. The high participation in V2G connections keeps the electrical system available; meanwhile, the high proportions of variable renewable energy are the pillar of the joint electrical system. The layout of the sustainable mobility scenario and the high V2G participation maintain the balance of the electrical system during most of the day, simplifying the storage equipment requirements. Consequently, the influence of V2G systems on storage is a significant result that must be considered in the energy transition that Ecuador is developing in the long term. The stored electricity will not only serve as storage for future grid use. Additionally, the V2G batteries serve as a buffer between generation from diversified renewable sources and the end-use stage.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/10/4045/pdfData sources: Multidisciplinary Digital Publishing InstituteUPCommonsArticle . 2023License: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/10/4045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104045&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/10/4045/pdfData sources: Multidisciplinary Digital Publishing InstituteUPCommonsArticle . 2023License: CC BYFull-Text: https://www.mdpi.com/1996-1073/16/10/4045Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticleLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2023 . Peer-reviewedLicense: CC BYData sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16104045&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Morocco, SpainPublisher:Elsevier BV Authors:
Pablo Quero; Pablo Quero
Pablo Quero in OpenAIRE
Javier García Sanabria; Adolfo Chica Ruiz;Javier García Sanabria
Javier García Sanabria in OpenAIREAbstract Preliminary studies demonstrate the availability of significant renewable energy potential in Spanish waters. Its use could contribute to achieving the recently updated national objectives for the generation of clean energy in the future National Energy and Climate Plan 2021–2030. Despite the different initiatives that were unsuccessfully proposed at the end of the 2000s, the current implementation of blue energy is practically zero in Spain due to the characteristics of the marine space, which limits the technical and economic viability of the projects. There are other factors, such as a complex regulatory framework, inadequate administrative processes, limited availability of information as well as social rejection of this type of facility. Like other Member States of the European Union, Spain is currently developing a process of maritime spatial planning (MSP) that should be concluded, according to RD 363/2017, with the approval of a maritime spatial plan (POEM) for each of the five existing marine demarcations. This planning will have consequences for the uses and activities of the marine environment, including marine renewable energies. It also provides an opportunity to address existing non-technical barriers and promote the deployment of blue energy facilities. This investigation studies the MSP landscape in Spain from a holistic perspective and analyzes the repercussions of future POEMs in the offshore wind sector and other marine renewable energies. It concludes by proposing a set of recommendations, based on previous experiences in other regions, aimed at facilitating the integration of clean energy policies in the future uses of this marine space.
Repositorio de Objet... arrow_drop_down Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2021License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2021.104444&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Repositorio de Objet... arrow_drop_down Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2021License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2021.104444&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 25 Jun 2024Publisher:MDPI AG Funded by:EC | GENMODEC| GENMODAuthors:
Emma Piedel; Emma Piedel
Emma Piedel in OpenAIRE
Enrico Lauth; Enrico Lauth
Enrico Lauth in OpenAIRE
Alexander Grahle; Alexander Grahle
Alexander Grahle in OpenAIRE
Dietmar Göhlich; Dietmar Göhlich
Dietmar Göhlich in OpenAIREAutomated charging technologies are becoming increasingly important in the electrification of heavy road freight transport, especially in combination with autonomous driving. This study provides a comprehensive analysis of automated charging technologies for electric heavy-duty vehicles (HDVs). It encompasses the entire spectrum of feasible technologies, including static and dynamic approaches, with each charging technology evaluated for its advantages, potentials, challenges and technology readiness level (TRL). Static conductive charging methods such as charging robots, underbody couplers, or pantographs show good potential, with pantographs being the most mature option. These technologies are progressing towards higher TRLs, with a focus on standardization and adaptability. While static wireless charging is operational for some prototype solutions, it encounters challenges related to implementation and efficiency. Dynamic conductive charging through an overhead contact line or contact rails holds promise for high-traffic HDV routes with the overhead contact line being the most developed option. Dynamic wireless charging, although facing efficiency challenges, offers the potential for seamless integration into roads and minimal wear and tear. Battery swapping is emerging as a practical solution to reduce downtime for charging, with varying levels of readiness across different implementations. To facilitate large-scale deployment, further standardization efforts are required. This study emphasizes the necessity for continued research and development to enhance efficiency, decrease costs and ensure seamless integration into existing infrastructures. Technologies that achieve this best will have the highest potential to significantly contribute to the creation of an efficiently automated and environmentally friendly transport sector.
World Electric Vehic... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj15060235&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert World Electric Vehic... arrow_drop_down https://doi.org/10.20944/prepr...Article . 2024 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj15060235&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 SpainPublisher:MDPI AG Authors:
Fernandez Pallarés, Victor; Fernandez Pallarés, Victor
Fernandez Pallarés, Victor in OpenAIRE
Pérez, Virgilio; Pérez, Virgilio
Pérez, Virgilio in OpenAIRE
Roig, Rosa; Roig, Rosa
Roig, Rosa in OpenAIREdoi: 10.3390/wevj16010005
The integration of Full Electric Vehicles (FEVs) into the smart city ecosystem is an essential step towards achieving sustainable urban mobility. This study presents a comprehensive mobility network model designed to predict and optimize the energy supply for FEVs within smart cities. The model integrates advanced components such as a Charge Station Control Center (CSCC), smart charging infrastructure, and a dynamic user interface. Important aspects include analyzing power consumption, forecasting urban energy demand, and monitoring the State of Charge (SoC) of FEV batteries using innovative algorithms validated through real-world applications in Valencia (Spain) and Ljubljana (Slovenia). Results indicate high accuracies in SoC tracking (error < 0.05%) and energy demand forecasting (MSE ~6 × 10−4), demonstrating the model’s reliability and adaptability across diverse urban environments. This research contributes to the development of resilient, efficient, and sustainable smart city frameworks, emphasizing real-time data-driven decision-making in energy and mobility management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj16010005&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj16010005&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Embargo end date: 15 Aug 2020 SpainPublisher:Elsevier BV Authors: Trancho, Elena;
Ibarra Basabe, Edorta; Arias Pujol, Antoni;Ibarra Basabe, Edorta
Ibarra Basabe, Edorta in OpenAIRE
Kortabarria, Iñigo; +4 AuthorsKortabarria, Iñigo
Kortabarria, Iñigo in OpenAIRETrancho, Elena;
Ibarra Basabe, Edorta; Arias Pujol, Antoni;Ibarra Basabe, Edorta
Ibarra Basabe, Edorta in OpenAIRE
Kortabarria, Iñigo; Prieto Arce, Pablo;Kortabarria, Iñigo
Kortabarria, Iñigo in OpenAIRE
Martínez de Alegría, Iñigo; Martínez de Alegría, Iñigo
Martínez de Alegría, Iñigo in OpenAIRE
Andreu, Jon; Andreu, Jon
Andreu, Jon in OpenAIRE
López, Iraide; López, Iraide
López, Iraide in OpenAIREhandle: 2117/118056
Sensorless control of Electric Vehicle (EV) drives is considered to be an effective approach to improve system reliability and to reduce component costs. In this paper, relevant aspects relating to the sensorless operation of EVs are reported. As an initial contribution, a hybrid sensorless control algorithm is presented that is suitable for a variety of synchronous machines. The proposed method is simple to implement and its relatively low computational cost is a desirable feature for automotive microprocessors with limited computational capabilities. An experimental validation of the proposal is performed on a full-scale automotive grade platform housing a 51¿kW Permanent Magnet assisted Synchronous Reluctance Machine (PM-assisted SynRM). Due to the operational requirements of EVs, both the strategy presented in this paper and other hybrid sensorless control strategies rely on High Frequency Injection (HFI) techniques, to determine the rotor position at standstill and at low speeds. The introduction of additional high frequency perturbations increases the power losses, thereby reducing the overall efficiency of the drive. Hence, a second contribution of this work is a simulation platform for the characterization of power losses in both synchronous machines and a Voltage Source Inverters (VSI). Finally, as a third contribution and considering the central concerns of efficiency and autonomy in EV applications, the impact of power losses are analyzed. The operational requirements of High Frequency Injection (HFI) are experimentally obtained and, using state-of-the-art digital simulation, a detailed loss analysis is performed during real automotive driving cycles. Based on the results, practical considerations are presented in the conclusions relating to EV sensorless control. Peer Reviewed
UPCommons arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2018Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.019&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert UPCommons arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAUPCommons. Portal del coneixement obert de la UPCArticle . 2018Data sources: UPCommons. Portal del coneixement obert de la UPCadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2018.05.019&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 ItalyPublisher:Elsevier BV Funded by:EC | BatteReverse, EC | RECIRCULATE, EC | FREE4LIB +1 projectsEC| BatteReverse ,EC| RECIRCULATE ,EC| FREE4LIB ,EC| REBELIONAuthors:
Kaarlela, Tero; Kaarlela, Tero
Kaarlela, Tero in OpenAIRE
Villagrossi, Enrico; Villagrossi, Enrico
Villagrossi, Enrico in OpenAIRE
Rastegarpanah, Alireza; Rastegarpanah, Alireza
Rastegarpanah, Alireza in OpenAIRE
San-Miguel-Tello, Alberto; +1 AuthorsSan-Miguel-Tello, Alberto
San-Miguel-Tello, Alberto in OpenAIRE
Kaarlela, Tero; Kaarlela, Tero
Kaarlela, Tero in OpenAIRE
Villagrossi, Enrico; Villagrossi, Enrico
Villagrossi, Enrico in OpenAIRE
Rastegarpanah, Alireza; Rastegarpanah, Alireza
Rastegarpanah, Alireza in OpenAIRE
San-Miguel-Tello, Alberto; San-Miguel-Tello, Alberto
San-Miguel-Tello, Alberto in OpenAIRE
Pitkäaho, Tomi; Pitkäaho, Tomi
Pitkäaho, Tomi in OpenAIREhandle: 20.500.14243/487961
This review examines the robotic disassembly of electric vehicle batteries, a critical concern as the adoption of electric vehicles increases worldwide. This work provides a comprehensive overview of the current state of the art in robotic disassembly and outlines future directions for research and policy in this essential area. The study highlights the urgent need for sustainable management practices to mitigate the environmental impact of end-of-life batteries. It evaluates current robotic technologies, strategies for human–robot collaboration, and the role of artificial intelligence in enhancing the efficiency and safety of these processes. The investigation identifies significant challenges, including the absence of standardised designs and the inherent risks of handling batteries. The feasibility of adopting design-for-disassembly principles is explored as a way to improve recycling and repurposing efforts. The review suggests avenues for future research, focusing on developing advanced robotics solutions and establishing supportive regulatory frameworks. These efforts aim to foster sustainable practices in the lifecycle management of electric vehicle batteries, contributing to the broader goal of environmental sustainability in the electric vehicle and battery industries. Previous reviews generally focus on recycling electric vehicle battery chemistry and materials; this review complements previous research by focusing on robotised disassembly.
IRIS Cnr arrow_drop_down Journal of Manufacturing SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Manufacturing SystemsArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmsy.2024.05.013&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert IRIS Cnr arrow_drop_down Journal of Manufacturing SystemsArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Manufacturing SystemsArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jmsy.2024.05.013&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Denmark, Netherlands, Norway, NorwayPublisher:MDPI AG Funded by:EC | POLFREEEC| POLFREEAuthors: Marc Dijk;
Eric Iversen; Eric Iversen
Eric Iversen in OpenAIRE
Antje Klitkou; René Kemp; +3 AuthorsAntje Klitkou
Antje Klitkou in OpenAIREMarc Dijk;
Eric Iversen; Eric Iversen
Eric Iversen in OpenAIRE
Antje Klitkou; René Kemp;Antje Klitkou
Antje Klitkou in OpenAIRE
Simon Bolwig; Mads Borup; Peter Møllgaard;Simon Bolwig
Simon Bolwig in OpenAIREdoi: 10.3390/en13020475
handle: 11250/2637183
This paper evaluates how policy shaped the emergence of electric mobility in three countries, Norway, the Netherlands and Denmark, between 2010 and 2015. Whereas previous studies have looked at the effects of separate policy instruments, this paper gives insights in the interaction effects of instruments on the diffusion of battery electric cars between five policy areas. Based on analysis of synergetic, contradictory and pre-conditional effects, we find that an effective policy mix includes: fiscal incentives that mirror the actual carbon footprint of the respective vehicles; non-fiscal demand-side incentives; centrally financed and/or coordinated charging infrastructure; clarity regarding the choice of technology that will be supported. Moreover, development of a domestic, e-mobility-related industry and a high share of renewable energy strengthens the legitimization of e-mobility support. The findings help designing policy mixes in the transition to electric mobility.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/2/475/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticle . 2020License: CC BYData sources: Maastricht University | MUMC+ Research InformationOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13020475&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/2/475/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticle . 2020License: CC BYData sources: Maastricht University | MUMC+ Research InformationOnline Research Database In TechnologyArticle . 2020Data sources: Online Research Database In Technologyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13020475&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2014 SpainPublisher:MDPI AG Authors:
Miguel Ángel López-Navarro; Miguel Ángel López-Navarro
Miguel Ángel López-Navarro in OpenAIREdoi: 10.3390/su6031544
Today, there is widespread consensus about the notable, yet simultaneously growing, negative environmental impacts generated by the transportation sector. Experts working in a number of different fields consider the current situation to be unsustainable and possible measures to reduce emissions and foster sustainability are being encouraged. The European Commission has highlighted the need to shift away from unimodal road transport toward a greater use of intermodal transport through, for example, motorways of the sea, in light of the evidence that the former makes a significant contribution to increased CO2 emissions. However, although there is a general perception that sea transport is environmentally preferable to road transport, recent studies are beginning to question this assumption. Moreover, little research has been conducted to quantify environmental aspects and incorporate them into the decision-making processes involved in the modal shift. This study first reviews the existing literature to examine the extent to which environmental aspects are relevant in the modal choice in the case of short sea shipping and motorways of the sea. Related to this, the study also evaluates the role that different agents may play in making decisions about choice of mode, taking into consideration environmental aspects. Secondly, we use the values the European Commission provides to calculate external costs for the Marco Polo freight transport project proposals (call 2013) to estimate the environmental costs for several routes (a total of 72), comparing the use of road haulage with the intermodal option that incorporates the Spanish motorways of the sea. The results of this comparative analysis show that the intermodal option is not always the best choice in environmental terms. Consequently, the traditional environmental argument to justify this alternative must be used carefully.
Sustainability arrow_drop_down SustainabilityOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2071-1050/6/3/1544/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BYData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6031544&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2014License: CC BYFull-Text: http://www.mdpi.com/2071-1050/6/3/1544/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2014Data sources: Recolector de Ciencia Abierta, RECOLECTARepositori Institucional de la Universitat Jaume IArticle . 2014License: CC BYData sources: Repositori Institucional de la Universitat Jaume Iadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su6031544&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
