- home
- Search
- Energy Research
- other engineering and technologies
- 14. Life underwater
- Transport Research
- Energy Research
- other engineering and technologies
- 14. Life underwater
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Iulia Alina Anton; Liliana Rusu; Catalin Anton;doi: 10.3390/jmse7070206
The objective of this paper is to present an integrated picture of the relationship between the waves and the modifications induced by them in the Romanian shoreline. Thus, the hydrodynamic processes at the Mangalia beaches, located in the southern side of the Romanian nearshore, are simulated using the modeling system Mike 21 SW (MIKE 21 Spectral Waves), developed by the Danish Hydration Institute (DHI). This is one of the newest spectral wave models, which can be used for regional- and local-scale simulations. The model has been calibrated and validated using buoy measurements. The analysis of the statistical parameters shows a good match between the model and the observed data. Furthermore, a model to compare the differences that occur on the beach profiles between the cold and warm seasons was developed. The results obtained indicate a reinforcement of the coastal erosion in the winter, when the waves are stronger (especially in January and February).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7070206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7070206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, Colombia, ColombiaPublisher:MDPI AG Jorge Herrera; Hernando Hernández-Hamón; Laura Fajardo; Néstor Ardila; Andrés Franco; Asier Ibeas;doi: 10.3390/jmse10040519
handle: 20.500.12010/32160
This article presents the creation of bathymetric cartography for San Andrés, Providencia, Santa Catalina, and the Colombian Caribbean to find suitable areas for implementing an ocean thermal energy conversion (OTEC) system. The methodology to obtain the bathymetry uses data collection, digitization, and interpolation. The data are processed using the Surfer® software; in this way, the digital terrain model (DTM) maps are generated for each sector. The objective is to find the minimum distance to reach a depth of 1000 m since this is the distance where a temperature difference of 20 ∘C is obtained. Thus, it is possible to identify suitable areas to locate an onshore or offshore plant in Santa Marta, Barranquilla, southwestern and northwestern San Andrés, the western part of Santa Catalina, and the southwestern part of Providencia.
Expeditio - Reposito... arrow_drop_down Expeditio - Repositorio Institucional Universidad de Bogotá Jorge Tadeo Lozano (UTADEO)Article . 2022Full-Text: https://www.mdpi.com/2077-1312/10/4/519Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Expeditio - Reposito... arrow_drop_down Expeditio - Repositorio Institucional Universidad de Bogotá Jorge Tadeo Lozano (UTADEO)Article . 2022Full-Text: https://www.mdpi.com/2077-1312/10/4/519Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Nicolas Guillou; Georges Chapalain; Philippe Sergent;doi: 10.3390/jmse10081081
Accurate evaluations of the available and technically exploitable wave energy resources are fundamental to optimise the design and implementation of energy converters in the marine environment. However, long-term resource assessments have been primarily conducted for large-scale devices in offshore energetic locations, thus ignoring onshore sites such as harbours with easier access, installation and accessibility to devices. Here, we conducted a ten-year evaluation of the performance of wave energy converters (WECs) off Roscoff harbour (northern Brittany, France). As the site of application shows moderately energetic conditions, particular attention was dedicated to small-scale WECs by adapting ratings to the local wave climate. This investigation combined (i) a high-spatial resolution (~5 m) hindcast database established with SWAN with (ii) generic and specific assessments of WEC performance. We exploited, in particular, scaled power matrices derived from the Oyster technology to assess the capacity factors and energy output of devices. In addition to characterising the annual and seasonal variability of the available resource off the harbour breakwater, this investigation provided further insights for optimising WECs, including experimental prototypes. It is therefore suggested that this type of evaluation be considered for the assessment of small- and/or full-scale energy converters in the marine environment.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10081081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10081081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Nicolas Guillou; George Lavidas; Georges Chapalain;doi: 10.3390/jmse8090705
Over recent decades, the exploitation of wave energy resources has sparked a wide range of technologies dedicated to capturing the available power with maximum efficiency, reduced costs, and minimum environmental impacts. These different objectives are fundamental to guarantee the development of the marine wave energy sector, but require also refined assessments of available resource and expected generated power to optimize devices designs and locations. We reviewed here the most recent resource characterizations starting from (i) investigations based on available observations (in situ and satellite) and hindcast databases to (ii) refined numerical simulations specifically dedicated to wave power assessments. After an overall description of formulations and energy metrics adopted in resource characterization, we exhibited the benefits, limitations and potential of the different methods discussing results obtained in the most energetic locations around the world. Particular attention was dedicated to uncertainties in the assessment of the available and expected powers associated with wave–climate temporal variability, physical processes (such as wave–current interactions), model implementation and energy extraction. This up-to-date review provided original methods complementing the standard technical specifications liable to feed advanced wave energy resource assessment.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8090705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8090705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Jaime Cortés; Felipe Lucero; Leandro Suarez; Cristian Escauriaza; Sergio A. Navarrete; Gonzalo Tampier; Cristian Cifuentes; Rodrigo Cienfuegos; Daniel Manriquez; Bárbara Parragué; Nicole Osiadacz; Randy Finke;doi: 10.3390/jmse10091249
Current advances in wave energy technologies have enabled the development of new integrated measurement platforms powered by the energy of wave motion. Instrumentation is now being deployed for the long-term observation of the coastal ocean, with the objectives of analyzing the performance of wave energy converters (WECs) and studying their interactions with the surrounding environment and marine life. In this work, we present the most relevant findings of the installation and initial operation of the Open Sea Lab (OSL), the first coastal observatory in Latin America powered entirely by a WEC device. We evaluated the preliminary data regarding the combined operation of the system, the generation of energy, and the observations obtained by the continuous monitoring of physical variables at the site. The data showed the seasonal variability of the energy produced by the WEC for a range of wave heights during the period of observation. We also investigated the rapid development of biofouling on mooring lines, junction boxes, and other parts of the system, which is characteristic of the settlement and growth of organisms in this ocean region. These analyses show how this new facility will advance our understanding of the coastal environment in the south Pacific Ocean and foster new interdisciplinary collaborations addressing environmental and technical challenges, thereby contributing to the development of wave energy on the continent.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Alicia M. Amerson; Tyler M. Harris; Savanna R. Michener; Cailene M. Gunn; Joseph H. Haxel;doi: 10.3390/jmse10050586
Recommendations derived from papers documenting the Triton Field Trials (TFiT) study of marine energy environmental monitoring technology and methods under the Triton Initiative (Triton), as reported in this Special Issue, are summarized here. Additionally, a brief synopsis describes how to apply the TFiT recommendations to establish an environmental monitoring campaign, and provides an overview describing the importance of identifying the optimal time to perform such campaigns. The approaches for tracking and measuring the effectiveness of recommendations produced from large environmental monitoring campaigns among the stakeholder community are discussed. The discussion extends beyond the initial scope of TFiT to encourage discussion regarding marine energy sustainability that includes life cycle assessment and other life cycle sustainability methodologies. The goal is to inspire stakeholder collaboration across topics associated with the marine energy industry, including diversity and inclusion, energy equity, and how Triton’s work connects within the context of the three pillars of energy sustainability: environment, economy, and society.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10050586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10050586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Brian Polagye; James Joslin; Paul Murphy; Emma Cotter; Mitchell Scott; Paul Gibbs; Christopher Bassett; Andrew Stewart;doi: 10.3390/jmse8080553
handle: 1912/26257
Integrated instrumentation packages are an attractive option for environmental and ecological monitoring at marine energy sites, as they can support a range of sensors in a form factor compact enough for the operational constraints posed by energetic waves and currents. Here we present details of the architecture and performance for one such system—the Adaptable Monitoring Package—which supports active acoustic, passive acoustic, and optical sensing to quantify the physical environment and animal presence at marine energy sites. we describe cabled and autonomous deployments and contrast the relatively limited system capabilities in an autonomous operating mode with more expansive capabilities, including real-time data processing, afforded by shore power or in situ power harvesting from waves. Across these deployments, we describe sensor performance, outcomes for biological target classification algorithms using data from multibeam sonars and optical cameras, and the effectiveness of measures to limit biofouling and corrosion. On the basis of these experiences, we discuss the demonstrated requirements for integrated instrumentation, possible operational concepts for monitoring the environmental and ecological effects of marine energy converters using such systems, and the engineering trade-offs inherent in their development. Overall, we find that integrated instrumentation can provide powerful capabilities for observing rare events, managing the volume of data collected, and mitigating potential bias to marine animal behavior. These capabilities may be as relevant to the broader oceanographic community as they are to the emerging marine energy sector.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3390/jmse8080553Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8080553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3390/jmse8080553Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8080553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Ji-Yoon Kim; Jong-Hak Lee; Ji-Hyun Oh; Jin-Seok Oh;doi: 10.3390/jmse10010032
Efficient vessel operation may reduce operational costs and increase profitability. This is in line with the direction pursued by many marine industry stakeholders such as vessel operators, regulatory authorities, and policymakers. It is also financially justifiable, as fuel oil consumption (FOC) maintenance costs are reduced by forecasting the energy consumption of electric propulsion vessels. Although recent technological advances demand technology for electric propulsion vessel electric power load forecasting, related studies are scarce. Moreover, previous studies that forecasted the loads excluded various factors related to electric propulsion vessels and failed to reflect the high variability of loads. Therefore, this study aims to examine the efficiency of various multialgorithms regarding methods of forecasting electric propulsion vessel energy consumption from various data sampling frequencies. For this purpose, there are numerous machine learning algorithm sets based on convolutional neural network (CNN) and long short-term memory (LSTM) combination methods. The methodology developed in this study is expected to be utilized in training the optimal energy consumption forecasting model, which will support tracking of degraded performance in vessels, optimize transportation, reflect emissions accurately, and be applied ultimately as a basis for route optimization purposes.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10010032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10010032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Zhijie Feng; Po Hu; Shuiqing Li; Dongxue Mo;doi: 10.3390/jmse10060836
Accurate wave prediction can help avoid disasters. In this study, the significant wave height (SWH) prediction performances of the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit network (GRU) were compared. The 10 m u-component of wind (U10), 10 m v-component of wind (V10), and SWH of the previous 24 h were used as input parameters to predict the SWHs of the future 1, 3, 6, 12, and 24 h. The SWH prediction model was established at three different sites located in the Bohai Sea, the East China Sea, and the South China Sea, separately. The experimental results show that the performance of LSTM and GRU networks based on the gating mechanism was better than that of traditional RNNs, and the performances of the LSTM and GRU networks were comparable. The EMD method was found to be useful in the improvement of the LSTM network to forecast the significant wave heights of 12 and 24 h.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10060836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10060836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Hydrodynamic modelling fo..., UKRI | EcoWatt2050UKRI| Hydrodynamic modelling for sustainable aquaculture : Placement with Marine Scotland Science ,UKRI| EcoWatt2050Sandy Kerr; Simon Mark Waldman; Simon Mark Waldman; David K. Woolf; Stephanie Weir; R. O'Hara Murray;Abstract Tidal stream energy technology has progressed to a point where commercial exploitation of this sustainable resource is practical, but tidal physics dictates interactions between tidal farms that raise political, legal and managerial challenges that are yet to be met. Fully optimising the design of a turbine array requires its developer to know about other farms that will be built nearby in the future. Consequently future developments, even those in adjacent channels, have the potential to impact on project efficiency. Here we review the relevant physics, consider the implications for marine policy, and discuss potential solutions. Possible management paths range from minimal regulation to prioritise a free market, to strongly interventionist approaches that prioritise efficient resource use. An attractive exemplar of the latter is unitization, an approach to resource allocation widely used in the oil and gas industry. We argue that an interventionist approach is necessary if the greatest possible energy yield is to be produced for a given level of environmental impact.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Authors: Iulia Alina Anton; Liliana Rusu; Catalin Anton;doi: 10.3390/jmse7070206
The objective of this paper is to present an integrated picture of the relationship between the waves and the modifications induced by them in the Romanian shoreline. Thus, the hydrodynamic processes at the Mangalia beaches, located in the southern side of the Romanian nearshore, are simulated using the modeling system Mike 21 SW (MIKE 21 Spectral Waves), developed by the Danish Hydration Institute (DHI). This is one of the newest spectral wave models, which can be used for regional- and local-scale simulations. The model has been calibrated and validated using buoy measurements. The analysis of the statistical parameters shows a good match between the model and the observed data. Furthermore, a model to compare the differences that occur on the beach profiles between the cold and warm seasons was developed. The results obtained indicate a reinforcement of the coastal erosion in the winter, when the waves are stronger (especially in January and February).
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7070206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse7070206&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Spain, Colombia, ColombiaPublisher:MDPI AG Jorge Herrera; Hernando Hernández-Hamón; Laura Fajardo; Néstor Ardila; Andrés Franco; Asier Ibeas;doi: 10.3390/jmse10040519
handle: 20.500.12010/32160
This article presents the creation of bathymetric cartography for San Andrés, Providencia, Santa Catalina, and the Colombian Caribbean to find suitable areas for implementing an ocean thermal energy conversion (OTEC) system. The methodology to obtain the bathymetry uses data collection, digitization, and interpolation. The data are processed using the Surfer® software; in this way, the digital terrain model (DTM) maps are generated for each sector. The objective is to find the minimum distance to reach a depth of 1000 m since this is the distance where a temperature difference of 20 ∘C is obtained. Thus, it is possible to identify suitable areas to locate an onshore or offshore plant in Santa Marta, Barranquilla, southwestern and northwestern San Andrés, the western part of Santa Catalina, and the southwestern part of Providencia.
Expeditio - Reposito... arrow_drop_down Expeditio - Repositorio Institucional Universidad de Bogotá Jorge Tadeo Lozano (UTADEO)Article . 2022Full-Text: https://www.mdpi.com/2077-1312/10/4/519Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Expeditio - Reposito... arrow_drop_down Expeditio - Repositorio Institucional Universidad de Bogotá Jorge Tadeo Lozano (UTADEO)Article . 2022Full-Text: https://www.mdpi.com/2077-1312/10/4/519Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2022License: CC BYData sources: Diposit Digital de Documents de la UABadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10040519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Nicolas Guillou; Georges Chapalain; Philippe Sergent;doi: 10.3390/jmse10081081
Accurate evaluations of the available and technically exploitable wave energy resources are fundamental to optimise the design and implementation of energy converters in the marine environment. However, long-term resource assessments have been primarily conducted for large-scale devices in offshore energetic locations, thus ignoring onshore sites such as harbours with easier access, installation and accessibility to devices. Here, we conducted a ten-year evaluation of the performance of wave energy converters (WECs) off Roscoff harbour (northern Brittany, France). As the site of application shows moderately energetic conditions, particular attention was dedicated to small-scale WECs by adapting ratings to the local wave climate. This investigation combined (i) a high-spatial resolution (~5 m) hindcast database established with SWAN with (ii) generic and specific assessments of WEC performance. We exploited, in particular, scaled power matrices derived from the Oyster technology to assess the capacity factors and energy output of devices. In addition to characterising the annual and seasonal variability of the available resource off the harbour breakwater, this investigation provided further insights for optimising WECs, including experimental prototypes. It is therefore suggested that this type of evaluation be considered for the assessment of small- and/or full-scale energy converters in the marine environment.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10081081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10081081&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Nicolas Guillou; George Lavidas; Georges Chapalain;doi: 10.3390/jmse8090705
Over recent decades, the exploitation of wave energy resources has sparked a wide range of technologies dedicated to capturing the available power with maximum efficiency, reduced costs, and minimum environmental impacts. These different objectives are fundamental to guarantee the development of the marine wave energy sector, but require also refined assessments of available resource and expected generated power to optimize devices designs and locations. We reviewed here the most recent resource characterizations starting from (i) investigations based on available observations (in situ and satellite) and hindcast databases to (ii) refined numerical simulations specifically dedicated to wave power assessments. After an overall description of formulations and energy metrics adopted in resource characterization, we exhibited the benefits, limitations and potential of the different methods discussing results obtained in the most energetic locations around the world. Particular attention was dedicated to uncertainties in the assessment of the available and expected powers associated with wave–climate temporal variability, physical processes (such as wave–current interactions), model implementation and energy extraction. This up-to-date review provided original methods complementing the standard technical specifications liable to feed advanced wave energy resource assessment.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8090705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8090705&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Jaime Cortés; Felipe Lucero; Leandro Suarez; Cristian Escauriaza; Sergio A. Navarrete; Gonzalo Tampier; Cristian Cifuentes; Rodrigo Cienfuegos; Daniel Manriquez; Bárbara Parragué; Nicole Osiadacz; Randy Finke;doi: 10.3390/jmse10091249
Current advances in wave energy technologies have enabled the development of new integrated measurement platforms powered by the energy of wave motion. Instrumentation is now being deployed for the long-term observation of the coastal ocean, with the objectives of analyzing the performance of wave energy converters (WECs) and studying their interactions with the surrounding environment and marine life. In this work, we present the most relevant findings of the installation and initial operation of the Open Sea Lab (OSL), the first coastal observatory in Latin America powered entirely by a WEC device. We evaluated the preliminary data regarding the combined operation of the system, the generation of energy, and the observations obtained by the continuous monitoring of physical variables at the site. The data showed the seasonal variability of the energy produced by the WEC for a range of wave heights during the period of observation. We also investigated the rapid development of biofouling on mooring lines, junction boxes, and other parts of the system, which is characteristic of the settlement and growth of organisms in this ocean region. These analyses show how this new facility will advance our understanding of the coastal environment in the south Pacific Ocean and foster new interdisciplinary collaborations addressing environmental and technical challenges, thereby contributing to the development of wave energy on the continent.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10091249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Alicia M. Amerson; Tyler M. Harris; Savanna R. Michener; Cailene M. Gunn; Joseph H. Haxel;doi: 10.3390/jmse10050586
Recommendations derived from papers documenting the Triton Field Trials (TFiT) study of marine energy environmental monitoring technology and methods under the Triton Initiative (Triton), as reported in this Special Issue, are summarized here. Additionally, a brief synopsis describes how to apply the TFiT recommendations to establish an environmental monitoring campaign, and provides an overview describing the importance of identifying the optimal time to perform such campaigns. The approaches for tracking and measuring the effectiveness of recommendations produced from large environmental monitoring campaigns among the stakeholder community are discussed. The discussion extends beyond the initial scope of TFiT to encourage discussion regarding marine energy sustainability that includes life cycle assessment and other life cycle sustainability methodologies. The goal is to inspire stakeholder collaboration across topics associated with the marine energy industry, including diversity and inclusion, energy equity, and how Triton’s work connects within the context of the three pillars of energy sustainability: environment, economy, and society.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10050586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10050586&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Brian Polagye; James Joslin; Paul Murphy; Emma Cotter; Mitchell Scott; Paul Gibbs; Christopher Bassett; Andrew Stewart;doi: 10.3390/jmse8080553
handle: 1912/26257
Integrated instrumentation packages are an attractive option for environmental and ecological monitoring at marine energy sites, as they can support a range of sensors in a form factor compact enough for the operational constraints posed by energetic waves and currents. Here we present details of the architecture and performance for one such system—the Adaptable Monitoring Package—which supports active acoustic, passive acoustic, and optical sensing to quantify the physical environment and animal presence at marine energy sites. we describe cabled and autonomous deployments and contrast the relatively limited system capabilities in an autonomous operating mode with more expansive capabilities, including real-time data processing, afforded by shore power or in situ power harvesting from waves. Across these deployments, we describe sensor performance, outcomes for biological target classification algorithms using data from multibeam sonars and optical cameras, and the effectiveness of measures to limit biofouling and corrosion. On the basis of these experiences, we discuss the demonstrated requirements for integrated instrumentation, possible operational concepts for monitoring the environmental and ecological effects of marine energy converters using such systems, and the engineering trade-offs inherent in their development. Overall, we find that integrated instrumentation can provide powerful capabilities for observing rare events, managing the volume of data collected, and mitigating potential bias to marine animal behavior. These capabilities may be as relevant to the broader oceanographic community as they are to the emerging marine energy sector.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3390/jmse8080553Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8080553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2020License: CC BYFull-Text: https://doi.org/10.3390/jmse8080553Data sources: Bielefeld Academic Search Engine (BASE)Journal of Marine Science and EngineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse8080553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Ji-Yoon Kim; Jong-Hak Lee; Ji-Hyun Oh; Jin-Seok Oh;doi: 10.3390/jmse10010032
Efficient vessel operation may reduce operational costs and increase profitability. This is in line with the direction pursued by many marine industry stakeholders such as vessel operators, regulatory authorities, and policymakers. It is also financially justifiable, as fuel oil consumption (FOC) maintenance costs are reduced by forecasting the energy consumption of electric propulsion vessels. Although recent technological advances demand technology for electric propulsion vessel electric power load forecasting, related studies are scarce. Moreover, previous studies that forecasted the loads excluded various factors related to electric propulsion vessels and failed to reflect the high variability of loads. Therefore, this study aims to examine the efficiency of various multialgorithms regarding methods of forecasting electric propulsion vessel energy consumption from various data sampling frequencies. For this purpose, there are numerous machine learning algorithm sets based on convolutional neural network (CNN) and long short-term memory (LSTM) combination methods. The methodology developed in this study is expected to be utilized in training the optimal energy consumption forecasting model, which will support tracking of degraded performance in vessels, optimize transportation, reflect emissions accurately, and be applied ultimately as a basis for route optimization purposes.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10010032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10010032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Zhijie Feng; Po Hu; Shuiqing Li; Dongxue Mo;doi: 10.3390/jmse10060836
Accurate wave prediction can help avoid disasters. In this study, the significant wave height (SWH) prediction performances of the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit network (GRU) were compared. The 10 m u-component of wind (U10), 10 m v-component of wind (V10), and SWH of the previous 24 h were used as input parameters to predict the SWHs of the future 1, 3, 6, 12, and 24 h. The SWH prediction model was established at three different sites located in the Bohai Sea, the East China Sea, and the South China Sea, separately. The experimental results show that the performance of LSTM and GRU networks based on the gating mechanism was better than that of traditional RNNs, and the performances of the LSTM and GRU networks were comparable. The EMD method was found to be useful in the improvement of the LSTM network to forecast the significant wave heights of 12 and 24 h.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10060836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 38 citations 38 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10060836&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Hydrodynamic modelling fo..., UKRI | EcoWatt2050UKRI| Hydrodynamic modelling for sustainable aquaculture : Placement with Marine Scotland Science ,UKRI| EcoWatt2050Sandy Kerr; Simon Mark Waldman; Simon Mark Waldman; David K. Woolf; Stephanie Weir; R. O'Hara Murray;Abstract Tidal stream energy technology has progressed to a point where commercial exploitation of this sustainable resource is practical, but tidal physics dictates interactions between tidal farms that raise political, legal and managerial challenges that are yet to be met. Fully optimising the design of a turbine array requires its developer to know about other farms that will be built nearby in the future. Consequently future developments, even those in adjacent channels, have the potential to impact on project efficiency. Here we review the relevant physics, consider the implications for marine policy, and discuss potential solutions. Possible management paths range from minimal regulation to prioritise a free market, to strongly interventionist approaches that prioritise efficient resource use. An attractive exemplar of the latter is unitization, an approach to resource allocation widely used in the oil and gas industry. We argue that an interventionist approach is necessary if the greatest possible energy yield is to be produced for a given level of environmental impact.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpol.2019.103611&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu