- home
- Search
- Energy Research
- IN
- Energy Research
- Tsinghua University
- Energy Research
- IN
- Energy Research
- Tsinghua University
description Publicationkeyboard_double_arrow_right Conference object , Article 2011Publisher:IEEE Authors: Li Qian; Yukuan Jiang;In this paper, a numerical method coupling moment method with circuit theory is used to analyze the influence of the grounding material's property on the performance of grounding grids. It can be seen that for a large grounding grid, when the soil resistivity is small, the influence of both resistivity and permeability of grounding material on the performance of grounding grids is great. If the frequency is not very high, the grounding material's resistivity can affect the performance of the grounding grid obviously. If the frequency is very low or very high, the effect of the grounding material's permeability on the performance of the grounding grid is small, while the effect is obvious at other frequency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/apl.2011.6111058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/apl.2011.6111058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | POEMEC| POEMSubash Dhar; Michel G.J. den Elzen; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Bas van Ruijven; Priyadarshi R. Shukla; Paul L. Lucas;This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2 °C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report , Research , Preprint , Journal 2018Embargo end date: 10 Jul 2018 Italy, Hungary, Portugal, Germany, Spain, Switzerland, Belgium, United States, Italy, United Kingdom, United States, Germany, United States, United States, Portugal, France, United Kingdom, Italy, Italy, Hungary, Greece, United Kingdom, Brazil, France, United Kingdom, Germany, FrancePublisher:Elsevier BV Publicly fundedFunded by:EC | AMVA4NewPhysics, , GSRIEC| AMVA4NewPhysics ,[no funder available] ,GSRINathan Mirman; Riccardo Paramatti; Annika Vanhoefer; Thomas Ferguson; Thierry Maerschalk; Gregor Mittag; Faridah Mohamad Idris; Cesare Calabria; Sanjay Padhi; Daniele Trocino; Carlos Florez; Michal Olszewski; David Cussans; Luca Pacher; Grant Riley; Marco Alexander Harrendorf; Giacomo Ortona; Georgios Daskalakis; Shuichi Kunori; William John Womersley; Sandra S. Padula; Apichart Hortiangtham; James Rohlf; Heiner Tholen; Konrad Deiters; Vincenzo Daponte; Yacine Haddad; Carlo Battilana; Prakash Thapa; Weimin Wu; Gino Bolla; Alessia Tricomi; Dhanush Anil Hangal; Kirika Uchida; Pierre Piroué; Davide Cieri; Peter Wittich; Federica Primavera; Samuel Bein; Andrey Popov; Andrew Hart; Salvatore Costa; Martino Margoni; Martino Margoni; Markus Spanring; Alice Cocoros; Andreas Kornmayer; Marco Paganoni; Marco Paganoni; Suman Chatterjee; Robert Fischer; Michael Reichmann; Marina Chadeeva; Fábio Lúcio Alves; Jared Turkewitz; Houmani El Mamouni; Johan Borg; Ta-Yung Ling; Thi Hien Doan; Andris Skuja; Amina Zghiche; Shervin Nourbakhsh; Damir Lelas; Fabrizio Margaroli; Kai Yi; Fred-Markus Helmut Stober; Yi-ting Duh; Nathan Kellams; Russell Richard Betts; Johannes Grossmann; Zoltan Laszlo Trocsanyi; Andre Sznajder; Alessio Magitteri; Oliver Buchmuller; Ferdinando Giordano; David Colling; Daniel Robert Marlow; J William Gary; Jan Krolikowski; Souvik Das; Yongbin Feng; Wit Busza; Rachael Bucci; Jack Wright; Georgios Mavromanolakis; Luiz Mundim; Konstantinos Theofilatos; Richard Loveless; Elizabeth Locci; Olga Kodolova; Ferenc Sikler; Cristina Oropeza Barrera; Giancarlo Mantovani; Ada Solano; Nikolay Terentyev; Paul Sheldon; Robert Klanner; Zhoudunming Tu; Paul David Luckey; Mia Tosi; Roumyana Hadjiiska; Mauro Verzetti; Ravi Janjam; Daniele Vadruccio; Aobo Zhang; Pietro Faccioli; Helio Nogima; Peter Thomassen; Ian R Tomalin; Thomas James; Stephan Linn; Martti Raidal; Iurii Antropov; Rino Castaldi; Douglas Berry; Susan Dittmer; Thomas Weiler; Simranjit Singh Chhibra; James Alexander; Andrew Mehta; Yang Yang; Ksenia Shchelina; Igor Bayshev; Alberto Sánchez Hernández; Helena Malbouisson; Rafael Teixeira De Lima; Christian Veelken; Alfredo Castaneda Hernandez; Yuta Takahashi; Steven R. Simon; Simon Kudella; Quan Wang; Armen Tumasyan; Diego Beghin; Diego Ciangottini; Yagya Raj Joshi; Martina Vit; Engin Eren; Livio Fanò; Ajeeta Khatiwada; Frank Hartmann; Tao Huang; David Mark Raymond; Shubham Pandey; Aditee Rane; Frédéric Drouhin; Andreas Hinzmann; C. A. Carrillo Montoya; Joseph Heideman; Ignacio Redondo; Marc M Baarmand; Alexander Zhokin; Clemens Wöhrmann; Adolf Bornheim; Maxwell Chertok; Luca Perrozzi; Gigi Rolandi; Valentin Sulimov; Basil Schneider; Alexander Ershov; Kunal Kothekar; Alessandro Montanari; Thomas Esch; Kelly Beernaert; Emanuele Di Marco; Georgios Anagnostou; Jacopo Pazzini; Sudhir Malik; Yong Ban; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Dominik Nowatschin; Candan Dozen; Marc Osherson; Salvatore My; Harry Cheung; Ioannis Papadopoulos; Salvatore Nuzzo; Hannsjoerg Artur Weber; Christian Barth; Abhigyan Dasgupta; Hui Li; Juan Pablo Fernández Ramos; Andrew Whitbeck; Cédric Prieels; Deborah Pinna; Antonio María Pérez-Calero Yzquierdo; Ivan Marchesini; Gregory R Snow; Mariana Shopova; Dmitry Elumakhov; John N. Wood; Andreas Künsken; Vadim Oreshkin; Manuel Giffels; Andrew Melo; Raman Khurana; Joosep Pata;doi: 10.1016/j.physletb.2018.05.062 , 10.3929/ethz-b-000269943 , 10.5167/uzh-160181 , 10.48550/arxiv.1801.01846 , 10.3204/pubdb-2019-00404 , 10.3204/pubdb-2018-00232 , 10.18154/rwth-2018-227120
arXiv: 1801.01846
A search is presented for new physics in events with two low-momentum, oppositely charged leptons (electrons or muons) and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data collected using the CMS detector at the LHC correspond to an integrated luminosity of 35.9. The observed event yields are consistent with the expectations from the standard model. The results are interpreted in terms of pair production of charginos and neutralinos (X1 and X2) with nearly degenerate masses, as expected in natural supersymmetry models with light higgsinos, as well as in terms of the pair production of top squarks (t), when the lightest neutralino and the top squark have similar masses. At 95% confidence level, wino-like X1/X2 masses are excluded up to 230 GeV for a mass difference of 20 GeV relative to the lightest neutralino. In the higgsino-like model, masses are excluded up to 168 GeV for the same mass difference. For pair production, top squark masses up to 450 GeV are excluded for a mass difference of 40 GeV relative to the lightest neutralino. Physics Letters B, 782 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United KingdomPublisher:Elsevier BV Michael Pahle; Roberto Schaeffer; Shonali Pachauri; Jiyong Eom; Aayushi Awasthy; Wenying Chen; Corrado Di Maria; Kejun Jiang; Chenmin He; Joana Portugal-Pereira; George Safonov; Elena Verdolini;The UN Sustainable Development Goals (SDGs) and the Paris Agreement have ushered in a new era of policymaking to deliver on the formulated goals. Energy policies are key to ensuring universal access to affordable, reliable, sustainable, and modern energy (SDG7). Yet they can also have considerable impact on other goals. To successfully achieve multiple goals concurrently, policies need to balance different objectives and manage their interactions. Refining previously contemplated design principles, we identify three key principles - complementary, transparency and adaptability - as highly pertinent for multiple-objective energy policies based on a synthesis of seventeen coordinated policy case studies. First, policies should entail complementary measures and design provisions that specifically target non-energy objectives (complementarity). Second, policy impacts should be tracked comprehensively in both energy and non-energy domains to uncover diminishing returns and facilitate policy learning (transparency). Third, policies should be capable of adapting to changing objectives over time (adaptability). These principles are rarely considered in current policies, implying the need to mainstream them into the next generation of policymaking by pointing to best practices and new tools.
IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 64 Powered bymore_vert IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Shaojun Zhang; Hewu Wang; Xiaoyi He; Xiaoyi He; Dong Ma; Yali Zheng; Ye Wu; Binggang Wang; Michael Wang;Electric vehicles (EVs) play a crucial role in addressing climate change and urban air quality concerns. China has emerged as the global largest EV market with 1.2 million EVs sold in 2018. This study established a novel life cycle energy use and emission inventory collecting up-to-date data including the electricity generation mix, emission controls in the power and industrial sectors, and the energy use in the fuel transport to estimate the well-to-wheels (WTW) greenhouse gas (GHG), and air pollutant emissions for battery electric vehicles (BEVs) and gasoline passenger vehicles in China. The results show that an average BEV has 35% lower WTW GHG emissions than an average gasoline car. BEVs reduce volatile organic compounds (VOCs) and nitrogen oxides (NOX) emissions by 98% and 34%, respectively, but have comparable or slightly higher primary fine particulate matter (PM2.5) and sulfur dioxide (SO2) emissions. Compact and small-size vehicles generally have lower GHG and air pollutant emissions than mid- and large-size vehicles. Class A vehicles contribute the most in the absolute amount of GHG and air pollutant emissions and therefore have the biggest potential for emission reduction. Our results suggest that global policymakers should continue to promote the transition to clean power sources, emission control, and fuel economy regulations, which are critical to enhancing emission mitigation benefits of BEVs. We also suggest EV development strategies should be formulated targeting vehicle class with the biggest emission mitigation potentials.
Mitigation and Adapt... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-019-09890-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mitigation and Adapt... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-019-09890-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Publisher:IEEE Shiyan Mei; Wenru Liang; Gang Sun; Ming Chen; Jinlan Hu; Yu Zeng;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpsas...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpsasia55496.2022.9949892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpsas...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpsasia55496.2022.9949892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IndiaPublisher:Informa UK Limited Thomas Spencer; Michel Colombier; Oliver Sartor; Amit Garg; Vineet Tiwari; Jesse Burton; Tara Caetano; Fergus Green; Fei Teng; John Wiseman;handle: 11718/20665
National and global mitigation scenarios consistent with 1.5°C require an early phase-out of coal in major coal-dependent countries, compared to standard technical and economic lifetimes. This appe...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Publisher:MDPI AG Frederik Reitsma; Peter Woods; Martin Fairclough; Yongjin Kim; Harikrishnan Tulsidas; Luis Lopez; Yanhua Zheng; Ahmed Hussein; Gerd Brinkmann; Nils Haneklaus; Anand Kacham; Tumuluri Sreenivas; Agus Sumaryanto; Kurnia Trinopiawan; Nahhar Al Khaledi; Ahmad Zahari; Adil El Yahyaoui; Jamil Ahmad; Rolando Reyes; Katarzyna Kiegiel; Noureddine Abbes; Dennis Mwalongo; Eduardo Greaves;A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Cheng Wang; Haiyong Zhang; Zhixiang Liu; Zongqiang Mao;Simulation is an important method for engineers to probe the detailed transportation and reaction information inside fuel cells and guide their designs without large amount of experiments. Although many papers discussing fuel cell flow fields design could be found in documents, relative positions of the ribs and channels in the anode and cathode flow field plates haven't been paid attention to surprisingly. In this paper, simulation results were given to explain the influences of relative positions of the ribs and channels in the anode and cathode flow field plates on the proton exchange membrane fuel cell (PEMFC) performances. It is interesting that the influence differs with several factors and the information will be helpful for fuel cell design.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.05.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.05.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Yiyi Zhang; Yiyi Zhang; Qing Xie; Chijie Zhuang; Chuanyang Li; Pinjia Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1231815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1231815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Article 2011Publisher:IEEE Authors: Li Qian; Yukuan Jiang;In this paper, a numerical method coupling moment method with circuit theory is used to analyze the influence of the grounding material's property on the performance of grounding grids. It can be seen that for a large grounding grid, when the soil resistivity is small, the influence of both resistivity and permeability of grounding material on the performance of grounding grids is great. If the frequency is not very high, the grounding material's resistivity can affect the performance of the grounding grid obviously. If the frequency is very low or very high, the effect of the grounding material's permeability on the performance of the grounding grid is small, while the effect is obvious at other frequency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/apl.2011.6111058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/apl.2011.6111058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Funded by:EC | POEMEC| POEMSubash Dhar; Michel G.J. den Elzen; Wenying Chen; Detlef P. van Vuuren; Detlef P. van Vuuren; Bas van Ruijven; Bas van Ruijven; Priyadarshi R. Shukla; Paul L. Lucas;This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2 °C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2013.09.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report , Research , Preprint , Journal 2018Embargo end date: 10 Jul 2018 Italy, Hungary, Portugal, Germany, Spain, Switzerland, Belgium, United States, Italy, United Kingdom, United States, Germany, United States, United States, Portugal, France, United Kingdom, Italy, Italy, Hungary, Greece, United Kingdom, Brazil, France, United Kingdom, Germany, FrancePublisher:Elsevier BV Publicly fundedFunded by:EC | AMVA4NewPhysics, , GSRIEC| AMVA4NewPhysics ,[no funder available] ,GSRINathan Mirman; Riccardo Paramatti; Annika Vanhoefer; Thomas Ferguson; Thierry Maerschalk; Gregor Mittag; Faridah Mohamad Idris; Cesare Calabria; Sanjay Padhi; Daniele Trocino; Carlos Florez; Michal Olszewski; David Cussans; Luca Pacher; Grant Riley; Marco Alexander Harrendorf; Giacomo Ortona; Georgios Daskalakis; Shuichi Kunori; William John Womersley; Sandra S. Padula; Apichart Hortiangtham; James Rohlf; Heiner Tholen; Konrad Deiters; Vincenzo Daponte; Yacine Haddad; Carlo Battilana; Prakash Thapa; Weimin Wu; Gino Bolla; Alessia Tricomi; Dhanush Anil Hangal; Kirika Uchida; Pierre Piroué; Davide Cieri; Peter Wittich; Federica Primavera; Samuel Bein; Andrey Popov; Andrew Hart; Salvatore Costa; Martino Margoni; Martino Margoni; Markus Spanring; Alice Cocoros; Andreas Kornmayer; Marco Paganoni; Marco Paganoni; Suman Chatterjee; Robert Fischer; Michael Reichmann; Marina Chadeeva; Fábio Lúcio Alves; Jared Turkewitz; Houmani El Mamouni; Johan Borg; Ta-Yung Ling; Thi Hien Doan; Andris Skuja; Amina Zghiche; Shervin Nourbakhsh; Damir Lelas; Fabrizio Margaroli; Kai Yi; Fred-Markus Helmut Stober; Yi-ting Duh; Nathan Kellams; Russell Richard Betts; Johannes Grossmann; Zoltan Laszlo Trocsanyi; Andre Sznajder; Alessio Magitteri; Oliver Buchmuller; Ferdinando Giordano; David Colling; Daniel Robert Marlow; J William Gary; Jan Krolikowski; Souvik Das; Yongbin Feng; Wit Busza; Rachael Bucci; Jack Wright; Georgios Mavromanolakis; Luiz Mundim; Konstantinos Theofilatos; Richard Loveless; Elizabeth Locci; Olga Kodolova; Ferenc Sikler; Cristina Oropeza Barrera; Giancarlo Mantovani; Ada Solano; Nikolay Terentyev; Paul Sheldon; Robert Klanner; Zhoudunming Tu; Paul David Luckey; Mia Tosi; Roumyana Hadjiiska; Mauro Verzetti; Ravi Janjam; Daniele Vadruccio; Aobo Zhang; Pietro Faccioli; Helio Nogima; Peter Thomassen; Ian R Tomalin; Thomas James; Stephan Linn; Martti Raidal; Iurii Antropov; Rino Castaldi; Douglas Berry; Susan Dittmer; Thomas Weiler; Simranjit Singh Chhibra; James Alexander; Andrew Mehta; Yang Yang; Ksenia Shchelina; Igor Bayshev; Alberto Sánchez Hernández; Helena Malbouisson; Rafael Teixeira De Lima; Christian Veelken; Alfredo Castaneda Hernandez; Yuta Takahashi; Steven R. Simon; Simon Kudella; Quan Wang; Armen Tumasyan; Diego Beghin; Diego Ciangottini; Yagya Raj Joshi; Martina Vit; Engin Eren; Livio Fanò; Ajeeta Khatiwada; Frank Hartmann; Tao Huang; David Mark Raymond; Shubham Pandey; Aditee Rane; Frédéric Drouhin; Andreas Hinzmann; C. A. Carrillo Montoya; Joseph Heideman; Ignacio Redondo; Marc M Baarmand; Alexander Zhokin; Clemens Wöhrmann; Adolf Bornheim; Maxwell Chertok; Luca Perrozzi; Gigi Rolandi; Valentin Sulimov; Basil Schneider; Alexander Ershov; Kunal Kothekar; Alessandro Montanari; Thomas Esch; Kelly Beernaert; Emanuele Di Marco; Georgios Anagnostou; Jacopo Pazzini; Sudhir Malik; Yong Ban; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Dominik Nowatschin; Candan Dozen; Marc Osherson; Salvatore My; Harry Cheung; Ioannis Papadopoulos; Salvatore Nuzzo; Hannsjoerg Artur Weber; Christian Barth; Abhigyan Dasgupta; Hui Li; Juan Pablo Fernández Ramos; Andrew Whitbeck; Cédric Prieels; Deborah Pinna; Antonio María Pérez-Calero Yzquierdo; Ivan Marchesini; Gregory R Snow; Mariana Shopova; Dmitry Elumakhov; John N. Wood; Andreas Künsken; Vadim Oreshkin; Manuel Giffels; Andrew Melo; Raman Khurana; Joosep Pata;doi: 10.1016/j.physletb.2018.05.062 , 10.3929/ethz-b-000269943 , 10.5167/uzh-160181 , 10.48550/arxiv.1801.01846 , 10.3204/pubdb-2019-00404 , 10.3204/pubdb-2018-00232 , 10.18154/rwth-2018-227120
arXiv: 1801.01846
A search is presented for new physics in events with two low-momentum, oppositely charged leptons (electrons or muons) and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data collected using the CMS detector at the LHC correspond to an integrated luminosity of 35.9. The observed event yields are consistent with the expectations from the standard model. The results are interpreted in terms of pair production of charginos and neutralinos (X1 and X2) with nearly degenerate masses, as expected in natural supersymmetry models with light higgsinos, as well as in terms of the pair production of top squarks (t), when the lightest neutralino and the top squark have similar masses. At 95% confidence level, wino-like X1/X2 masses are excluded up to 230 GeV for a mass difference of 20 GeV relative to the lightest neutralino. In the higgsino-like model, masses are excluded up to 168 GeV for the same mass difference. For pair production, top squark masses up to 450 GeV are excluded for a mass difference of 40 GeV relative to the lightest neutralino. Physics Letters B, 782 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, United KingdomPublisher:Elsevier BV Michael Pahle; Roberto Schaeffer; Shonali Pachauri; Jiyong Eom; Aayushi Awasthy; Wenying Chen; Corrado Di Maria; Kejun Jiang; Chenmin He; Joana Portugal-Pereira; George Safonov; Elena Verdolini;The UN Sustainable Development Goals (SDGs) and the Paris Agreement have ushered in a new era of policymaking to deliver on the formulated goals. Energy policies are key to ensuring universal access to affordable, reliable, sustainable, and modern energy (SDG7). Yet they can also have considerable impact on other goals. To successfully achieve multiple goals concurrently, policies need to balance different objectives and manage their interactions. Refining previously contemplated design principles, we identify three key principles - complementary, transparency and adaptability - as highly pertinent for multiple-objective energy policies based on a synthesis of seventeen coordinated policy case studies. First, policies should entail complementary measures and design provisions that specifically target non-energy objectives (complementarity). Second, policy impacts should be tracked comprehensively in both energy and non-energy domains to uncover diminishing returns and facilitate policy learning (transparency). Third, policies should be capable of adapting to changing objectives over time (adaptability). These principles are rarely considered in current policies, implying the need to mainstream them into the next generation of policymaking by pointing to best practices and new tools.
IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 4visibility views 4 download downloads 64 Powered bymore_vert IIASA DARE arrow_drop_down University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112662&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Shaojun Zhang; Hewu Wang; Xiaoyi He; Xiaoyi He; Dong Ma; Yali Zheng; Ye Wu; Binggang Wang; Michael Wang;Electric vehicles (EVs) play a crucial role in addressing climate change and urban air quality concerns. China has emerged as the global largest EV market with 1.2 million EVs sold in 2018. This study established a novel life cycle energy use and emission inventory collecting up-to-date data including the electricity generation mix, emission controls in the power and industrial sectors, and the energy use in the fuel transport to estimate the well-to-wheels (WTW) greenhouse gas (GHG), and air pollutant emissions for battery electric vehicles (BEVs) and gasoline passenger vehicles in China. The results show that an average BEV has 35% lower WTW GHG emissions than an average gasoline car. BEVs reduce volatile organic compounds (VOCs) and nitrogen oxides (NOX) emissions by 98% and 34%, respectively, but have comparable or slightly higher primary fine particulate matter (PM2.5) and sulfur dioxide (SO2) emissions. Compact and small-size vehicles generally have lower GHG and air pollutant emissions than mid- and large-size vehicles. Class A vehicles contribute the most in the absolute amount of GHG and air pollutant emissions and therefore have the biggest potential for emission reduction. Our results suggest that global policymakers should continue to promote the transition to clean power sources, emission control, and fuel economy regulations, which are critical to enhancing emission mitigation benefits of BEVs. We also suggest EV development strategies should be formulated targeting vehicle class with the biggest emission mitigation potentials.
Mitigation and Adapt... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-019-09890-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 42 citations 42 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mitigation and Adapt... arrow_drop_down Mitigation and Adaptation Strategies for Global ChangeArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: CrossrefMitigation and Adaptation Strategies for Global ChangeJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11027-019-09890-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object 2022Publisher:IEEE Shiyan Mei; Wenru Liang; Gang Sun; Ming Chen; Jinlan Hu; Yu Zeng;https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpsas...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpsasia55496.2022.9949892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icpsas...Conference object . 2022 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icpsasia55496.2022.9949892&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 IndiaPublisher:Informa UK Limited Thomas Spencer; Michel Colombier; Oliver Sartor; Amit Garg; Vineet Tiwari; Jesse Burton; Tara Caetano; Fergus Green; Fei Teng; John Wiseman;handle: 11718/20665
National and global mitigation scenarios consistent with 1.5°C require an early phase-out of coal in major coal-dependent countries, compared to standard technical and economic lifetimes. This appe...
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2017.1386540&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Publisher:MDPI AG Frederik Reitsma; Peter Woods; Martin Fairclough; Yongjin Kim; Harikrishnan Tulsidas; Luis Lopez; Yanhua Zheng; Ahmed Hussein; Gerd Brinkmann; Nils Haneklaus; Anand Kacham; Tumuluri Sreenivas; Agus Sumaryanto; Kurnia Trinopiawan; Nahhar Al Khaledi; Ahmad Zahari; Adil El Yahyaoui; Jamil Ahmad; Rolando Reyes; Katarzyna Kiegiel; Noureddine Abbes; Dennis Mwalongo; Eduardo Greaves;A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10010235&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Cheng Wang; Haiyong Zhang; Zhixiang Liu; Zongqiang Mao;Simulation is an important method for engineers to probe the detailed transportation and reaction information inside fuel cells and guide their designs without large amount of experiments. Although many papers discussing fuel cell flow fields design could be found in documents, relative positions of the ribs and channels in the anode and cathode flow field plates haven't been paid attention to surprisingly. In this paper, simulation results were given to explain the influences of relative positions of the ribs and channels in the anode and cathode flow field plates on the proton exchange membrane fuel cell (PEMFC) performances. It is interesting that the influence differs with several factors and the information will be helpful for fuel cell design.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.05.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2009.05.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Frontiers Media SA Yiyi Zhang; Yiyi Zhang; Qing Xie; Chijie Zhuang; Chuanyang Li; Pinjia Zhang;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1231815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1231815&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu