- home
- Search
- Energy Research
- 2016-2025
- Renewable Energy
- Netherlands
- Energy Research
- 2016-2025
- Renewable Energy
- Netherlands
description Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Authors:Matias Alday;
Matias Alday
Matias Alday in OpenAIREGeorge Lavidas;
George Lavidas
George Lavidas in OpenAIREIn order to accelerate the transition from carbon fuels to renewable energy sources, it is essential to extend our knowledge of the resources’ availability to further improve or adjust the design of extraction devices. In the present paper, a first characterization of the tidal stream resource along the coast of The Netherlands is performed using a high-resolution unstructured grid implementation of the Thetis model. Extensive validation of the sea surface elevations was done by comparing with existing networks of tide gauges in the North Sea. The simulations from this study show that the highest tidal current intensities are generated mainly at Den Helder and Oost Vlieland, reaching values >1.5 m s−1 and power density estimates that are most frequently close to 300 W m−2 and that can reach values ≥ 900 W m−2. Given the relatively reduced depths where these ‘‘hot spots’’ are found, most existing stream turbines will require further development to operate. Nevertheless, the existence of higher current intensities zones, along a commonly considered ‘‘low energy’’ coast, opens the door to include the tidal stream resource in near future plans to diversify the energy supply in The Netherlands. Offshore Engineering
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
visibility 8visibility views 8 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119683&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 NetherlandsPublisher:Elsevier BV Authors:Abdolrahim Rezaeiha;
Abdolrahim Rezaeiha
Abdolrahim Rezaeiha in OpenAIRERicardo Pereira;
Ricardo Pereira
Ricardo Pereira in OpenAIREMarios Kotsonis;
Marios Kotsonis
Marios Kotsonis in OpenAIREUnsteady loads are a major limiting factor for further upscaling of HAWTs considering the high costs associated to strict structural requirements. Alleviation of these unsteady loads on HAWT blades, e.g. using active flow control (AFC), is of high importance. In order to devise effective AFC methods, the unsteady loading sources need to be identified and their relative contribution to the load fluctuations experienced by blades needs to be quantified. The current study investigates the effects of various atmospheric and operational parameters on the fluctuations of α and CL for a large HAWT. The investigated parameters include turbulence, wind shear, yawed inflow, tower shadow, gravity and rotational imbalances. The study uses the DTU's aeroelastic software HAWC2. The study identifies the individual and the aggregate effect of each source on the aforementioned fluctuations in order to distinguish the major contributing factors to unsteady loading. The quantification of contribution of each source on the total fatigue loads reveals >65% of flapwise fatigue loads is a result of turbulence while gravity results in >80% of edgewise fatigue loads. The extensive parametric study shows that the standard deviation of CL is 0.25. The results support to design active load control systems by highlighting the magnitude of CL and α variations experienced by HAWTs, and thus the dCL that needs to be delivered by an AFC system.
Renewable Energy arrow_drop_down Renewable EnergyArticle . 2017License: CC BYData sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 76 citations 76 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 9visibility views 9 download downloads 11 Powered bymore_vert Renewable Energy arrow_drop_down Renewable EnergyArticle . 2017License: CC BYData sources: Eindhoven University of Technology Research PortalDelft University of Technology: Institutional RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, BelgiumPublisher:Elsevier BV Funded by:EC | SCORE, EC | RENAISSANCEEC| SCORE ,EC| RENAISSANCEAuthors:Maria Luisa Lode;
Maria Luisa Lode
Maria Luisa Lode in OpenAIREAlex Felice;
Alex Felice
Alex Felice in OpenAIREAnder Martinez Alonso;
Jayesh De Silva; +4 AuthorsAnder Martinez Alonso
Ander Martinez Alonso in OpenAIREMaria Luisa Lode;
Maria Luisa Lode
Maria Luisa Lode in OpenAIREAlex Felice;
Alex Felice
Alex Felice in OpenAIREAnder Martinez Alonso;
Jayesh De Silva; Maria E. Angulo; Jens Lowitzsch; Thierry Coosemans;Ander Martinez Alonso
Ander Martinez Alonso in OpenAIRELuis Ramirez Camargo;
Luis Ramirez Camargo
Luis Ramirez Camargo in OpenAIREThis study follows a multi-disciplinary approach to implementing an Energy Community (ECs) in Vega de Valcarce, a rural community in Spain. ECs are entities that encompass collective actions of citizens and other actors towards the open, democratic governance of renewable energy sources; ECs can take various technical and organisational forms. This study developed and evaluated socially accepted, technically optimal and feasible options for the implementation of the EC at Vega de Valcarce. We conducted a participatory multi-criteria analysis incorporating the results of mixed-integer linear programming for energy system optimisation and regulatory analysis of ECs under Spanish law. Our study showed that the main objectives of local stakeholders are the reduction of the energy bill and emissions. The limited liability company fulfilled legal and regulatory restrictions the best by implementing a bigger-sized EC. We summarise the key challenges of implementing an EC in a rural context, mainly legal and financial, and conclude with recommendations on how to overcome these. While contributing to understanding the roll-out of ECs in Spain and Europe, our research aims to provide a structured approach for the uptake of renewable energy in rural areas.
Renewable Energy arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2023Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Vrije Universiteit Brussel Research PortalArticle . 2023Data sources: Vrije Universiteit Brussel Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United KingdomPublisher:Elsevier BV Authors:Katarzyna Patryniak;
Katarzyna Patryniak
Katarzyna Patryniak in OpenAIREMaurizio Collu;
Maurizio Collu
Maurizio Collu in OpenAIREAndrea Coraddu;
Andrea Coraddu
Andrea Coraddu in OpenAIREFloating Offshore Wind Turbines (FOWT) can harness the abundant offshore wind resource at reduced installation requirements. However, a further decrease in the development risks through higher confidence in the design and analysis methods is needed. The dynamic behaviour of FOWT systems is complex due to the strong interactions between the large translational and rotational motions and the diverse loads, which poses a challenge. While the methods to study the FOWT's general responses are well established, there are no methods to describe the highly complex time-dependent rotational motion patterns of FOWT. For a rigid body in general plane motion, an Instantaneous Centre of Rotation (ICR) can be identified as a point at which, at a given moment, the velocity is zero. However, it is common to assume a centre of rotation fixed in space and time, arbitrarily set at the centre of floatation or gravity. Identification of the ICR is crucial as it may lead to better motion reduction methods and can be leveraged to improve the designs. This includes better-informed fairlead placement and the reduction of aerodynamic load variability. In this paper, we propose a two-fold approach for the identification of the ICR: an analytical solution in the initial static equilibrium position, and a time-domain numerical approach for dynamic analysis in regular and irregular waves to understand the motion patterns and ICR sensitivity to environmental conditions. Results show that the ICR of FOWT depends on wave frequency and, at low frequencies, on wave height, due to the nonlinear viscous drag and mooring loads. An unexpected but interesting result is that the surge-heave-pitch coupling introduced by the mooring system leads to a dynamic phenomenon of signal distortion known as ”clipping” in the nonlinear audio signal processing area, which, through the introduction of higher harmonics, is responsible for the ICR sensitivity to motion amplitude. Ship Design, Production and Operations
Strathprints arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 9 Powered bymore_vert Strathprints arrow_drop_down Delft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119378&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Germany, NetherlandsPublisher:Elsevier BV Authors:Mark Khait;
Denis Voskov; Denis Voskov;Mark Khait
Mark Khait in OpenAIREYang Wang;
+3 AuthorsYang Wang
Yang Wang in OpenAIREMark Khait;
Denis Voskov; Denis Voskov;Mark Khait
Mark Khait in OpenAIREYang Wang;
David Bruhn; David Bruhn; Sanaz Saeid;Yang Wang
Yang Wang in OpenAIREA realistic deep low-enthalpy geothermal reservoir based on real data with high detail and complicated sedimentary structure is utilized to perform sensitivity analyses of the geological features influencing reservoir properties. We perform simulations using the Delft Advanced Research Terra Simulator (DARTS). Compelling numerical performance of DARTS makes it suitable for handling a large ensemble of models including efficient sensitivity and uncertainty analyses. The major finding is that shale facies, generally ignored in hydrocarbon reservoir simulations, can significantly extend the predictive lifetime of geothermal reservoirs exploited by deep well doublets. It is important to accurately account for the shale facies in the simulation, though with an additional computational overhead. The overburden layers can improve doublet performance, but the impact depends on reservoir heterogeneity. In addition, heterogeneity will also divert the flow path with even a minor shift in the well placement. The discharge rate, an essential parameter of geothermal operation strategy, inversely corresponds to the doublet lifetime but positively correlates with the energy production for studied parameter ranges. Low sensitivity of doublet lifetime to vertical-horizontal permeability ratio and permeability-porosity correlation is observed. All these systematic findings for a realistic geothermal field with characterization at unprecedented level of detail can help to provide a general guideline for forward simulation and farther improve the profitability of geothermal energy production in realistic deep geothermal reservoirs through computer-assisted modeling and optimization.
GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.07.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 11visibility views 11 download downloads 2 Powered bymore_vert GFZpublic (German Re... arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2021License: CC BYData sources: GFZ German Research Centre for GeosciencesDelft University of Technology: Institutional RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.07.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Authors:Tian, Bowen;
Loonen, Roel C.G.M.; Bognár, Ádám;Tian, Bowen
Tian, Bowen in OpenAIREHensen, Jan L.M.;
Hensen, Jan L.M.
Hensen, Jan L.M. in OpenAIRERaytracing-based methods are widely used for quantifying irradiation on building surfaces. Urban 3D surface models are necessary input for raytracing simulations, which can be generated from open-source point cloud data with the help of surface reconstruction algorithms. In research and engineering practice, various algorithms are being used for this purpose; each leading to different mesh topologies and corresponding performance. This paper compares the impacts of four different reconstruction algorithms by investigating their performance using DAYSIM raytracing simulations. The analysis is carried out for five configurations with various urban morphologies. Results show that the reconstructed models consistently underestimate the shading influence due to geometrical shrinkages that emerge from the various model generation procedures. The explicit algorithms, with Generic Delaunay a notable example, have better performance with less embedded error than the implicit algorithms in both daily and annual simulations. Results also show that diffuse irradiance is responsible for larger contributions to the overall error than direct components. This effect becomes more prominent when modeling reflected irradiation in urban environments. Additionally, the work shows that solar elevation and shading geometry types also affect the error magnitude. The paper concludes by providing reconstruction algorithm selection criteria for photovoltaic practitioners and urban energy planners.
Renewable Energy arrow_drop_down Renewable EnergyArticle . 2022License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.08.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Renewable EnergyArticle . 2022License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.08.095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Debije, M.G.; Tzikas, C.; Jong, M.M. de; Kanellis, M,; Slooff, L.H.;We report on the relative performances of two large-scale luminescent solar concentrator (LSC) noise barriers placed in an outdoor environment monitored for over a year. Comparisons are made for the performances of a number of attached photovoltaic cells with changing spectral illumination, cloud cover conditions and other seasonal variations, and the temperatures of the cells. Differences in performance are attributed to the positioning of the panels, whether facing North/South or East/West. In general, the panels facing East/West run cooler than those facing North/South. The LSCs in both orientations appear to perform more efficiently under lower light conditions: one factor contributing to this increased performance is better spectral matching of the solar spectrum under cloudy conditions to the absorption spectrum of the embedded fluorescent dye. This work is a step forward in the characterization of a largescale LSC device, and suggests predictions of performance of devices could be made for any location given sufficient knowledge of the illumination conditions, and provides an important step towards the commercialization of these alternative solar energy generators for the urban setting.
Renewable Energy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable EnergyArticle . 2018License: unspecifiedData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.09.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Renewable EnergyArticle . 2018License: unspecifiedData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.09.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 NetherlandsPublisher:Elsevier BV Authors: Al-Khoury, Rafid (author);Focaccia, S. (author);
Focaccia, S. (author)
Focaccia, S. (author) in OpenAIREThis paper introduces a semi-analytical model based on the spectral analysis method for the simulation of transient conductive-convective heat flow in an axisymmetric shallow geothermal system consisting of a double U-tube borehole heat exchanger embedded in a soil mass. The proposed model combines the exactness of the analytical methods with an important extent of generality in describing the geometry and boundary conditions of the numerical methods. It calculates the temperature distribution in all involved borehole heat exchanger components and the surrounding soil mass using the fast Fourier transform, for the time domain; and the complex Fourier and Fourier-Bessel series, for the spatial domain. Numerical examples illustrating the model capability to reconstruct thermal response test data together with parametric analysis are given. The CPU time for calculating temperature distributions in all involved components, pipe-in, pipe-out, grout, and soil, using 16,384 FFT samples, for the time domain, and 100 Fourier-Bessel series samples, for the spatial domain, was in the order of 3s in a normal PC. The model can be utilized for forward calculations of heat flow in a double U-tube geothermal heat pump system, and can be included in inverse calculations for parameter identification of shallow geothermal systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.06.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.06.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:NWO | Mat4Heat: Materials for h...NWO| Mat4Heat: Materials for heat storage – characterizing and improving thermochemical storage/materialsAuthors:Natalia Mazur;
Natalia Mazur
Natalia Mazur in OpenAIREMelian A.R. Blijlevens;
Rick Ruliaman;Melian A.R. Blijlevens
Melian A.R. Blijlevens in OpenAIREHartmut Fischer;
+5 AuthorsHartmut Fischer
Hartmut Fischer in OpenAIRENatalia Mazur;
Natalia Mazur
Natalia Mazur in OpenAIREMelian A.R. Blijlevens;
Rick Ruliaman;Melian A.R. Blijlevens
Melian A.R. Blijlevens in OpenAIREHartmut Fischer;
Pim Donkers; Hugo Meekes;Hartmut Fischer
Hartmut Fischer in OpenAIREElias Vlieg;
Elias Vlieg
Elias Vlieg in OpenAIREOlaf Adan;
Olaf Adan
Olaf Adan in OpenAIREHenk Huinink;
Henk Huinink
Henk Huinink in OpenAIREIn this work, we evaluate 454 salt hydrates and 1073 unique hydration reactions in search of suitable materials for domestic heat storage. The salts and reactions are evaluated based on their scarcity, toxicity, (chemical) stability and energy density (>1 GJ/m3) and alignment with 3 use case scenarios. These scenarios are based on space heating (T > 30 °C) and hot water (T > 55 °C) to be provided by discharge as well as on heat sources available in the built environment (T < 160 °C) for charging. From all evaluated materials, only 8 salts and 9 reactions (K2CO3 0–1.5, LiCl 0–1, NaI 0–2, NaCH3COO 0–3, (NH4)2Zn(SO4)2 0–6, SrBr2 1–6, CaC2O4 0–1, SrCl2 0–1 and 0–2) fulfil all of the criteria. Provided a suitable stabilisation method is found additional 4 salts and 13 reactions (CaBr2 6-0, CaCl2 6-0, 6-1, 6-2, 4-0, 4-1, 4-2, LiBr 2-0, 2-1, 2-0, LiCl 2-0, 2-1, ZnBr2 2-0) From this selection, only 2 salts/reactions (NaI and (NH4)2Zn(SO4)2) have not been extensively studied in the literature. Moreover, many well-investigated salt hydrates, such as MgSO4 and LiOH, did not pass our screening. This work underlines the scarcity of materials suitable for domestic applications and the need to broaden the scope of future evaluations.
Renewable Energy arrow_drop_down Renewable EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Renewable EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.119331&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 Italy, Cyprus, Malta, United Kingdom, NetherlandsPublisher:Elsevier BV Authors:Figueira, João S.;
Figueira, João S.
Figueira, João S. in OpenAIREGarcía Gil, Alejandro;
García Gil, Alejandro
García Gil, Alejandro in OpenAIREVieira, Ana;
Michopoulos, Apostolos K.; +13 AuthorsVieira, Ana
Vieira, Ana in OpenAIREFigueira, João S.;
Figueira, João S.
Figueira, João S. in OpenAIREGarcía Gil, Alejandro;
García Gil, Alejandro
García Gil, Alejandro in OpenAIREVieira, Ana;
Michopoulos, Apostolos K.; Boon, David P.;Vieira, Ana
Vieira, Ana in OpenAIRELoveridge, Fleur;
Loveridge, Fleur
Loveridge, Fleur in OpenAIRECecinato, Francesco;
Götzl, Gregor;Cecinato, Francesco
Cecinato, Francesco in OpenAIREEpting, Jannis;
Zosseder, Kai;Epting, Jannis
Epting, Jannis in OpenAIREBloemendal, Martin;
Woods, Michael; Christodoulides, Paul;Bloemendal, Martin
Bloemendal, Martin in OpenAIREVardon, Philip J.;
Borg, Simon Paul;Vardon, Philip J.
Vardon, Philip J. in OpenAIREErbs Poulsen, Søren;
Erbs Poulsen, Søren
Erbs Poulsen, Søren in OpenAIREAndersen, Theis Raaschou;
Andersen, Theis Raaschou
Andersen, Theis Raaschou in OpenAIREhandle: 2434/1124259 , 20.500.14279/33457
Heating and Cooling constitute a major part of society's final energy use and a significant contributor to greenhouse gas emissions. The world society ought to mitigate climate change through decarbonisation, which must include the transition to low-temperature, sustainable and renewable heating and cooling technologies. Shallow Geothermal Energy is one of the most energy efficient and least greenhouse gas emitting available alternatives to provide space heating and cooling. The decarbonisation of the heating and cooling sector may have to comprise both individual systems and shared electrified heating and cooling systems from renewable sources of energy, where economies of scale and synergies between different types of consumers can be exploited. To this end, the focus of this paper is on the integration of shallow geothermal energy technologies into district heating and cooling systems. A key contribution of this work is the illustration of a number of practical case studies, highlighting the potential of existing shallow geothermal systems for DHC networks, which, as front runners in adopting such technologies, serve as paradigms for future development. Follows a discussion providing an outlook over the next 25 years. All in all, the future of utilizing shallow geothermal energy for district heating and cooling seems to be promising to play a pivotal role in sustainable urban development and decarbonizing the heating and cooling sector.
NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2024.121436&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu