- home
- Search
- Energy Research
- Netherlands Research Portal
- National Research Council
- Energy Research
- Netherlands Research Portal
- National Research Council
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Switzerland, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni..., EC | GHG EUROPESNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grassland ,EC| GHG EUROPEVal Snow; Lutz Merbold; Lutz Merbold; Robert M. Rees; Paul C. D. Newton; Katja Klumpp; Nina Buchmann; Raphaël Martin; Pete Smith; Kathrin Fuchs; Daniel Bretscher; Nuala Fitton; Lorenzo Brilli; Lorenzo Brilli; Cairistiona F.E. Topp; Mark Lieffering; Susanne Rolinski;handle: 20.500.14243/397822 , 20.500.11850/342267 , 2164/13891 , 10568/125184
AbstractProcess‐based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss), but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble overestimated the N2O mitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Greece, United KingdomPublisher:MDPI AG Zoe Jacobs; Fatma Jebri; Meric Srokosz; Dionysios E. Raitsos; Stuart C. Painter; Francesco Nencioli; Kennedy Osuka; Melita Samoilys; W. H. H. Sauer; Michael J. Roberts; Stephen K. Taylor; Lucy Scott; Hellen Kizenga; Ekaterina Popova;Under the impact of natural and anthropogenic climate variability, upwelling systems are known to change their properties leading to associated regime shifts in marine ecosystems. These often impact commercial fisheries and societies dependent on them. In a region where in situ hydrographic and biological marine data are scarce, this study uses a combination of remote sensing and ocean modelling to show how a stable seasonal upwelling off the Kenyan coast shifted into the territorial waters of neighboring Tanzania under the influence of the unique 1997/98 El Niño and positive Indian Ocean Dipole event. The formation of an anticyclonic gyre adjacent to the Kenyan/Tanzanian coast led to a reorganization of the surface currents and caused the southward migration of the Somali–Zanzibar confluence zone and is attributed to anomalous wind stress curl over the central Indian Ocean. This caused the lowest observed chlorophyll-a over the North Kenya banks (Kenya), while it reached its historical maximum off Dar Es Salaam (Tanzanian waters). We demonstrate that this situation is specific to the 1997/98 El Niño when compared with other the super El-Niño events of 1972,73, 1982–83 and 2015–16. Despite the lack of available fishery data in the region, the local ecosystem changes that the shift of this upwelling may have caused are discussed based on the literature. The likely negative impacts on local fish stocks in Kenya, affecting fishers’ livelihoods and food security, and the temporary increase in pelagic fishery species’ productivity in Tanzania are highlighted. Finally, we discuss how satellite observations may assist fisheries management bodies to anticipate low productivity periods, and mitigate their potentially negative economic impacts.
CORE arrow_drop_down Remote SensingOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2072-4292/12/19/3127/pdfData sources: Multidisciplinary Digital Publishing InstituteNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs12193127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Remote SensingOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2072-4292/12/19/3127/pdfData sources: Multidisciplinary Digital Publishing InstituteNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs12193127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Authors: Senneca Osvalda; Ciaravolo Stefano; Nunziata Alfredo;handle: 20.500.14243/51279 , 20.500.14243/306198
[object Object]
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2006.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2006.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Pasolini G.; Toppan P.; Zabini F.; De Castro C. D.; Andrisano O.;doi: 10.3390/app9163281
handle: 20.500.14243/391843 , 11585/713510
Street lighting characterizes many smart city initiatives around the world. In fact, significant savings can be achieved by not only replacing traditional luminaires with low-power LEDs, but also providing streetlights with smart light controllers and network connectivity, allowing the introduction of a sensible light intensity management and reduction of maintenance costs. Moreover, if designed with a far-looking view, smart lighting infrastructure could also support city-wide Internet of Things services, becoming key enablers of the smart city revolution, also in the 5G perspective. In this paper, we provide a thorough discussion on network architectures and communication technologies that could be adopted for smart public lighting applications, showing their benefits and downsides. Starting with significant activity on research, implementation and in-field testing, we also outline the steps required for the deployment of a smart public lighting infrastructure, each discussed in accordance with the network topology considered. Finally, we introduce some additional services that a smart public lighting infrastructure could support and discuss the benefits that would arise from integration with the upcoming 5G cellular network.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/16/3281/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/16/3281/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 Italy, Slovenia, Croatia, Croatia, ItalyPublisher:Forest Research Institute Jastrebarsko,, Jastrebarsko , Croazia Authors: Matevž Mihelič; Raffaele Spinelli; Anton Poje;handle: 20.500.14243/387102 , 20.500.12556/RUL-114175
A study was conducted on chip production from logging residue left after a cable yarder operation. The logistics were managed with tractor and trailer units (shuttles). The study specifically dealt with a very difficult case of space constrained operations, further expanding the knowledge about chip supply in extreme work conditions. The focus of the investigation was also extended to the shuttles. The study tested a production chain, in which only 3 machines (1 chipper, 2 shuttles) were used to minimize operational costs. The use of 2 shuttles was decisive, reducing shuttle delays. The chips produced had an average moisture content of 40.2 ±3.1%. Particle size distribution shows an unfavorable composition. The content of accepts is as low as 72%, while oversized particles get up to 5.4% and fines rise to a maximum of 24%. The estimated net productivity of the whole system was 11.5 t PMH ?¹ , corresponding to a gross productivity of 11.1 t SMH ?¹ . The cost of the whole operation amounted to 21.2 EURt ?¹ .
HRČAK - Portal of sc... arrow_drop_down HRČAK - Portal of scientific journals of CroatiaOther literature type . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaHRČAK - Portal of scientific journals of CroatiaArticle . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::95a0435c392770c1d3630bc44f30919f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HRČAK - Portal of sc... arrow_drop_down HRČAK - Portal of scientific journals of CroatiaOther literature type . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaHRČAK - Portal of scientific journals of CroatiaArticle . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::95a0435c392770c1d3630bc44f30919f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, Belgium, France, Italy, Netherlands, Netherlands, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SRF-OZO, EC | DOFOCO, NSERC +2 projectsEC| SRF-OZO ,EC| DOFOCO ,NSERC ,EC| GEM-TRAIT ,EC| IMBALANCE-PPatrick F. Sullivan; Philippe Ciais; Terenzio Zenone; Terenzio Zenone; Eric Ceschia; Josep Peñuelas; Xuhui Wang; F. S. Chapin; Joke Bilcke; Sara Vicca; Michael Obersteiner; Ivan A. Janssens; Matteo Campioli; Shilong Piao; Shilong Piao; Dario Papale; Yadvinder Malhi; Marcos Fernández-Martínez; Sebastiaan Luyssaert; David Olefeldt;Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.
Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Argentina, Italy, ArgentinaPublisher:Wiley Murcia G; Pontina; M; Reinoso H; Baraldi R; Bertazza G; GómezTalquenca S; Bottini R; and Piccoli PN;Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot‐grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre‐veraison, full veraison and post‐veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA‐treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build‐up of non‐structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.
LAReferencia - Red F... arrow_drop_down Physiologia PlantarumArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Physiologia PlantarumArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPENicolas Vuichard; Xiuchen Wu; Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier; Xuhui Wang; P. Di Tommasi; Christine Moureaux; Eric Larmanou; Tanguy Manise; W.W.P. Jans; Luca Vitale; Thomas Grünwald; Vincenzo Magliulo; Jan Elbers; Dominique Ripoche; Tiphaine Tallec; Eric Ceschia; Anne De Ligne; Martin Wattenbach; Benjamin Loubet; Nicolas Viovy; Christian Bernhofer;Abstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2010 ItalyPublisher:Elsevier BV Authors: O Senneca; C Allouis; R Chirone; S Russo;fragmentation of solid fuels under severe heating conditions. The devise is a modified heated strip reactor, capable to reach 2000°C in less than 0.2s. Particles are laid on the strip and pyrolysed under inert or moderately oxidizing conditions. The char particles and their fragments, generated upon pyrolysis, can be recovered and analysed to assess the fragmentation propensity of the fuel. Some preliminary experiments have been carried out on two biomass samples in order to assess the temperature time history of particles in the experimental apparatus. In particular biomass particles of approximately 2-3 mm have been used. The temperature of the heated strip reactor in such preliminary tests was varied between 1000 and 1600°C, while the strip nominal heating rate was kept at 104°C/s and the holding time was set at the value of 10s. A near infrared fast camera (38000 frames/sec) has been used to measure the temperature of the heated strip and of the particles during the tests. A heat up model was developed and validated against experimental results. The model was then used to estimate the temperature gradients across particles of biomass and of coal as well. Results show that the strip of the reactor reaches the set temperature in less than 0.2s. When particles are laid on the strip, their bottom surface, which is in physical contact with the strip, immediately reaches the set temperature value. For 1mm coal particles the upper surface can be considered at the same temperature as well. Under the most severe conditions tested (strip temperature of 1600°C , biomass particles of 2mm thickness) the temperature difference between the bottom and the upper face is 200°C after 3s and drops to 100°C after 10 s. On the whole the experimental apparatus simulates uniform heating of the particles with reasonable approximation. In the next future the apparatus will be further upgraded to operate at pressures up to 20 bar.
CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2009.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2009.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2008 ItalyPublisher:Elsevier BV Authors: Jiri Masojidek; Giuseppe Torzillo;Wild microalgae (prokaryotic and eukaryotic photosynthetic microorganisms) - phytoplankton - is at the base of the food chain, supporting aquatic primary production. Microalgae are an ideal platform for the large-scale production of biomass because they are fast-growing, solar-powered 'biofactories' with low nutrient requirements. The variety of high-value bioproducts comes from microalgal species due to their wide physiological and functional diversity. Over the last 60 years, microalgal biotechnology has shown a range of applications: from the traditional extensive biomass production in human and animal nutrition, soil conditioning in agriculture, technologies for waste-water treatment, products for cosmetics and pharmacy, and most recently to the possible production of a 'third' generation of biofuels.
CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-409548-9.09373-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-409548-9.09373-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Switzerland, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni..., EC | GHG EUROPESNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grassland ,EC| GHG EUROPEVal Snow; Lutz Merbold; Lutz Merbold; Robert M. Rees; Paul C. D. Newton; Katja Klumpp; Nina Buchmann; Raphaël Martin; Pete Smith; Kathrin Fuchs; Daniel Bretscher; Nuala Fitton; Lorenzo Brilli; Lorenzo Brilli; Cairistiona F.E. Topp; Mark Lieffering; Susanne Rolinski;handle: 20.500.14243/397822 , 20.500.11850/342267 , 2164/13891 , 10568/125184
AbstractProcess‐based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss), but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble overestimated the N2O mitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020 Greece, United KingdomPublisher:MDPI AG Zoe Jacobs; Fatma Jebri; Meric Srokosz; Dionysios E. Raitsos; Stuart C. Painter; Francesco Nencioli; Kennedy Osuka; Melita Samoilys; W. H. H. Sauer; Michael J. Roberts; Stephen K. Taylor; Lucy Scott; Hellen Kizenga; Ekaterina Popova;Under the impact of natural and anthropogenic climate variability, upwelling systems are known to change their properties leading to associated regime shifts in marine ecosystems. These often impact commercial fisheries and societies dependent on them. In a region where in situ hydrographic and biological marine data are scarce, this study uses a combination of remote sensing and ocean modelling to show how a stable seasonal upwelling off the Kenyan coast shifted into the territorial waters of neighboring Tanzania under the influence of the unique 1997/98 El Niño and positive Indian Ocean Dipole event. The formation of an anticyclonic gyre adjacent to the Kenyan/Tanzanian coast led to a reorganization of the surface currents and caused the southward migration of the Somali–Zanzibar confluence zone and is attributed to anomalous wind stress curl over the central Indian Ocean. This caused the lowest observed chlorophyll-a over the North Kenya banks (Kenya), while it reached its historical maximum off Dar Es Salaam (Tanzanian waters). We demonstrate that this situation is specific to the 1997/98 El Niño when compared with other the super El-Niño events of 1972,73, 1982–83 and 2015–16. Despite the lack of available fishery data in the region, the local ecosystem changes that the shift of this upwelling may have caused are discussed based on the literature. The likely negative impacts on local fish stocks in Kenya, affecting fishers’ livelihoods and food security, and the temporary increase in pelagic fishery species’ productivity in Tanzania are highlighted. Finally, we discuss how satellite observations may assist fisheries management bodies to anticipate low productivity periods, and mitigate their potentially negative economic impacts.
CORE arrow_drop_down Remote SensingOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2072-4292/12/19/3127/pdfData sources: Multidisciplinary Digital Publishing InstituteNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs12193127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down Remote SensingOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2072-4292/12/19/3127/pdfData sources: Multidisciplinary Digital Publishing InstituteNatural Environment Research Council: NERC Open Research ArchiveArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/rs12193127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 ItalyPublisher:Elsevier BV Authors: Senneca Osvalda; Ciaravolo Stefano; Nunziata Alfredo;handle: 20.500.14243/51279 , 20.500.14243/306198
[object Object]
Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2006.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Analytica... arrow_drop_down Journal of Analytical and Applied PyrolysisArticle . 2007 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jaap.2006.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 ItalyPublisher:MDPI AG Pasolini G.; Toppan P.; Zabini F.; De Castro C. D.; Andrisano O.;doi: 10.3390/app9163281
handle: 20.500.14243/391843 , 11585/713510
Street lighting characterizes many smart city initiatives around the world. In fact, significant savings can be achieved by not only replacing traditional luminaires with low-power LEDs, but also providing streetlights with smart light controllers and network connectivity, allowing the introduction of a sensible light intensity management and reduction of maintenance costs. Moreover, if designed with a far-looking view, smart lighting infrastructure could also support city-wide Internet of Things services, becoming key enablers of the smart city revolution, also in the 5G perspective. In this paper, we provide a thorough discussion on network architectures and communication technologies that could be adopted for smart public lighting applications, showing their benefits and downsides. Starting with significant activity on research, implementation and in-field testing, we also outline the steps required for the deployment of a smart public lighting infrastructure, each discussed in accordance with the network topology considered. Finally, we introduce some additional services that a smart public lighting infrastructure could support and discuss the benefits that would arise from integration with the upcoming 5G cellular network.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/16/3281/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 51 citations 51 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3417/9/16/3281/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/app9163281&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 Italy, Slovenia, Croatia, Croatia, ItalyPublisher:Forest Research Institute Jastrebarsko,, Jastrebarsko , Croazia Authors: Matevž Mihelič; Raffaele Spinelli; Anton Poje;handle: 20.500.14243/387102 , 20.500.12556/RUL-114175
A study was conducted on chip production from logging residue left after a cable yarder operation. The logistics were managed with tractor and trailer units (shuttles). The study specifically dealt with a very difficult case of space constrained operations, further expanding the knowledge about chip supply in extreme work conditions. The focus of the investigation was also extended to the shuttles. The study tested a production chain, in which only 3 machines (1 chipper, 2 shuttles) were used to minimize operational costs. The use of 2 shuttles was decisive, reducing shuttle delays. The chips produced had an average moisture content of 40.2 ±3.1%. Particle size distribution shows an unfavorable composition. The content of accepts is as low as 72%, while oversized particles get up to 5.4% and fines rise to a maximum of 24%. The estimated net productivity of the whole system was 11.5 t PMH ?¹ , corresponding to a gross productivity of 11.1 t SMH ?¹ . The cost of the whole operation amounted to 21.2 EURt ?¹ .
HRČAK - Portal of sc... arrow_drop_down HRČAK - Portal of scientific journals of CroatiaOther literature type . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaHRČAK - Portal of scientific journals of CroatiaArticle . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::95a0435c392770c1d3630bc44f30919f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert HRČAK - Portal of sc... arrow_drop_down HRČAK - Portal of scientific journals of CroatiaOther literature type . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaHRČAK - Portal of scientific journals of CroatiaArticle . 2018Full-Text: https://hrcak.srce.hr/file/300554Data sources: HRČAK - Portal of scientific journals of CroatiaRepository of the University of LjubljanaArticle . 2018Data sources: Repository of the University of Ljubljanaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=dedup_wf_002::95a0435c392770c1d3630bc44f30919f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, Belgium, France, Italy, Netherlands, Netherlands, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SRF-OZO, EC | DOFOCO, NSERC +2 projectsEC| SRF-OZO ,EC| DOFOCO ,NSERC ,EC| GEM-TRAIT ,EC| IMBALANCE-PPatrick F. Sullivan; Philippe Ciais; Terenzio Zenone; Terenzio Zenone; Eric Ceschia; Josep Peñuelas; Xuhui Wang; F. S. Chapin; Joke Bilcke; Sara Vicca; Michael Obersteiner; Ivan A. Janssens; Matteo Campioli; Shilong Piao; Shilong Piao; Dario Papale; Yadvinder Malhi; Marcos Fernández-Martínez; Sebastiaan Luyssaert; David Olefeldt;Plants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.
Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 Argentina, Italy, ArgentinaPublisher:Wiley Murcia G; Pontina; M; Reinoso H; Baraldi R; Bertazza G; GómezTalquenca S; Bottini R; and Piccoli PN;Grape quality for winemaking depends on sugar accumulation and metabolism in berries. Abscisic acid (ABA) and gibberellins (GAs) have been reported to control sugar allocation in economically important crops, although the mechanisms involved are still unknown. The present study tested if ABA and gibberellin A3 (GA3) enhance carbon allocation in fruits of grapevines by modifying phloem loading, phloem area and expression of sugar transporters in leaves and berries. Pot‐grown Vitis vinifera cv. Malbec plants were sprayed with ABA and GA3 solutions. The amount of soluble sugars in leaves and berries related to photosynthesis were examined at three points of berry growth: pre‐veraison, full veraison and post‐veraison. Starch levels and amylase activity in leaves, gene expression of sugar transporters in leaves and berries and phloem anatomy were examined at full veraison. Accumulation of glucose and fructose in berries was hastened in ABA‐treated plants at the stage of full veraison, which was correlated with enhancement of Vitis vinifera HEXOSE TRANSPORTER 2 (VvHT2) and Vitis vinifera HEXOSE TRANSPORTER 6 (VvHT6) gene expression, increases of phloem area and sucrose content in leaves. On the other hand, GA3 increased the quantity of photoassimilates delivered to the stem thus increasing xylem growth. In conclusion, stimulation of sugar transport by ABA and GA3 to berries and stems, respectively, was due to build‐up of non‐structural carbohydrates in leaves, modifications in phloem tissue and modulation in gene expression of sugar transporters.
LAReferencia - Red F... arrow_drop_down Physiologia PlantarumArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert LAReferencia - Red F... arrow_drop_down Physiologia PlantarumArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ppl.12390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPENicolas Vuichard; Xiuchen Wu; Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier; Xuhui Wang; P. Di Tommasi; Christine Moureaux; Eric Larmanou; Tanguy Manise; W.W.P. Jans; Luca Vitale; Thomas Grünwald; Vincenzo Magliulo; Jan Elbers; Dominique Ripoche; Tiphaine Tallec; Eric Ceschia; Anne De Ligne; Martin Wattenbach; Benjamin Loubet; Nicolas Viovy; Christian Bernhofer;Abstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2010 ItalyPublisher:Elsevier BV Authors: O Senneca; C Allouis; R Chirone; S Russo;fragmentation of solid fuels under severe heating conditions. The devise is a modified heated strip reactor, capable to reach 2000°C in less than 0.2s. Particles are laid on the strip and pyrolysed under inert or moderately oxidizing conditions. The char particles and their fragments, generated upon pyrolysis, can be recovered and analysed to assess the fragmentation propensity of the fuel. Some preliminary experiments have been carried out on two biomass samples in order to assess the temperature time history of particles in the experimental apparatus. In particular biomass particles of approximately 2-3 mm have been used. The temperature of the heated strip reactor in such preliminary tests was varied between 1000 and 1600°C, while the strip nominal heating rate was kept at 104°C/s and the holding time was set at the value of 10s. A near infrared fast camera (38000 frames/sec) has been used to measure the temperature of the heated strip and of the particles during the tests. A heat up model was developed and validated against experimental results. The model was then used to estimate the temperature gradients across particles of biomass and of coal as well. Results show that the strip of the reactor reaches the set temperature in less than 0.2s. When particles are laid on the strip, their bottom surface, which is in physical contact with the strip, immediately reaches the set temperature value. For 1mm coal particles the upper surface can be considered at the same temperature as well. Under the most severe conditions tested (strip temperature of 1600°C , biomass particles of 2mm thickness) the temperature difference between the bottom and the upper face is 200°C after 3s and drops to 100°C after 10 s. On the whole the experimental apparatus simulates uniform heating of the particles with reasonable approximation. In the next future the apparatus will be further upgraded to operate at pressures up to 20 bar.
CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2009.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2009.10.015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2008 ItalyPublisher:Elsevier BV Authors: Jiri Masojidek; Giuseppe Torzillo;Wild microalgae (prokaryotic and eukaryotic photosynthetic microorganisms) - phytoplankton - is at the base of the food chain, supporting aquatic primary production. Microalgae are an ideal platform for the large-scale production of biomass because they are fast-growing, solar-powered 'biofactories' with low nutrient requirements. The variety of high-value bioproducts comes from microalgal species due to their wide physiological and functional diversity. Over the last 60 years, microalgal biotechnology has shown a range of applications: from the traditional extensive biomass production in human and animal nutrition, soil conditioning in agriculture, technologies for waste-water treatment, products for cosmetics and pharmacy, and most recently to the possible production of a 'third' generation of biofuels.
CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-409548-9.09373-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu101 citations 101 popularity Top 1% influence Top 10% impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down https://doi.org/10.1016/b978-0...Part of book or chapter of book . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefhttps://doi.org/10.1016/b978-0...Part of book or chapter of book . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/b978-0-12-409548-9.09373-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu